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Abstract

The U.S. Geological Survey National Water-Quality Assessment Project conducted

a study of 225 sites in the Chesapeake Bay watershed to estimate base flow. Baseflow

is the estimated volumetric discharge of water, primarily from groundwater sources,

that is relayed to the measurement sites. The study is necessary in order to address

the nation’s water supply for changes in the environment. Baseflow is estimated us-

ing a recursive digital filter. Calculating the variability of baseflow water discharge is

important to make informed decisions about water regulation. We explored the esti-

mation of variability of baseflow using two methods: the bootstrap method and the

Delta method. Each method has its own limitations and requirements. Ultimately,

bootstrapping was shown to be a reasonable recommendation for estimating baseflow

variability. The bootstrapping algorithm was parallelized in order to compute nu-

merous iterations on multiple processors for big data analysis. The derivation of the

variability of a non-constant streamflow was also considered for further study, but not

implemented.

1 Introduction

The U.S. Geological Survey National Water-Quality Assessment Project collected daily-mean

streamflow and daily estimated baseflow data from 1913 to 2016 from 225 sites in the Chesa-

peake Bay watershed. Baseflow is the estimated volumetric discharge of water that is relayed

to the measurement sites. Estimation of water discharge is essential in addressing questions

of aquatic ecosystems to environmental changes. Several methodologies have been used to

estimate water discharge. Particularly, the following hydrography separation methods have
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been used to estimate baseflow: PART (Rutledge, 1998), HYSEP (Sloto and Crouse, 1996),

and BFI along with the Recursive Digital Filter (Eckhardt, 2005). PART method obtains the

mean rate of groundwater discharge though linear interpolation of daily values of streamflow.

The implementation of the HYSEP computer program separates streamflow into baseflow

and quickflow components. BFI method estimates baseflow by connecting a smooth minima

technique on hydrograph separation to a stream hydrograph. A generalized Recursive Digital

Filter (RDF) estimates baseflow on the assumption of a linear reservoir with two adjustable

parameters.

In a recent study by a team of researchers at USGS (Raffensperger et al, 2017) these

hydrography separation methods were evaluated. The study recommended RDF as the

optimal method. The RDF method is a theoretical framework for filter algorithms introduced

by Eckhardt (2005) that developed a two-parameter filter equation. The parameters are α,

the recessive constant, and β, the maximum value of the baseflow index (BFI). The parameter

α is determined through data analysis, and β is estimated based on characteristics of the

site, and depends on the value of α. The recursive digital filter equation is

QBj =
(1− β)αQBj−1 + (1− α)βQj

(1− αβ)
(1.1)

where Qj is the streamflow (L3/t), QB is the baseflow (L3/t), where j = 1, · · · , T are the

days streamflow was recorded. With the recursive digital filter, the estimation of the baseflow

is carried out using the α, recessive constant. Although it is assumed to be a constant, α

is actually an estimate that carries an uncertainty. While the value of β depends on α, the

empirical distribution of α is skewed. So far in the study of Raffensperger et al. (2017),

the median value has been utilized in the estimation of QBj
. The primary purpose of this

project is to quantify the variability around the estimates of the baseflow QBj
induced by

the variability of the recessive constant α. This helps determine a margin of error around

the estimate of baseflow.

Two statistical methods are considered to estimate the variability of QBj: the bootstrap

method and the Delta method. The bootstrap method is a re-sampling method that is

computationally intensive, while the Delta method using Taylor series expansion is faster

and simpler, but likely unreliable for the setting herein presented.

The remainder of this report is as follows. In section 2, we describe the statistical methods

we considered for the estimation of the variability. In section 3, we present the computational

implementation of these methods. The application of the methods to the streamflow data

are presented in section 4 along with some evaluation of the performance of the distributed

computing system for parallel computing.
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2 Statistical Methods

To calculate the baseflow, QB, we investigated two statistical methodologies: bootstrapping

(Efron, 1994) and the Delta method. The bootstrap method is an intensive process based

on a resampling of the data points, while the Delta method is a less intensive process and

built upon some mathematical assumptions. We will implement both methods and compare

their performance and accuracy. Ideally, if both methods produce the same accuracy, then

we will use the more efficient method.

We start by obtaining an explicit expression of equation (1.1) which can be used in the

estimation of the variability of streamflow. Let τ1 and τ2 be functions of α and defined as

τ1 =

[
(1− β)α

1− αβ

]
and τ2 =

[
(1− α)β

1− αβ

]
,

then expression (1.1) can be written as QBj = τ1QBj−1+τ2Qj. As a recursive expression, the

first term can be obtained QB1 = τ1QB0 +τ2Q1. The subsequent two terms can be expanded

as

QB2 = τ1QB1 + τ2Q2

= τ1 [τ1QB0 + τ2Q1] + τ2Q2

= τ 21QB0 + τ1τ2Q1 + τ2Q2

QB3 = τ1QB2 + τ2Q3

= τ1
[
τ 21QB0 + τ1τ2Q1 + τ2Q2

]
+ τ2Q3

= τ 31QB0 + τ 21 τ2Q1 + τ1τ2Q2 + τ2Q3.

Generalizing the expansion, and letting QB0 = Q1, we obtain the explicit expression of the

baseflow as

QBj = τ j1Q1 + τ j−11 τ2Q1 + τ j−21 τ2Q2 + · · ·+ τ1τ2Qj−1 + τ2Qj. (2.1)

That is, the baseflow is estimated using the streamflow on the previous days including the

current day of interest j, with j = 1, · · · , T , where T is known.

2.1 The Bootstrap Method

Bootstrapping is used for making statistical inferences. It helps in estimating the variance

of an estimator for example by estimating these variances when sampling from an approxi-

mating distribution. This is a newer method because of its use of modern computer power
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to help simplify and quicken the estimations of variances and other statistics in complex set-

tings. It is a data-based method that will allow us to calculate the variance of the baseflow,

QB.

The goal is to evaluate the variance of QBj
at time j. To do so, we assume that β is

a known function of α. To distinguish the difference between a statistically defined ‘pa-

rameter’ and its estimate, we will denote by α̃, the median value of the observed α values.

Furthermore, we assume the conditioning on streamflow Q1, · · · , Qj. We thus rewrite the

above expression (1.1) as

QBj
|(Q1, · · · , Qj) = g(α̃)

Again, the notation α̃ is to assert that the value is an actual estimate, and thus it is subject to

variabilities. However, we assume that Q1, · · · , Qj are deterministic. We aim at estimating

the variance of QBj
|(Q1, · · · , Qj), which means that (Q1, · · · , Qj) are treated as known, fixed

and not random. We assume for now that the estimate α̃ is the sole source of variability in

QBj
|(Q1, · · · , Qj).

The estimate α̃ is the median of the empirical distribution, not the mean. We assume that

α̃ follows a distribution D with true median α and variance σ2. The empirical distribution of

α is skewed. Following the method described by Dr. Raffensperger, the empirical distribution

of α is generated. Let A = {α∗i , i = 1, · · · , n} be the values generated and let K be a large

number, say K = 10000 for example. The bootstrap procedure is as follows:

For k = 1, · · · , K

1. Sample n values out of A with replacement.

2. Obtain the median value α̃k

3. Compute the corresponding estimate of β.

4. Compute Q
(k)
Bj

using α̃k and the estimate of β.

Once the K values of QBj
are obtained, compute QBj

= (1/K)
∑K

k=1Q
(k)
Bj

. The estimated

variance is then estimated as

σ̂2 = σ̂2(QBj
|(Q1, · · · , Qj)) =

1

K

K∑
k=1

[Q
(k)
Bj
−QBj

]2

This last expression will be considered as an estimate of the variance ofQBj
given (Q1, · · · , Qj).
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2.2 Delta Method

Let X be a random variable with known variance, and let Y = g(X) for some function g,

with some continuity and derivability assumptions. The Delta method allow an estimation

of the variance of Y by expanding the function g(X) about its mean, with a one-step Taylor

approximation, and then takes the variance. In our case, the Delta method uses Taylor series

expansion to linearly approximate the variance of baseflow, QB, around the mean of the α

values. Assume that the variance of QB is induced by the variance of α, and that β is a

function of α, let QBj = g(α) and ᾱ = E(α), the expectation or mean value of α. By Taylor

series expansion on g(α), we get

g(α) = g(ᾱ) + g′(ᾱ)(α− ᾱ) +
g′′(ᾱ)(α− ᾱ)2

2!
+ · · ·

By first order approximation, we can write g(α) ≈ g(ᾱ) + g′(ᾱ)(α− ᾱ). Assuming that ᾱ is

non-random, the variance of g(α) is given by

V ar(QBj
) = V ar(g(α)) = [g′(ᾱ)]

2
V ar(α) = [g′(ᾱ)]

2
σ2. (2.2)

Once the variance of α is computed, the function g′(.) is to be evaluated at ᾱ. The estimated

variance is directly calculated using all observed values of α.

2.3 Estimation with Random Steamflow

Expression (2.1) gives the explicit form of QBj
as a function of streamflow values Q1 through

Qj. If the streamflows carry some uncertainty, their variabilities can be used in computing

the total variance of QBj
. However, if they are deterministic, then only the randomness in

α is used for the computation of the total variance.

Considering Qj as a fixed non-random constant and since β is dependent upon α, then

QBj becomes a function of α. Thus, the only variables in the explicit function (2.1) that

produce variance are τ1 and τ2. Consider QB2 for example. The variance of QB2 is,

Var(QB2) = Var(τ 21Q1 + τ1τ2Q1 + τ2Q2)

= Q2
1Var(τ 21 ) +Q2

1Var(τ1τ2) +Q2
2Var(τ2) + 2Q2

1Cov(τ 21 , τ1τ2)

+ 2Q1Q2Cov(τ 21 , τ2) + 2Q1Q2Cov(τ1τ2, τ2).

The variances are based upon each individual term, while the covariances between the indi-

vidual terms are based on the correlation between the two terms. And this process can be

carried out to obtain an expression of the variance of QBj
for any given j.
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Now, let’s consider the scenario where the streamflow Qjs are random, and carry some

variability. This can be the case because the streamflows were recorded from measuring

gauges at measuring sites. Gauge measurements of streamflows carry measurement errors

that can be intrinsic the the measurement devices, and also from other natural phenomenons,

creating some variability for QB. The recursive term, QBj−1, has some variance that will

accumulate over time. This contributes to the variance in estimating baseflow. In equa-

tion (2.1), QB0 and Q1, Q2, · · · , Qj all contribute to the variance in QBj. Let QB0 6= Q1,

and suppose

Qj = µj + εj

QB0 = µ0 + e0,

where µj and µ0 are the true streamflow and initial baseflow respectively. