
Improving Gamma Imaging in Proton Therapy by
Sanitizing Compton Camera Simulated Patient Data
using Neural Networks through the BRIDE Pipeline

Michael O. Chen
Departments of Mathematics

Dartmouth College, USA

Julian Hodge
Dept. of Mathematics and Statistics

U. of Maryland, Baltimore County, USA

Peter L. Jin
James M. Bennett High School

Salisbury, MD, USA

Ella Protz
Department of Mathematics and Sciences

Florida Atlantic University, USA

Elizabeth Wong
Department of Mathematics

Brookdale Community College, USA

Ruth Obe
Dept. of Computer Science and of Software Engineering

U. of Houston—Clear Lake, USA

Ehsan Shakeri
Dept. of Mathematics and Statistics

U. of Maryland, Baltimore County, USA

Mostafa Cham
Dept. of Information Systems

U. of Maryland, Baltimore County, USA

Matthias K. Gobbert
Dept. of Mathematics and Statistics

U. of Maryland, Baltimore County, USA

Carlos A. Barajas
Dept. of Mathematics and Statistics

U. of Maryland, Baltimore County, USA

Vijay R. Sharma
Dept. of Radiation Oncology

U. of Maryland School of Medicine, USA

Sina Mossahebi
Department of Radiation Oncology

U. of Maryland School of Medicine, USA

Lei Ren
Department of Radiation Oncology

U. of Maryland School of Medicine, USA

Stephen W. Peterson
Dept. of Physics

U. of Cape Town, South Africa

Jerimy C. Polf
M3D, Inc.

USA

Abstract—Precision medicine in cancer treatment increasingly
relies on advanced radiotherapies, such as proton beam ra-
diotherapy, to enhance efficacy of the treatment. When the
proton beam in this treatment interacts with patient matter, the
excited nuclei may emit prompt gamma ray interactions that can
be captured by a Compton camera. The image reconstruction
from this captured data faces the issue of mischaracterizing the
sequences of incoming scattering events, leading to excessive
background noise. To address this problem, several machine
learning models such as Feedfoward Neural Networks (FNN) and
Recurrent Neural Networks (RNN) were developed in PyTorch
to properly characterize the scattering sequences on simulated
datasets, including newly-created patient medium data, which
were generated by using a pipeline comprised of the GEANT4
and Monte-Carlo Detector Effects (MCDE) softwares. These
models were implemented using the novel ‘Big-data REU In-
tegrated Development and Experimentation’ (BRIDE) platform,
a modular pipeline that streamlines preprocessing, feature engi-
neering, and model development and evaluation on parallelized
GPU processors. Hyperparameter studies were done on the novel
patient data as well as on water phantom datasets used during
previous research. Patient data was more difficult than water
phantom data to classify for both FNN and RNN models. FNN
models had higher accuracy on patient medium data but lower
accuracy on water phantom data when compared to RNN models.

Previous results on several different datasets were reproduced on
BRIDE and multiple new models achieved greater performance
than in previous research.

Index Terms—Proton beam therapy, Compton camera, Clas-
sification, Recurrent neural network, PyTorch

I. INTRODUCTION

Radiotherapy, a common cancer treatment, involves deliver-
ing a clinically determined dose of X-ray, electron, or proton
radiation to a tumor for destruction. Unlike X-ray radiotherapy,
which delivers a high initial dose to the tumor and often ex-
poses healthy tissue to radiation, proton beam therapy provides
a more precise and targeted approach, significantly reducing
unnecessary radiation exposure [7], [10]. This advantage stems
from the fact that proton beams release most of their energy
in a concentrated area known as the Bragg peak. Accurately
determining the Bragg peak location is essential to ensure
effective treatment and the protection of healthy tissue in
medical settings.

A Compton camera is a gamma-ray imaging device that
detects and visualizes gamma rays through the Compton



scattering process. It can detect prompt gamma rays generated
by the proton beams interacting with patient tissues, enabling
real-time determination of the Bragg peak location. However,
uncertainties arise due to the non-zero time resolution of the
Compton camera, which can lead to simultaneous detection of
interactions [2]. Using machine learning, the background noise
in the reconstructed images can be mitigated. Deep learning
techniques, such as fully connected neural networks (FCNs) or
recurrent neural networks (RNNs), can differentiate scattering
interactions, filter out false data, and improve image recon-
struction accuracy, thus enhancing the precise localization of
the proton beam.

Previous studies use the same dataset derived from Monte
Carlo simulations of a water phantom, a constant density
water medium, in the training and testing of models [5],
[9], [15]. Recent improvements have allowed novel datasets
based off simulated patient medium to provide comparable
data to clinical cases. It is unclear whether these results
can immediately transfer to this new data. Hence, this work
aims to test the extensibility of these previous results onto
the simulated patient data. We first improve the PyTorch
implementation of multi-processor training in [9]. Next, we
refine the best models of [1] and [6] on the new data in our
improved environments. Finally, we perform a hyperparameter
study on the new data for both FCN and RNN models for
comparison with water phantom data results.

Finally, please note that all code mentioned in this paper,
including the implementation of BRIDE, can be found in [3]
in the folder 2024-projects/team-2. The full project
code base exists within the hpcf cluster at UMBC.

The remainder of this paper is organized as follows: Sec-
tion II covers the background information on proton beam
therapy. Section III begins with technical background on ma-
chine learning and the physical and software resources utilized.
It reviews the data generation process. Section IV covers the
results and comparisons of our tests on both water phantom
and patient data. Section V summarizes additional studies
done in this research. Section VI concludes our findings and
summarizes potential clinical applications.

II. APPLICATION BACKGROUND

A. Proton Beam Radiotherapy

Radiotherapy is an advanced cancer treatment that delivers
a high dosage of radiation to destroy cancer cells. One of
the most common treatments, X-ray therapy, delivers the full
dosage of radiation upon entering the body en route to the
tumor, leading to unnecessary radiation exposure.

In the relatively novel proton beam therapy, proton beams
deposit the vast majority of the radiation at the tumor site.
Unlike in X-ray therapy, the proton beam does not travel
further than the tumor site, minimizing damage to healthy
tissue. Hence, this treatment is widely considered to be more
effective for some types of cancer. Importantly, using the
Bragg peak of proton therapy allows for treatment plans that
deliver radiation precisely to the tumor and avoid surrounding
healthy tissue. However, the small distance between healthy

and tumor tissue requires the Bragg peak to be accurately lo-
cated [12]. Clinicians need real-time information to determine
its location for safe treatment. Fig. 1 demonstrates the safety
margin for treating a lung tumor with minimal damage to the
heart.

Fig. 1: a: Optimal proton treatment beam (dashed) targeting a
tumor (green) with safety margin (orange) that overlaps with
the healthy heart tissue (magenta). b: Suboptimal treatment
plan of two beams that do not overlap with heart [12].

B. Compton Camera and Image Reconstruction

When high energy proton beams collide with patient matter,
prompt gamma rays are emitted and captured by the Compton
camera [12]. The Compton camera produces real-time images
to visualize the prompt gamma radiation and scattering events.
Prompt gammas are emitted at a specific angle of displacement
determined from the energy levels of the proton collision with
the nucleus. Prompt gamma rays interact with the camera: for
each interaction, the camera calculates (xi, yi, zi) coordinates
and the energy level ei of the scatter. The Compton cone of
emission is used to project the potential trajectories that this
collision could occur. Using this cone of emission, the origin
of the gamma is determined mathematically [11].

After the scattering events, image reconstruction algorithms
recover a visualization of the path of the proton beam. How-
ever, the Compton camera has a major problem of a finite time
resolution. It does not explicitly record the sequential order of
the prompt gamma ray interactions. This causes noise in the
reconstructed images, rendering them partially unusable in a
medical setting [11].

1) Scatter Types: Due to prompt gamma radiation emission
at approximately the speed of light, the sequence of the
scattering events can become distorted. To help identify false
events that create image noise, scattering events are organized
as scatter types. There are 13 types of scatterings, which are
separated into three groups.

1) True Triples: True triples are three sequential interac-
tions with the Compton camera. The ordering of the
interactions can be one of six combinations: 123, 132,
213, 231, 312, and 321. Out of these, only the 123
combination is currently usable for image reconstruction
purposes.

2) Doubles to Triples (DtoT): DtoT events are double
and single interactions that occur independently of each
other but are detected as one event by the Compton
camera. There are six possible combinations of this



event: 124, 134, 214, 234, 324, and 314, where the ”4”
refers to the second prompt gamma interaction in the
misdetection events.

3) False Triples: False triples are events that are detected
as a true triple, but in reality are comprised of three
independent events. These false events may result in
images with noise and must be discarded [2], [8], [11].

III. METHODOLOGY

A. Machine Learning

In order to make proton therapy more effective, real-time
imaging is required for treatment to verify proton beam
dosage and the Bragg peak location. Machine learning can be
used to sanitize Compton camera data by removing classified
false events; it uses algorithms to identify and generalize
specific trends within data. The main form of machine learning
employed in this work are neural networks. Using complex
techniques, neural networks were designed to emulate the
ability of the human brain to discover relationships between
each observation and its class. The two main types applied in
this work are Feed Forward Neural Networks and Recurrent
Neural Networks, as they have shown some success in past
work [14].

1) Feed Forward Neural Networks: The simplest deep
learning model is the Feed Forward Neural Network (FNN).
FNNs involve unidirectional flow of information, channeling
the input through the hidden activation layers to become the
output [13]. Each neuron in one layer is connected to every
neuron in the next layer, forming a fully-connected layer;
in other words, the output of a neuron in a layer serves as
the inputs for all of the neurons on the subsequent layer.
These models are widely used for many machine learning
applications, including search engines, image classification
and economic forecasting.

2) Recurrent Neural Networks: Recurrent Neural Networks
(RNN) are multi-directional networks with recurrent units and
equal weights in each layer. Each recurrent unit has forward
activation units with a memory state needed to store infor-
mation about the network at particular epoch and a backward
propagation for training the network. While remembering the
last input, the memory state is updated continuously with new
information [14]. The drawbacks of RNNs include sensitivity
to hyperparameter changes and exploding gradient issues.

A type of RNN is the Long Short Term Memory (LSTM)
neural network, which features long-term dependencies. In
addition to the defaults in RNNs, information of an LSTM
can be sent to the input gate for memory, discarded in
the forget gate, or produced as output from memory [14].
These three gates in the LSTM feature a unique aspect, the
memory cell, which stores information for later use during
model training. Though LSTMs are typically used for natural
language processing and time series forecasting, the model
was projected to perform well on our datasets due to its robust
learning capabilities.

3) Custom Pairwise Loss Function: The data used only
lists 13 classes; it does not explicitly have the three event
groups (true triple, DtoT, false triple) as classes. Hence,
machine learning models wouldn’t explicitly recognize three
separate groupings. To address this, we implemented a novel
custom loss function designed to boost accuracy by penalizing
incorrect predictions outside the event group more than those
inside the correct event group. We defined the custom pairwise
loss term LP to be

LP = (1 + avg((D · t) · p))h (1)

where h is the penalty (a hyperparameter), D is a 13 × 13
matrix 1, and t and p are the one-hot encodings of the target
and prediction vectors of shape 13×[batch size]. This custom
loss function was used for both FCNs and LSTMs.

B. Related Works

In recent years, significant progress has been made in the
application of machine learning to image reconstruction from
prompt gamma radiation. It is important to note that prior
research was all performed on water phantom data as opposed
to simulated patient data. The research in [1] focuses on
optimizing deep FCNs for image reconstruction; they achieved
a best accuracy of 75%. The research in [6] had a primary
contribution in terms of RNNs. The RNNs demonstrated
comparable performance to the FCNs in [1], with a key
advantage: the RNN models had a simpler architecture, leading
to faster loading times and enhanced usability. Finally, [9] built
upon the prior two works and used distributed learning via
PyTorch versus the Tensorflow setup in the past. Their peak
accuracy was lower, at 69%.

C. Dataset Generation

Due to the measurement limitations encountered during
clinical proton beam delivery, the GEANT4 toolkit is used
to perform high fidelity simulations of the interactions of a
proton beam with simulated matter, producing prompt gamma
rays that interact with a Compton camera. The resulting data
is then fed into the Monte-Carlo Detector Effects (MCDE)
modeling package to determine scattering types and orderings
for class labels.

Novel patient data is incorporated into the current prepro-
cessing pipeline early on with CT images made from patient
tissue measurements. Tissue measurements are non-uniform,
corresponding to different densities as opposed to a uniform
density water phantom. We generated three major datasets with
499,000 rows (simulated patient), 1.8 million (water phantom),
and 3.8 million rows, which is a hybrid collection of both the
water phantom and simulated patient datasets. Class balancing
the raw MCDE data to create training data results in less of the
patient simulated data being usable when compared to class
balancing the combined dataset of both the water phantom
and simulated patient data. Consequently, the hybrid collection
contains more data than simply adding the total rows of the
datasets after they are put through preprocessing.

1See [3] for matrix.



Each row of the dataset corresponds to the data of the triple
scatter interaction and its scatter type class label. Training
data is preprocessed to consist of 15 features total. The
first 12 features consist of three groups of the energy level
and coordinates (ei, xi, yi, zi), each group corresponding to
a prompt gamma detection in the triples scatter interaction.
The remaining 3 features correspond to the euclidean distance
between each scatter, as introduced in [2]. All features are
normalized, scaled, and have outliers removed.

D. The BRIDE Platform

In this research, we developed the Big-Data REU Integrated
Development and Experimentation (BRIDE) coding platform
to ensure reproducibility, expandability, rigorous testing, and
flexible experimentation. BRIDE is a workflow built using
PyTorch Lightning and contains the processes of dataset
formation, model implementation, evaluation, and selection,
as displayed in Fig. 2.

Fig. 2: The structure of the BRIDE platform.

BRIDE is modular because each process is completely
separate from every other process. In particular, PP1 contains
the first step of preprocessing which is converting raw data
to an array, class balancing, and cleaning data, while PP2
contains feature engineering such as scaling. Rigorous testing
is enforced with no possibility of data leaks. In BRIDE,
each run has a distinct run_id for functionality and record-
keeping purposes. The platform allows for the use of Ten-
sorboard for visually tracking runs; it has csv logging for
results and checkpointing callbacks for accessing models,
along with automatic training curve and confusion matrix
creation. Further details on BRIDE can be found in [4].

E. Hardware and Software

For this research, we utilized the Graphics Processing Units
(GPU) in the ada cluster maintained by the UMBC High
Performance Computing Facility (hpcf.umbc.edu). The ada
GPU cluster consists of four nodes with eight 2018 Ti GPUs
each, seven nodes with eight RTX 6000 GPUs each, and two
nodes with eight RTX 6000 GPUs and an additional 384 GB
of memory each.

Deep learning models were built and implemented using Py-
Torch v2.3.1 (https://PyTorch.org). For data preprocessing and
manipulation, we used scikit-learn v1.3.0 (https://scikit-learn.
org/stable/), pandas v2.2.2 (https://pandas.pydata.org/), and
numpy v1.26.4 (https://numpy.org/). To visually display our
results, we used matplotlib v3.8.4 (https://matplotlib.org/)
and seaborn v0.13.2 (https://seaborn.pydata.org/). Our mod-
els were built inside of the python environment Anaconda3
(https://www.anaconda.com/).

1) Parallelization: Parallelization is widely used in various
computing aspects, where multiple nodes work on distinct
aspects of a problem simultaneously. It can be highly beneficial
in terms of speed and efficiency, with more processors working
on a single task.

We utilized PyTorch’s Distributed Data Parallel (DDP) for
the training of machine learning models among several GPUs.
The DDP process involves distributing the input data in unique
subsets among the various GPUs; each processor then uses
its given set of data to construct a model. With forward and
backward passes, gradients among the GPUs are synchronized
and averaged, and weights are updated on the entire model.

IV. RESULTS

A. Patient Data

In order to test the extensibility of machine learning models
from water phantom to patient data and to gain insights on
patient data, we conduct 2 initial hyperparameter studies (one
study each for FCNs and LSTMs) on a 499,000 row simulated
patient dataset. These tuning studies can be divided into three
stages:

• Stage 1: A grid of tests was run to determine a set of
constant starting parameters and to identify 3 candidate
hyperparameters that tuning could benefit.

• Stage 2: Hyperparameter Importance. For each of the 3
candidate hyperparameters, 2 values are chosen, and
(2)(2)(2) = 8 tests are done to identify the 2 most
influential parameters. The hyperparameter that is less
influential is fixed at an optimal value.

• Stage 3: Final Tuning. For each of the 2 influential hy-
perparameters, 3 values are chosen, and (3)(3) = 9 tests
are done to identify the optimal configuration of hyper-
parameters.

1) FCN Hyperparameter Study: After testing a large grid of
hyperparameters for Stage 1, we identified the three candidate
hyperparameters listed in Table I. An intuitive ‘binary’ labeling
scheme was used to name tests: the two values of each of the
candidate hyperparameters are assigned ‘0’ and ‘1’, and each



run is a string of these binary digits in the order batch size |
dropout | neuron configuration.

Hyperparameter 0 1
Batch Size 1024 4096

Neuron Configuration 18 layers, 582 ANL2 12 layers, 343 ANL3

Dropout 0.05 0.15

TABLE I: FCN Stage 1 Candidate Hyperparameters.

For Stage 2, to identify the 2 most influential hyperparame-
ters from the candidate hyperparameters, we implemented runs
adjusting just the candidate hyperparameter in consideration;
all others were held constant. The results of the 8 tests are
shown in Table II. Table III contains the constant hyperpa-
rameters. Each test was run with periodic checkpointing and
early stopping so that the job would end after 500 epochs
without improvement in validation loss. If a run displayed
erratic behavior or very low validation accuracy, it was not
tested.

Test Epoch Max Train Acc. Max Val. Acc. Test Acc.
000 604 0.7005 0.52 0.517
001 574 0.36 0.36 -
010 551 0.669 0.53 0.523
100 658 0.7566 0.53 0.515
011 645 0.5607 0.53 0.527
110 576 0.7316 0.52 0.525
101 709 0.43 0.44 -
111 616 0.5975 0.53 0.532

TABLE II: Stage 2 Hyperparameter Tests.

Hyperparameter Value
Hardware 2 RTX6000 GPUs

Validation Split 0.1
Loss Function Cross Entropy + Custom Pairwise Loss (p=1)

Optimizer AdamW
Activation Function ReLU

Learning Rate 0.001
Learning Rate Change 0.95

Learning Rate Step 500
L2 0.01

TABLE III: FCN Stage 2 Constant Hyperparameters.

From Stage 2 results, we can conclude that batch size has
little effect on validation and test accuracy. A larger batch size
also tends to lead to overfitting. Implementing dropout had a
small positive effect on validation and test accuracy if training
did not diverge; as expected, it decreased training accuracy
significantly since it is used to prevent overfitting. The second
neuron configuration led to significantly better predictions with
a slight decrease in training accuracy, compared to the first
configuration. All models were overfitting. Overall, dropout
and neuron configuration were the 2 influential hyperparam-
eters to be studied in Stage 3. In addition, Stage 3 constant
parameters were adjusted according to these results to a batch
size of 512 and a learning rate of 0.0008.

2Average neurons per layer; full configuration is [4096, 2048, 1024, 512,
256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 128, 64, 32, 16].

3Average nuerons per layer; full configurations is [512, 1024, 512, 256,
256, 256, 256, 256, 256, 256, 256, 128].

For Stage 3 hyperparameter tests, the values for dropout
and neuron configuration are shown in Table IV. A similar
naming scheme is used with the ternary digits 1, 2, and 3
are used. Results of these tests are shown in Table V. Note
the lack of peaks in the descriptions of the validation curves
in comparison to Stage 2; this may be due to the measures
designed to reduce overfitting causing plateaus.

Hyperparameter 1 2 3

Neuron Configuration 12 layers
315 ANL

8 layers
272 ANL

8 layers
68 ANL4

Dropout 0.05 0.2 0.4

TABLE IV: FCN Stage 3 Hyperparameters.

Test Epoch Max Train Acc. Max Val. Acc. Test Acc.
11 578 0.6068 0.53 0.528
12 1531 0.51 0.52 0.514
13 581 0.39 0.41 -
21 564 0.6232 0.56 0.550
22 3649 0.5387 0.55 0.540
23 1999 0.475 0.50 0.495
31 2061 0.5274 0.54 0.534
32 1999 0.4698 0.48 0.483
33 1393 0.3306 0.35 -

TABLE V: FCN Stage 3 tests; highest accuracy result is
highlighted in green.

In conclusion, the model with greatest accuracy, highlighted
in green in Table V achieved an accuracy of 55%. The accu-
racy learning curves and confusion matrices for this model are
included in Fig. 3 and Fig. 4. The adjusted hyperparameters for
this model were: Neuron Configuration: 8 layers, 272 ANL;
Dropout: 0.05; Batch Size: 512; L2: 0.01; Loss Function:
Cross Entropy + Custom Pairwise Loss; Optimizer: AdamW;
Activation: ReLU. It is clear that the model is still overfitting,
but does much better at classifying false triples.

2) LSTM Hyperparameter Study: In light of the previous
success of a 4-layer LSTM model in [6], we implemented
versions of this model on simulated patient data. As part of
Stage 1, we found three candidate hyperparameters to tune as
displayed in VI. A binary naming scheme was utilized.

Hyperparameter 0 1
Batch Size 2048 4096

Hidden Layers [128, 64] [128,128,128,128]
Dropout 0.15 0.45

TABLE VI: LSTM Stage 1 Candidate Hyperparameters.

For Stage 2, to identify the two influential hyperparameters
from among the candidates, we adjusted each candidate hyper-
parameter singularly, as before. The hidden layer values are
the neuron dimensions of the hidden layers after the 4 LSTM
layers. Table VII contains the constant parameters. This stage’s
results are shown in Table VIII.

4Full configurations: [1024, 512, 256, 256, 256,256,256, 256, 256, 256,
128, 64], [512, 256, 256, 256, 256, 256, 256, 128], and [128, 64, 64, 64, 64,
64, 64, 32]



Fig. 3: Accuracy curves for Test 21.

Fig. 4: Test set confusion matrix for Test 21.

Hyperparameter Value
Hardware 2 RTX6000 GPUs

Validation Split 0.1
Loss Function CrossEntropy + Custom Pairwise Loss (p=1)

Optimizer AdamW
Activation Function Leaky ReLU

Learning Rate 0.001
Learning Rate Change 0.95

Learning Rate Step 100
L2 0.01

TABLE VII: LSTM Constant Parameters.

Test Epoch Max Train Acc. Max Val. Acc. Val. Loss Minus
Train Loss

000 671 64.2% 55.3% 0.89
001 683 61.8% 55.1% 1.02
010 712 62.5% 55.0% 0.67
011 699 61.0% 54.7% 0.83
100 967 60.5% 55.6% 0.429
101 705 62.5% 55.3% 0.77
110 902 60.1% 55.2% 0.35
111 765 60.5% 54.7% 0.74

TABLE VIII: LSTM Stage 2 Tests; best result is highlighted
in green.

As displayed in Table VIII, most results attain very close
final training and validation accuracies of 60-61% and 54-
55%, respectively. Among all runs, training ended when
validation accuracy remained stagnant for 500 epochs. We
can conclude that dropout, as expected, decreased overfitting
in terms of accuracy. The [128,64] hidden layer neuron
architecture performed slightly better than the more com-
plex [128,128,128,128], suggesting that simpler models may
have better prediction on patient data. A greater batch size
resulted in a negligible increase in validation accuracy and
seemed to reduce overfitting. In conclusion, hidden layer
neuron configuration and batch size seemed to have the largest
effect on accuracy. However, unlike the FCN hyperparameter
study, no Stage 2 tests led to a reasonable increase in model
performance. Hence, Stage 3 of this LSTM study was not
implemented. Our best LSTM model has a validation accuracy
of 55.6%, as shown in Fig. 5. The adjusted hyperparameters
are: Batch Size: 4096; Hidden Layer Configuration: [128, 64];
Dropout: 0.15.

Fig. 5: Accuracy and loss learning curve for Test 100.

B. Comparisons between Water Phantom and Real Patient
Data

We note that the results of [5] were reproduced with
similar accuracy results on BRIDE using networks developed
in PyTorch, verifying the validity of BRIDE experiments as
well as presenting a significant improvement for the Pytorch



models in [9] which were previously unable to achieve similar
results those of Tensorflow in [5]: we achieved 72.5% testing
accuracy for a LSTM model, as shown by the training curve
of Fig. 6, and 65% testing accuracy for a FCN model, both
on 1.8 million row water phantom data.

Fig. 6: LSTM Model BRIDE reproduction results. Top:
Training (blue) and validation (orange) accuracies. Bottom:
Training (blue) and validation (orange) loss curves.

The key results from our hyperparameter studies on sim-
ulated patient data can be summarized: FCN models had
a greatest accuracy of 55.0%and [512, 256, 256, 256, 256,
256, 256, 128] architecture, and LSTM models had a greatest
accuracy of 55.6% and 4 LSTM + [128,64] Fully Connected
Layer (FCL) architecture. We can conclude that model pre-
dictive performance is significantly lower when trained on
simulated patient data compared to both current reproduced
water phantom results and past work [5], [9], [15]. Second,
LSTM models do better relative to the FCN on water phantom
data, when compared to patient data, suggesting that FCN
architecture may be specifically advantageous for patient data
or LSTM models could be better on water phantom data.
However, these conclusions have the caveat that the simulated
patient dataset was smaller than the water phantom, which
may have led to the poorer generalization performance of the
models on patient data.

V. ADDITIONAL STUDIES

We conducted runs on a novel hybrid water phantom and
simulated patient dataset of 3.8 million observations with the
intention of producing models that could perform well on and
gain insights from both types of data. As shown by Fig. 7, we
implemented a model containing 4 LSTM and 4 FCN layers
resulting in a test accuracy of 76.1%. Our hyperparameters,
listed in Table IX, were an adaptation of a somewhat similar
model in [5].

