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Abstract—Accurate quantitative precipitation estimation
(QPE) is essential for managing water resources, monitoring
flash floods, creating hydrological models, and more. Traditional
methods of obtaining precipitation data from rain gauges and
radars have limitations such as sparse coverage and inaccurate
estimates for different precipitation types and intensities.
Symbolic regression, a machine learning method that generates
mathematical equations fitting the data, presents a unique
approach to estimating precipitation that is both accurate
and interpretable. Using WSR-88D dual-polarimetric radar
data from Oklahoma and Florida over three dates, we tested
symbolic regression models involving genetic programming and
deep learning, symbolic regression on separate clusters of the
data, and the incorporation of knowledge-based loss terms
into the loss function. We found that symbolic regression is
both accurate in estimating rainfall and interpretable through
learned equations. Accuracy and simplicity of the learned
equations can be slightly improved by clustering the data based
on select radar variables and by adjusting the loss function with
knowledge-based loss terms. This research provides insights
into improving QPE accuracy through interpretable symbolic
regression methods.

Index Terms—quantitative precipitation estimation, polarimet-
ric radar, symbolic regression, knowledge-based loss terms

I. INTRODUCTION

Accurate estimations of rainfall are crucial for a variety of
applications such as extreme weather condition forecasting,
flash flood monitoring, and ongoing climate research [1].
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Rainfall can be measured directly through rain gauge stations
or indirectly calculated through radar remote sensing. Rain
gauges provide accurate data but have limited spatial coverage,
whereas radars have higher coverage yet more uncertainty
as rainfall rate must be calculated from radar data through
empirical equations [2]. The traditional radar method for esti-
mating precipitation primarily relied on the Z–R relationship
between rainfall rate R and radar reflectivity factor Z. This
approach, however, has limitations due to the complex and
variable nature of rainfall [3]. There has been significant
progress in quantitative precipitation estimation (QPE) with
the development of dual-polarimetric radars, which provide
additional variables such as differential reflectivity ZDR, spe-
cific differential phase KDP , and correlation coefficient ρhv .
The integration of these variables has been shown to reduce
uncertainty in QPE by addressing issues related to drop size
distribution variability, radar miscalibration, attenuation, and
partial beam blockage [3].

Despite these advancements, challenges still remain in ac-
curately modeling the complex relationships between radar
measurements and precipitation rate. Symbolic regression is
a machine learning method that discovers mathematical rela-
tionships from data [4], [5], which offers a promising approach
to further enhance the interpretability and accuracy of radar-
based precipitation estimation. Symbolic regression will create
interpretable models, allowing us to explicitly understand how
specific variables impact rainfall rate in the form of concrete



equations. Our implementation code is publicly available.1

This research aims to improve precipitation estimation from
dual-polarimetric radar data through the following contribu-
tions:

• Testing various symbolic regression models, from genetic
programming to deep learning-based methods, in order
to understand how symbolic regression could achieve
accurate and interpretable QPE.

• Studying whether improved mathematical equations
could be learned by subsetting the data prior to applying
symbolic regression, considering the complexity of the
physics of precipitation and various precipitation types.

• Studying how existing symbolic regression approaches
could be extended to embed domain knowledge and to
adapt to the complexity of precipitation.

The remainder of this report is organized as follows: Sec-
tion II provides a background of QPE and symbolic regression,
Section III covers related work, Section IV describes our
dataset, Section V covers our methodology for testing the
symbolic regression models, subsetting the data prior to apply-
ing symbolic regression, and applying knowledge-based loss
terms, Section VI covers the results, Section VII reviews the
equations produced by symbolic regression, and Section VIII
provides a conclusion of our research and an overview of
future work.

II. APPLICATION BACKGROUND

A. Quantitative Precipitation Estimation (QPE)

One method of measuring precipitation is through a network
of rain gauges, each of which collects rain at a specific time
and location. However, sampling errors, poor gauge placement,
wind, clogging of the gauge funnel, and other errors can cause
inaccurate precipitation measurements [6]. Another way of
measuring precipitation is through radar-derived QPE sources,
which provide wider coverage compared to rain gauges as
radar can sample large areas in a short amount of time [2].
In particular, polarimetric radars perform real-time and high-
resolution QPE the most efficiently [7].

In quantitative estimates of precipitation with radars, con-
ventional methods use a Z–R relationship to estimate rainfall
R (mm/hr) via reflectivity Z (mm6/m3), given by the equation
Z = aRb, where a and b are constants that vary by drop size
distribution and precipitation type [2], [8], and Z measures
the amount of energy reflected back to the radar after hitting
a raindrop [9]. However, the Z–R relationship fails to account
for nuances in rainfall by precipitation type, region, and season
[2].

Dual-polarization radars gather data from both the hori-
zontal and vertical polarizations, thus being able to better
reflect the size, shape, distribution, and phase state of rain-
drops compared to previous, single-polarization radars [2],
[9]. In addition to reflectivity, dual-polarization radars provide
differential reflectivity ZDR, specific differential phase KDP ,

1View our implementation code at https://github.com/big-data-lab-umbc/
big-data-reu/tree/main/2024-projects/team-1.

and co-polar correlation coefficient ρhv (also referred to as
CC) [9]. ZDR is impacted by the composition or density of
raindrops, helping differentiate water drops from ice pellets
and snow. As the ratio between reflectivity factors at horizontal
and vertical polarizations, ZDR is not impacted by calibration
errors, but may become biased with issues such as beam
blockage [9]. KDP , a derived variable that represents the
change in differential phase shift ΦDP , is useful for identifying
heavy precipitation and when hail is mixed with rain, but
KDP can be more noisy in light rain [9]. KDP , being im-
mune to radar calibration errors, attenuation, and partial beam
blockage, is a reliable factor for rainfall estimation [3]. The
relationship between KDP and rainfall has lower sensitivity to
variations in drop size distribution than the Z–R relationship
[2]. Moreover, as a measure of the variety of how particles
affect the radar signals, ρhv is close to 1.0 during uniform
rainfall and decreases with more variability in the types,
shapes, and orientations of particles. ρhv is independent of
particle concentrations and is immune to radar miscalibration,
attenuation, and beam blockage [9]. As such, dual-polarization
radar variables pose significant improvements for accurate
precipitation estimation.

B. Symbolic Regression

Symbolic regression (SR) is a machine learning technique
that finds an interpretable and best-fitting mathematical expres-
sion based on the data [4]. Popularity as well as advancements
in computing have redefined SR and led to the rapid growth of
related published papers in the past decade [10]. SR is usually
implemented by evolutionary algorithms, specifically genetic
programming, which constructs, compares, and combines dif-
ferent symbolic expressions to form a potential expression
while discarding poor-performing combinations [10].

However, SR also presents some limitations for quanti-
tative precipitation estimation. Symbolic regression methods
may generate simple to complex equations that disagree
with presently accepted knowledge regarding the relationships
between radar data and rainfall rate. This prompts further
research into the applicability and generalizability of symbolic
regression methods to complex datasets.

1) Genetic Programming Symbolic Regression Models: We
tested five genetic programming symbolic regression methods
(gpg, gplearn, PySR, Feyn, and pyoperon), each with unique
characteristics and approaches. Models such as gplearn [11]
and gpg [12], the latter of which is a re-implementation
of Gene-pool Optimal Mixing Evolutionary Algorithm (GP-
GOMEA) focusing on symbolic regression, generate random
sets of expressions and improve them to best fit the data using
genetic concepts such as evolution, crossover, mutation, and
population fitness. GP-GOMEA excels at generating simpler
symbolic expressions through estimating and crossing over
interdependencies between model components [12], [13]. In
contrast, the C++ framework Operon [14], which is imple-
mented in Python through pyoperon, focuses on execution
speed and local search with gradient-based optimization, but
tends to produce exceedingly complex models [15]. Packages



like PySR [16] have made modifications to classic evolutionary
algorithms and use a multi-population evolutionary algorithm
that optimizes unknown scalar constants in newly discovered
expressions. Similarly, Feyn [17] creates an evolutionary envi-
ronment to simulate discrete paths from multiple inputs to an
output, an idea inspired by Feynman’s path integral. Random
interactions are sampled onto paths, and with evolution and
repeated reinforcement, the best output is produced [17].

2) Deep Learning-Based and Other Symbolic Regression
Models: We tested three additional symbolic regression meth-
ods (DSO, FFX, and RILS-ROLS), each of which applies
different approaches to generate expressions learned from the
data. Deep Symbolic Optimization (DSO) [18] combines sym-
bolic regression with deep learning to leverage neural networks
and a novel risk-seeking policy gradient to generate better-
fitting expressions. Another method, Fast Function Extraction
(FFX) [19], uses pathwise regularized machine learning to
rapidly extract interpretable and simpler models. Moreover,
RILS-ROLS [20] is a symbolic regression method that is built
upon iterated local search and ordinary least squares to solve
combinatorial aspects and determine best-fitting coefficients
for equations, respectively.

III. RELATED WORK

Previous research has found that machine learning and
deep learning methods have resulted in improved QPE ac-
curacy compared to conventional Z–R relationships. Huangfu
et al. [21] found, in a study of twelve deep-learning-based
QPE models, rainfall estimates were more accurate when
distinguishing rainfall intensity using a KDP threshold and
when applying a self-defined loss function that gave varying
weights to different intervals of rainfall intensity. Using dual-
polarization radar variables as input data, Li et al. [22] and
Wang and Chen [23] have found that QPEs derived from
convolutional neural networks outperformed those derived
from conventional Z–R relationships. Shin et al. [24] found
that random forest and regression tree methods were also more
accurate at estimating precipitation than the Z–R relation-
ship. Moreover, Verdelho et al. [25] found that combining
classification and regression techniques (random forest and
gradient boosting) applied on dual-polarimetric radar variables
outperformed Z–R relationships. They found that the models
had varying accuracy across different rain intensity groups,
performing best on moderate rain [25].

Previous studies have explored the role of clustering the data
prior to applying symbolic regression. Sofos et al. [26] used k-
medoids and agglomerative hierarchical clustering to separate
a fluid simulation dataset into gas, liquid, and supercritical
states prior to applying symbolic regression with PySR on
each cluster. They found that clustering may reveal under-
lying nuances in the dataset for which symbolic regression
identifies specific equations [26]. Building upon previous
research, we test different symbolic regression methods and
evaluate whether separating the data into groups based on the
radar variables and rainfall intensity may reveal relationships

between rainfall observations that can strengthen estimation
accuracy.

IV. DATA

The source of dual-polarimetric radar data we used for this
research is the Weather Surveillance Radar, 1988 Doppler
(WSR-88D) [27], also referred to as Next Generation Weather
Radar (NEXRAD), operated across the United States by the
National Weather Service, the Federal Aviation Administra-
tion, and the U.S. Air Force. Our dataset consists of reflec-
tivity ZH (dBZ), differential reflectivity ZDR (dB), specific
differential phase KDP (deg/km), and co-polar correlation
coefficient ρhv , collected from the WSR-88D radars at Level-
II and a 0.5◦ elevation angle. We explore radar data from
South Florida, USA and Central Oklahoma, USA across three
dates with significant precipitation. The data for South Florida
are retrieved from the Miami KAMX WSR-88D radar and the
data for Central Oklahoma are retrieved from the Oklahoma
City KTLX WSR-88D radar.

The radar data are spatially and temporally merged with
the rainfall rate collected from rain gauge stations from the
Oklahoma Mesonet [28], [29] and the South Florida Water
Management District [30]. The rainfall rate is used as the
ground-truth target variable, where the units are in millimeters
accumulated within the past hour (mm/hr) of the recorded
time. We keep only observations where the rainfall rate is
equal to 1 mm/hr or greater due to data quality concerns with
trace amounts of rainfall. The range of rainfall rates are 1.010
mm/hr to 101.600 mm/hr, the median value is 5.334 mm/hr,
and the standard deviation is 11.82 mm/hr. The rainfall rate
has a right-skewed distribution with most observations close
to 1 mm/hr and few extreme values.

For Florida, we have data for every 15 minutes on April
12, 2023 (totalling 1,324 observations after cleaning the data),
and for Oklahoma, we have data for every 5–10 minutes on
July 9, 2023 and June 8, 2022 (totalling 1,406 observations
after cleaning the data). Fig. 1 shows an example of the
radar data from the Miami WSR-88D radar (KAMX) and the
Oklahoma City WSR-88D radar (KTLX) for rainfall events
on April 12, 2023 at 17:00 UTC and July 9, 2023 at 10:50
UTC, respectively, made using a radar colormap from Py-
ART [31]. Rain gauge stations providing the ground truth
data are displayed as black circular outlines. While the radar
data are available over the observed area of Central Oklahoma
and South Florida, the rain gauge data are only available at
specific stations. We use the merged radar and rain gauge data
located at these stations, which totals 2730 observations across
the three days, to train and validate the symbolic regression
methods.

V. METHODOLOGY

A. Benchmarking Procedure

The procedure used to apply symbolic regression to the
dual-polarimetric radar data was informed by SRBench [4],
a benchmark of 14 different methods on over 200 datasets.



(a) Reflectivity Z.

(b) Differential Reflectivity ZDR.

(c) Co-Polar Correlation Coefficient ρhv .

(d) Specific Differential Phase KDP .

Fig. 1. WSR-88D radar data of rainfall events in South Florida (KAMX) and
Central Oklahoma (KTLX).

Following the procedure in SRBench, each symbolic re-
gression model was trained on 75% of the data and tested on
25% of the data in ten repeated trials, with a different train-
test split in each trial. The models were trained on the radar
variables (Z, ZDR, KDP , ρhv) without scaling. Each model’s
hyperparameters were selected based on SRBench [4] and
the model’s respective documentation. We report two sets of
metrics for PySR: one without restrictions on the complexity
of the equation, and one with restrictions, the latter of which
is subsequently referred to as PySR (simplified).

The training and testing R2 scores, normalized root mean

square error (NRMSE) scores, and simplicity scores were
reported for each trial using the following equations, where
k is the training or testing size, yi is the actual rainfall rate
for observation i collected from rain gauges, ŷi is the predicted
rainfall rate for observation i from the learned equation, ȳ is
the mean rainfall rate for the training or testing set, and s is
the number of components in the learned equation.

R2 = 1−
∑k

i=1(yi − ŷi)
2∑k

i=1(yi − ȳi)2
(1)

NRMSE =

√
1
k

∑k
i=1(yi − ŷi)2

ȳ
(2)

simplicity = −log5(s) (3)

Metrics are reported based on the R2 score (Equation 1) on the
test data. NRMSE score (Equation 2) was used instead of root
mean squared error to ensure that this metric was comparable
across different training and testing sets that could have differ-
ent distributions of rainfall rates. The simplicity score metric
(Equation 3) was chosen from the SRBench Competition 2022
[5] to assign higher scores to simpler equations. The simplest
equation (with only one component) has a simplicity score of
0, and as the equations become more complex, the simplicity
decreases. Our objective is to find symbolic expressions with
both high test R2 scores and simplicity scores close to 0,
representing an accurate yet interpretable equation. For our
model performance to be comparable to existing models, we
hope to achieve R2 scores over 0.85.

B. Benchmarking Existing Symbolic Regression Models

To identify the most effective model for estimating precipi-
tation rates from radar data, we tested various symbolic regres-
sion models by systematically comparing their performance.
Benchmarking is crucial for ensuring that the selected models
perform well on both training and unseen data. It allows us to
understand the trade-offs between model complexity and pre-
diction accuracy. We benchmarked five genetic programming
symbolic regression algorithms (gpg, gplearn, PySR, Feyn,
and pyoperon) and three non-genetic programming symbolic
regression algorithms (DSO, FFX, and RILS-ROLS). We
compared results from these symbolic regression methods to
results from ordinary least squares linear regression, which
creates a linear expression to fit the data by minimizing the
sum of squares between the predicted rainfall rate and the
ground-truth rainfall rate.

C. Symbolic Regression on Subsets of Data

One significant challenge to quantitative precipitation esti-
mation is the applicability of methods to different precipitation
types and intensities. For example, the Z–R relationship to
estimate rainfall from radar reflectivity varies across geograph-
ical region and type of rain. Previous research into quantitative
precipitation estimation using machine learning and deep
learning have found successful results when distinguishing the
intensity of rainfall [21], [25]. To test whether the accuracy and



interpretability of the learned equations improve, we applied
three methods to subset the data before applying symbolic
regression on the separate subsets.

1) Symbolic Regression on Clusters: Using k-means clus-
tering, bisecting k-means clustering, and agglomerative hi-
erarchal clustering, we divided the data into three clusters
based on all four radar variables (Z, ZDR, KDP , ρhv), based
only on ZDR and ρhv , and based on the rainfall rate. The
clustering methods were implemented using the Python library
scikit-learn [32]. K-means clustering is an algorithm
that separates data into equal-variance subsets by minimizing
the sum of squared distances between observations and the
mean of their cluster [33]. Bisecting k-means clustering is a
hybrid approach combining k-means and hierarchical cluster-
ing, where the entire dataset is split into two clusters, which
are then split again until the set number of clusters is reached
[33]. On the other hand, agglomerative clustering starts from
the bottom with each data point being a cluster, which are
consecutively merged together until a set number of clusters
is reached. We applied agglomerative clustering using ward as
the linkage criterion, which minimizes the increase in variance
when two clusters are combined [33], [34].

After clustering the data into three clusters with each
method, symbolic regression using Feyn was applied on
the clusters separately following the benchmarking procedure
from Section V-A. Clustering was performed on data scaled
to unit variance, while symbolic regression was applied on
unscaled data to maintain the respective units of each variable.

2) Symbolic Regression by Radar Variables: Another
method to subset the data prior to applying symbolic regres-
sion is based on the mean of the radar variables. We grouped
the data into observations below and observations above the
mean ZDR (0.7641 dB), and followed the benchmarking
procedure from Section V-A on the two groups. We then
repeated this process for mean ρhv (0.9830).

Fig. 2 shows the two groups for both ZDR and ρhv . For
both, separate patterns could be distinguished between the
above-mean group and the below-mean group in the Z–R
relationship. It is possible that dividing the data this way will
allow for better-fitting equations to be learned within the two
groups. Other radar variables, Z and KDP , were not used
to divide the data because there were no prominent patterns
seen after separating the data based on the mean of these
variables. Similarly, there were no prominent patterns seen
after separating the data based on the median for all four radar
variables.

3) Symbolic Regression on Decision Tree Leaf Nodes:
Decision trees are a type of supervised learning algorithm
that recursively subsets data to create nodes with increas-
ingly similar target values within each node and increasingly
different target values between nodes by learning decision
rules based on the predictor values [33], [35]. Decision trees
may work particularly well with symbolic regression due to
their interpretability, breaking down complex relationships into
simpler segments to train symbolic regression models.

(a) Mean ZDR. (b) Mean ρhv .

Fig. 2. Reflectivity-rainfall relationship for above and below mean ZDR and
mean ρhv .

Using decision trees in scikit-learn, we set the param-
eters to create three leaf nodes—subsets of the data that cannot
be further divided—with at least 400 values in each. The
decision trees first divided the data based on KDP ≤ 0.367,
then based on Z ≤ 35.9. We then followed the benchmarking
procedure from Section V-A on the three leaf nodes.

D. Exploring New Symbolic Regression Models

Machine learning models can be improved by incorpo-
rating prior knowledge into the training process [36]. This
is especially useful in contexts of limited data where deep
learning models capable of high accuracy are less feasible [37].
Adding knowledge-based loss terms to a model’s loss function
penalizes models that stray away from meeting the criteria that
the target variable should follow. In addition to measuring the
discrepancy between the ground-truth target variable and the
predicted target variable, the updated loss function measures
the deviation between the predicted target variable and the
knowledge-based criteria,

argmin
f

Loss
(
Y, Ŷ

)
+ λDLossD

(
Ŷ
)

(4)

where f is the model the machine learning algorithm is testing,
Y is the ground-truth target variable, Ŷ is the predicted target
variable, and λD is the weight for the knowledge-based loss
term [36]. The goal is to find the model f that minimizes
this expression. In addition to using QPE-specific knowledge
in loss functions, we incorporated knowledge learned from
the data such as information from clustering the data prior to
applying symbolic regression and from binning observations
into groups by magnitude of rainfall rate. We integrated these
new loss functions into the source code of gpg [12] with the
goal of generating simpler symbolic expressions that perform
better on the testing data. After applying these new loss terms,
all final results were obtained following the benchmarking
procedure from Section V-A.

1) Implementing Z–R Relation Into the Loss Function:
One format of knowledge-based loss terms is in the form
of algebraic equations [36]. In the domain of QPE, this
would mean we use the Z–R relation, Z = aRb. Prior to
implementing a new loss term for the Z–R relation, we needed
to choose optimal values of a and b for our dataset through
the following process:



1) Gather empirically derived values of a and b from previ-
ous studies.

2) Use optimization methods to find additional optimal
values of a and b.

3) Evaluate the performance of each Z–R relationship gath-
ered from the previous two steps on the entire dataset of
size n. This involves computing (Zi

a )(
1
b ) and comparing

this result to the ground-truth value of Ri, i = 1, 2, ..., n.
4) Select the values of a and b with the highest performance.

Incorporate these values into a Z–R relation loss term for
a symbolic regression model.

Following the process above, we used the Marshall-Palmer
relationship (a = 200 and b = 1.6) [38] and the Fulton et
al. relationship (a = 300 and b = 1.4) [39] for 1), scipy’s
optimize() function (a = 134 and b = 1.6) for 2), and
R2 and NRMSE score for 3) (Table I). We selected a = 134
and b = 1.6 as final values for a and b for 4), with R2 and
NRMSE scores of 0.7614 and 0.5804, respectively. We then

TABLE I
RESULTS FROM USING THREE DIFFERENT Z–R RELATIONS TO PREDICT

RAINFALL RATE

Values of a and b R2 Score NRMSE Score
a = 200 and b = 1.6 0.6958 0.6552
a = 300 and b = 1.4 0.7389 0.6071
a = 134 and b = 1.6 0.7614 0.5804

inserted the optimal values of a and b into a Z–R based loss
function,

lossf =
1

2k

k∑
i=1

(yi− ŷi)
2+

λ

2k

k∑
i=1

(ŷi−(
Zi

134
)

1
1.6 )2 (5)

where k is the training size, yi is the ground-truth rainfall
rate for observation i, ŷi is the predicted rainfall rate for
observation i, Zi is the reflectivity for observation i, and λ
is a weight parameter.

2) Implementing Silhouette Score Into the Loss Function:
We incorporated the radar-based and rainfall-based clusters
generated from k-means clustering, bisecting k-means cluster-
ing, and agglomerative hierarchical clustering into the training
process of symbolic regression models. To reward models that
predict rainfall rates aligning with the predetermined clusters,
we subtracted the silhouette score multiplied by a weight term
(λ) from the mean squared error term of the loss function. The
silhouette score, a value from -1 to 1, measures how well each
predicted rainfall rate is assigned to the cluster it is supposed
to be a part of [40]. A higher score indicates better cluster
assignment. This means the models that predict rainfall rates
matching the clusters closely will have a lower error term
associated with them, making them more likely to be selected
as the best model. Incorporating the silhouette score between
the predicted rainfall rates and the predetermined cluster labels
in the loss function, we obtain

lossf =
1

2k

k∑
i=1

(yi − ŷi)
2 − λ ∗ silhouette score(Ŷ , L) (6)

as the updated loss term, where L denotes the cluster labels.

3) Implementing Deviations From Rainfall Group Into the
Loss Function: Approximation constraints introduce reason-
able ranges of the target variable to help train higher quality
models [37]. Approximation constraints can be added to the
loss function of machine learning models to penalize models
that predict values of the target variables violating realistic
bounds. Similar to approximation constraints, we binned pre-
cipitation rates in our dataset into three roughly equally sized
groups: low precipitation in the range [1.00, 3.05), medium
precipitation in the range [3.05, 9.15), and high precipitation
in the range [9.15, 102.00). The bounds were chosen arbitrarily
so that each group is of similar size, making each group evenly
represented in the training process of symbolic regression
models. We then included terms that increase the loss for
models that predict rainfall rates not aligning with these three
predetermined groups. Expanding on the work from [37], the
approximation constraint loss function is

lossf =
1

2k

k∑
i=1

(yi−ŷi)
2
+λ

3∑
j=1


kj∑
i=1

ReLU(Lj −
ˆ
y
j
i ) +

kj∑
i=1

ReLU(
ˆ
y
j
i − Uj)

 (7)

where kj is the number of observations from group j =
1, 2, 3, Lj is the lower bound of group j, Uj is the upper bound
of group j, ˆ

yji is the predicted rainfall rate for observation i
from group j, and ReLU(x) = max(0, x). Only one weight
term of λ was included for simplicity.

VI. RESULTS

A. Benchmarking Existing Symbolic Regression Models

The metrics for each model from the trial with the 5th
highest train R2 score2 are shown in Table II. Metrics from
the trial with the highest test R2 score are listed in Table III,
and the corresponding equations are listed in Table IV. All
metrics are associated with one equation generated by the
symbolic regression model. Distributions of test R2 scores and
the comparison with simplicity are shown in Fig. 3.

The linear regression model achieving a low test R2 score
justifies the need for more complex expressions generated from
symbolic regression. The model with the best performance
regardless of model simplicity is pyoperon with a best test
R2 score of 0.9214. However, the equation has too low of a
simplicity value to be used in operational QPE. Feyn and gpg
also resulted in some of the highest test R2 scores, but with
complex equations. Thus, we decided that the best-performing
model taking model simplicity into account is RILS-ROLS
with a best test R2 score of 0.9145 and a simplicity score of
-1.9. Fig. 4 shows the estimated rainfall rate across Central
Oklahoma and South Florida using the RILS-ROLS equation.

B. Symbolic Regression on Subsets of Data

In Section VI-A, we identified that Feyn achieved one of
the highest test R2 scores out of the models but had a lower
simplicity score, so we used Feyn for symbolic regression
on subsets of data to see if the R2 and simplicity could be
improved.

2The 5th highest train R2 score is used as an approximation of the median
of all ten trials while ensuring metrics from only one equation are reported.



TABLE II
RESULTS FROM THE TRIAL WITH THE MEDIAN TEST R2 SCORE

Model Train
R2

Test
R2

Train
NRMSE

Test
NRMSE Simplicity

Linear Regression 0.8354 0.8521 0.4875 0.4393 -1.6
gplearn 0.8296 0.8311 0.4889 0.4903 -1.8

gpg 0.8824 0.8824 0.4018 0.4246 -2.4
PySR 0.8885 0.8720 0.3916 0.4420 -1.9

PySR (simplified) 0.8409 0.8452 0.4723 0.4695 -1.5
FFX 0.8971 0.8553 0.3761 0.4698 -4.2
Feyn 0.8940 0.8792 0.3864 0.4142 -2.4

RILS-ROLS 0.8944 0.8859 0.3904 0.3894 -2.0
DSO 0.8998 0.8940 0.3743 0.3920 -3.1

pyoperon 0.9003 0.8938 0.3701 0.3782 -2.5

TABLE III
RESULTS FROM THE TRIAL WITH THE HIGHEST TEST R2 SCORE

Model Train
R2

Test
R2

Train
NRMSE

Test
NRMSE Simplicity

Linear Regression 0.8229 0.8753 0.4912 0.4364 -1.6
gplearn 0.8117 0.8721 0.5065 0.4421 -1.8

gpg 0.8744 0.9049 0.4115 0.3842 -2.5
PySR 0.8533 0.8943 0.4446 0.4050 -1.5

PySR (simplified) 0.8291 0.8864 0.4825 0.4166 -1.5
FFX 0.8840 0.9020 0.3955 0.3899 -4.0
Feyn 0.8757 0.9046 0.4116 0.3817 -2.4

RILS-ROLS 0.8824 0.9145 0.4003 0.3900 -1.9
DSO 0.8909 0.9188 0.3856 0.3523 -3.2

pyoperon 0.8882 0.9214 0.3902 0.3787 -2.6

(a) Distribution of test R2 scores. (b) Test R2 scores compared with
simplicity.

Fig. 3. Accuracy and simplicity of symbolic regression models.

Fig. 4. Estimated rainfall rate from RILS-ROLS equation (Table IV) com-
pared with actual rainfall rate from rain gauges.

TABLE IV
EQUATION FROM THE TRIAL WITH THE HIGHEST TEST R2 SCORE

Model Equation
Linear

Regression
R =

0.5070Z−2.082ZDR+35.16KDP +22.99ρhv−34.48

gplearn R =

√∣∣∣KDP (ρ4hv)(Z)
√∣∣KDP (ρ2hv)(Z

2)
∣∣∣∣∣

gpga R = −0.0095Z(ZDR)(ρhv)
(ZDR−5.078)
(ρhv−4.577)

+

0.0047Z(ρ2hv)(Z +KDP )(KDP + 0.5812)...
PySR R =

∣∣0.8496ZDR (Z)(KDP + 0.4819)− 10.92
∣∣

PySR
(simplified) R = Zρhv (KDP + 0.1387)− ZDR

FFXa R = −4.78−28000max(0,KDP−1.46)max(0, ρhv−
0.987)− 17400max(0, 0.940− ρhv)...

Feyna R = −2.550 + 103.7e−2.381(0.3400KDP+0.9164...

RILS-
ROLS

R = 1.208Z(KDP )(ρ3hv)− 20.09KDP +

2(10−6)(ρ4hv)(Z
4)ecos(ZDR) − 0.6427

DSOa R = log(ρhv +

eρhv(5.355K
3
DP−56.217K2

DP (ρhv)−1.577K2
DP (Z)+...

pyoperon
R = −0.044 + (−39.35KDP (ρhv)− 760.3KDP +
797.1KDP−0.052Z√

0.004Z2
DR

+1
− sin(0.149Z))( 1√

0.487Z2
DR

+1
)...

aEquation truncated due to length.

1) Symbolic Regression on Clusters: Table V shows the
results from the trial with the highest test R2 score; the
metrics reported are the mean from the three clusters for each
clustering method.

The best result came from k-means clustering based on
ZDR and ρhv, which resulted in a mean test R2 of 0.9200.
The train and test R2 score and simplicity score are slightly
higher than the metrics from Feyn applied on the entire dataset
without initial clustering. This indicates that clustering based
on ZDR and ρhv may break down the data into sections with
stronger relationships that are learned by symbolic regression.
However, it may be harder to generalize to new data within
these clusters.

TABLE V
MEAN METRICS OF THREE CLUSTERS FROM THE TRIAL WITH THE

HIGHEST TEST R2 SCORE USING FEYN

Cluster Variable Train
R2

Test
R2

Train
NRMSE

Test
NRMSE

Simpli-
city

All Data (Without Clustering) 0.8757 0.9046 0.4116 0.3817 -2.4

K-
means

All Radar 0.7382 0.7826 0.4142 0.3784 -2.1
ZDR and ρhv 0.9048 0.9200 0.3605 0.3250 -2.2

Rain 0.6318 0.6764 0.2456 0.2434 -2.1
Bisecting
k-
means

All Radar 0.7129 0.7527 0.4300 0.3936 -2.0
ZDR and ρhv 0.9064 0.8980 0.3554 0.3722 -2.1

Rain 0.6106 0.6069 0.2214 0.2265 -2.0

Agglome-
rative

All Radar 0.7556 0.7887 0.4006 0.3727 -2.1
ZDR and ρhv 0.8973 0.8746 0.3758 0.3980 -2.3

Rain 0.6466 0.6623 0.2201 0.2248 -2.0

2) Symbolic Regression by Radar Variables: Table VI
shows the results from applying symbolic regression on the
data divided into two groups based on mean ZDR, and
the same for ρhv . The above mean ZDR group achieved
the highest test R2 score of 0.9519, indicating that radar
observations in this group had a strong relationship with the
rainfall rate. However, the below mean ZDR group performed



much worse with a test R2 score of 0.8538. This may indicate
that in our dataset, the radar data associated with higher ZDR

values estimate rainfall rates better than those with lower ZDR

values. Similarly, there were slight improvements in the above
mean ρhv group, and worse performance in the below-mean
group, compared with symbolic regression on the ungrouped
data.

TABLE VI
METRICS FROM THE TRIAL WITH THE HIGHEST TEST R2 SCORE FOR EACH

GROUP USING FEYN

Radar Group Size Train
R2

Test
R2

Train
NRMSE

Test
NRMSE Simplicity

All Data 2730 0.8757 0.9046 0.4116 0.3817 -2.4

ZDR
≥ Mean 1242 0.9161 0.9519 0.3620 0.2976 -2.2
< Mean 1488 0.8538 0.8538 0.4096 0.4314 -2.3

ρhv
≥ Mean 2085 0.9023 0.9132 0.3554 0.3898 -2.1
< Mean 645 0.8586 0.9025 0.4268 0.3985 -2.4

3) Symbolic Regression on Decision Tree Leaf Nodes: The
metrics for each leaf node from the trial with the best test R2

score are listed in Table VII.

TABLE VII
METRICS FROM THE TRIAL WITH THE HIGHEST TEST R2 SCORE FOR EACH

NODE USING FEYN

Subset Size Train
R2

Test
R2

Train
NRMSE

Test
NRMSE Simplicity

All Data 2730 0.8757 0.9046 0.4116 0.3817 -2.4
Node 1 1704 0.5775 0.6330 0.4620 0.4271 -2.1
Node 2 616 0.4510 0.5624 0.3923 0.3123 -2.1
Node 3 410 0.7773 0.7826 0.2277 0.2199 -2.0

The R2 scores for the nodes are significantly lower than
the score achieved without subsetting the data, while the
learned equations are simpler. Although grouping the data
using decision trees prior to applying symbolic regression
failed to achieve a higher R2 score, decision trees introduced
an interesting approach to dividing the data, using both KDP

and Z as described in Section V-C3, which may be valuable
for further study.

C. Exploring New Symbolic Regression Models

The results from the trial with the best test R2 score from
modifying the loss function of GP-GOMEA are found in
Table VIII.

Including the Z–R relation in the loss function with λ = 1
worsened the original results. Different values of λ produced
similar results. This is likely because the Z–R relationship
is not very accurate in predicting rainfall to begin with, thus
adding unnecessary noise to the loss function.

Including the silhouette score term in the loss function from
k-means clustering by ZDR and ρhv as in Section VI-B1
slightly improved the testing metrics while leaving the training
metrics relatively unchanged. By identifying different clusters
and predicting rainfall rates in the appropriate magnitudes, this
clustering-based term was able to generate a model that fit
slightly better to the data. Including the silhouette score term

from other methods of clustering and clustered by different
variables did not change or worsened the original results.

Including the binned rainfall term in the loss function with
λ = 0.01 was able to slightly improve model performance
in addition to generate a simpler equation. Other values of
λ either worsened or did not change the original results.
Incorporating bounds that the rainfall rates should follow
within the loss function could have guided the models in the
right direction to predict rainfall rates from unseen data in
the appropriate magnitudes. As shown in Table VIII, when
the model generated from the binned rainfall loss term was
evaluated on the whole dataset, it produced test R2 and
NRMSE scores of 0.9067 and 0.3804, compared to test R2 and
NRMSE scores of 0.9049 and 0.3842 for the original method,
respectively.

TABLE VIII
RESULTS FROM THE TRIAL WITH THE HIGHEST TEST R2 SCORE USING

GPG

Loss Function Train
R2

Test
R2

Train
NRMSE

Test
NRMSE Simplicity

Original 0.8744 0.9049 0.4115 0.3842 -2.5
Z–R (λ = 1)

(Equation V-D1) 0.8546 0.8900 0.4427 0.4132 -2.3
Silhouette

score (λ = 20)
(Equation V-D2) 0.8746 0.9060 0.4110 0.3819 -2.5
Binned rainfall

(λ = 0.01)
(Equation V-D3) 0.8748 0.9067 0.4108 0.3804 -2.3

Fig. 5. Results from using the model generated from a binned rainfall loss
term (λ = 0.01).

VII. EVALUATION FROM RADAR METEOROLOGY

A. Potential Equations for Operational Applications

Among all the SR algorithms, the simplest equations were
produced by gplearn, PySR, and RILS-ROLS, as shown in
Table IV. Compared with the conventional Z–R relationships
shown in Table I, the equation from gplearn performed slightly
better, and the equations from PySR and RILS-ROLS showed
significant improvement, with acceptable test R2 values of
0.8943 and 0.9145, respectively.

The PySR equation consists of two stages. When the first
term is less than 10.92, the QPE tends to decrease as Z and



KDP increase, which contradicts the expected relationship be-
tween rainfall and radar measurements. Further research could
explore the significance of the absolute operation and whether
it consistently aligns with physical understanding. When the
first term exceeds 10.92, the equation’s relationship aligns with
domain knowledge: the QPE increases as Z and KDP increase.
For ZDR, it is represented as a decreasing exponential function
in this equation. These trends are consistent with previous
studies [41], [42].

The PySR (simplified) equation, which includes all four
radar variables, indicates that the QPE increases as Z and
KDP increase, which similarly aligns with domain knowledge.
However, the equation indicates that as ZDR increases, QPE
decreases the same amount, which does not fully capture the
relationship between ZDR and rainfall rate.

In the RILS-ROLS equation, all variables are utilized. The
equation consists of three terms: the first two terms reflect
the interaction between Z and KDP , while ρhv influences the
strength of this interaction. Since ρhv is crucial for identifying
precipitation types, its role in the interaction between Z and
KDP can be seen as a representation of a fuzzy classification
strategy within the equation [43]. The third term is more
complex, and further evaluation is needed to understand its
contribution to the final estimation.

The equations demonstrate promising accuracy and lower
errors compared to traditional QPE equations. Their potential
for operational applications is evident, provided that con-
tradictions within the equations with domain knowledge are
addressed.

B. Insights from Complex Equations

The equations with more complex terms provide us with
new insights about the relationship between radar and rainfall.
The presence of trigonometric functions suggests that new
combinations and transformations on existing radar products
may play an important role. While the FFX equation is more
complex, most of the terms are related to the max operation
between 0 and the radar variables. The equation can be
manually simplified based on the classification of different
thresholds set by the radar variables ρhv and KDP [44]. This
classification strategy indeed aligns with the ability of ρhv and
KDP . This emphasizes the importance of the classification of
precipitation types, as well as determining the drop size and
density.

VIII. CONCLUSIONS AND FUTURE WORK

Symbolic regression is an effective approach to quantitative
precipitation estimation given its interpretability and accuracy.
All of the symbolic regression methods we tested (Table II)
resulted in higher accuracy than conventional Z–R relation-
ships (Table I). Of the symbolic regression models, we decided
that the best model for estimating rainfall rate from the four
radar variables is RILS-ROLS due to its high test R2 score
and simplicity.

We tested Feyn symbolic regression on different subsets
of the data with the goal of better quantifying relationships

among different precipitation intensities and types. Applying
Feyn on three clsters resulting from k-means clustering based
on ZDR and ρhv achieved improved R2 scores, lower NRMSE
scores, and slightly simpler equations. Symbolic regression on
clustered data by all four radar variables, on clustered data by
rainfall rate, and on decision tree-identified nodes resulted in
worse scores, but slightly simpler equations. Dividing the data
based on mean ZDR resulted in improved performance for
observations in the above-mean group, but worse performance
in the below-mean group. Overall, the radar variables provide
insights into complex relationships with rainfall rate, which
can be learned by symbolic regression.

The models generated from adding knowledge-based loss
terms to the loss function of GP-GOMEA was able to improve
the original results slightly. This demonstrates that including
cluster-based loss terms generated from unsupervised algo-
rithms prior to training symbolic regression models as well
as including penalties when the model predicts a rainfall rate
outside of its appropriate range in the overall loss function
have potential for improving the accuracy of machine learning
models. However, improved models were not always able to be
reproduced when retraining the model due to variation in the
GP-GOMEA model itself. Additionally, whether modifying
the loss function of other symbolic regression algorithms will
improve the original results is unknown.

This study can be built upon through future work by testing
symbolic regression on a larger dataset encompassing more
geographic regions and dates, as well as considering the time
of the observations when training symbolic regression models.
Our dataset for this study is limited and only includes data
from Florida and Oklahoma. Future research will aim to train
symbolic regression models with robust datasets that can be
generalizable to other regions. There is also more work to be
done in analyzing how to incorporate domain knowledge into
the loss function of symbolic regression models to improve
learned equations.
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