Because of previous results plateauing after a few hun-
dred epochs, this model implemented a distinct learning rate
scheduler. The learning rate was multiplied by 0.1 every 2000
epochs; the models were also run for several thousand, as
opposed to several hundred, epochs. As displayed by Fig. 7,
there was a large increase in accuracy at the 2000th epoch

Hyperparameter Value
Hardware 4 RTX6000 GPUs

Validation split 0.1
Loss Function Cross Entropy

Optimizer Adam
Activation Function ReLU

Batch Size 4096
Neurons 128

Learning Rate 0.001
Learning Rate Change 0.1

Learning Rate Step 2000
Dropout 0.0

TABLE IX: LSTM hyperparameters on the hybrid dataset.

learning rate change. This 76.1% accuracy achieved is greater
than any comparable results in previous work [5], [9], [15].
This may be due to a a larger training dataset (which also
seemed to limit overfitting). Hence, this model may be a more
robust application in a medical situation.

Fig. 7: Accuracy and loss learning curve for LSTM model on
hybrid data.

VI. CONCLUSIONS AND FUTURE WORK

We found that the best FCN model on patient data had
architecture [512, 256, 256, 256, 256, 256, 256, 128] and
achieved a 55% testing accuracy while the best LSTM had ar-
chitecture 4 LSTM + [128,64] FCL and achieved an accuracy
of 55.6%. Given that these accuracies are substantially lower
than our best accuracies on the water phantom data, these
results may indicate that patient data is more difficult to learn
and predict on compared to water phantom. LSTM models
performed better on water phantom data, while FCN models
had a slightly higher accuracy for patient data, suggesting that
FCL layer models could be more suited for patient data in
this setting. To consider the implications of these results on
applied machine learning research in general, they sugest that
deep neural networks are very sensitive. Even small changes in
data generation can have large impacts on model performance.

This work introduced BRIDE, a machine learning code
implementation platform to ensure rigorous testing, experi-
mentation, expandability, and reproducibility in a parallelized
context. The best models of [1] and [6] were reproduced on



BRIDE with 72.5% accuracy for a LSTM model and 65%
accuracy for a FCN model. We developed a custom pairwise
loss function for both FCNs and LSTMs to improve model
performance. The utility for the efficiency of our research of
having an effective integrated development and experimenta-
tion platform cannot be overstated.

Finally, this research explored several avenues in increasing
the predictive performance and effectiveness of various ma-
chine learning models. Hybrid LSTM + FCL neural networks
trained on a larger hybrid water phantom and real patient
dataset achieved a testing accuracy of 76%. This may indicate
that the relatively small size of the simulated patient data may
have contributed to the poor accuracies. The poorer testing
accuracy on patient data could have also been due to the
relative complexity of patient data compared to water phantom
data and a smaller dataset.

These results may be scaled to practical use through further
work to address overfitting in simulated patient data. Our
models can be considered more scalable and understandable
due to less complex architectures. This, in turn, could reduce
prediction speed for real-time proton beam range verification
in a medical setting, compared to more complex machine
learning models.

In the future, to improve these results for less noisy recon-
structed images, more training data could be generated, which
may lead to better model predictive performance. Another
option would be to explore changing the constant hyperparam-
eters in both the FCN and LSTM hyperparameter studies, such
as L2 regularization, learning rate, and optimizer algorithm.
Additional neural network model types could also be explored
for this classification purpose. De-noised reconstructed images
through further models could be compared between water
phantom and simulated patient data.

ACKNOWLEDGMENT

This work is supported by the grant “REU Site: Online
Interdisciplinary Big Data Analytics in Science and Engineer-
ing” from the National Science Foundation (grant no. OAC–
2348755). Undergraduate assistant co-author Obe acknowl-
edges support from an REU Supplement. Co-authors Sharma
and Ren acknowledge support from the NIH. The hardware
used in the computational studies is part of the UMBC
High Performance Computing Facility (HPCF). The facility
is supported by the U.S. National Science Foundation through
the MRI program (grant nos. CNS–0821258, CNS–1228778,
OAC–1726023, and CNS–1920079) and the SCREMS pro-
gram (grant no. DMS–0821311), with additional substantial
support from the University of Maryland, Baltimore County
(UMBC). See hpcf.umbc.edu for more information on HPCF
and the projects using its resources.

REFERENCES

[1] Alina M. Ali, David Lashbrooke, Rodrigo Yepez-Lopez, Sokhna A.
York, Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf.
Towards optimal configurations for deep fully connected neural networks
to improve image reconstruction in proton radiotherapy. Technical
Report HPCF–2021–12, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2021.

[2] Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf. Deep
residual fully connected neural network classification of Compton cam-
era based prompt gamma imaging for proton radiotherapy. Front. Phys.,
11:903929, 2023.

[3] Michael Chen, Julian Hodge, Peter Jin, Ella Protz, and Elizabeth Wong.
Github repository. https://github.com/big-data-lab-umbc/big-data-reu,
2024.

[4] Michael O. Chen, Julian Hodge, Peter L. Jin, Ella Protz, Elizabeth
Wong, Ruth Obe, Ehsan Shakeri, Mostafa Cham, Matthias K. Gobbert,
Carlos A. Barajas, Zhuoran Jiang, Vijay R. Sharma, Lei Ren, Sina
Mossahebi, Stephen W. Peterson, and Jerimy C. Polf. Using neural
networks to sanitize Compton camera simulated data through the BRIDE
pipeline for improving gamma imaging in proton therapy on the ada
cluster. Technical Report HPCF–2024–5, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2024.

[5] Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J.
Kelly, Matthias K. Gobbert, Carlos A. Barajas, and Jerimy C. Polf.
Multi-layer recurrent neural networks for the classification of Compton
camera based imaging data for proton beam cancer treatment. In 9th
IEEE/ACM International Conference on Big Data Computing, Applica-
tions and Technologies (BDCAT 2022), pages 213–222, 2022.

[6] Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J.
Kelly, Matthias K. Gobbert, Carlos A. Barajas, and Jerimy C. Polf.
Sequence-based models for the classification of Compton camera prompt
gamma imaging data for proton radiotherapy on the GPU clusters taki
and ada. Technical Report HPCF–2022–12, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2022.

[7] Jonathan R. Hughes and Jason L. Parsons. FLASH radiotherapy: Current
knowledge and future insights using proton-beam therapy. Int. J. Mol.
Sci., 21(18):6492, 2020.

[8] Paul Maggi, Steve Peterson, Rajesh Panthi, Dennis Mackin, Hao Yang,
Zhong He, Sam Beddar, and Jerimy Polf. Computational model
for detector timing effects in Compton-camera based prompt-gamma
imaging for proton radiotherapy. Phys. Med. Biol., 65(12), 2020.

[9] Ruth Obe, Brandt Kaufmann, Kaelen Baird, Sam Kadel, Yasmin Soltani,
Mostafa Cham, Matthias K. Gobbert, Carlos A. Barajas, Zhuoran Jiang,
Vijay R. Sharma, Lei Ren, Stephen W. Peterson, and Jerimy C. Polf.
Accelerating real-time imaging for radiotherapy: Leveraging multi-GPU
training with PyTorch. In 2023 International Conference on Machine
Learning and Applications (ICMLA 2023), pages 1735–1742, 2023.

[10] Costanza M. V. Panaino, Ranald I. Mackay, Karen J. Kirkby, and
Michael J. Taylor. A new method to reconstruct in 3D the emission
position of the prompt gamma rays following proton beam irradiation.
Sci. Rep., 9(1):18820, 2019.

[11] Jerimy C. Polf, Carlos A. Barajas, Stephen W. Peterson, Dennis S.
Mackin, Sam Beddar, Lei Ren, and Matthias K. Gobbert. Applications of
machine learning to improve the clinical viability of Compton camera
based in vivo range verification in proton radiotherapy. Front. Phys.,
10:838273, 2022.

[12] Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer
treatment. Phys. Today, 68(10):28–33, 2015.

[13] Michael J. Smith and James E. Geach. Astronomia ex machina: a history,
primer and outlook on neural networks in astronomy. R. Soc. Open Sci.,
10:221454, 2023.

[14] Martin Sundermeyer, Hermann Ney, and Ralf Schlüter. From feed-
forward to recurrent LSTM neural networks for language modeling.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
23(3):517–529, 2015.

[15] Sokhna A. York, Alina M. Ali, David C. Lashbrooke Jr, Rodrigo
Yepez-Lopez, Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C.
Polf. Promising hyperparameter configurations for deep fully connected
neural networks to improve image reconstruction in proton radiotherapy.
In 2021 IEEE International Conference on Big Data (Big Data 2021),
pages 5648–5657, 2021.


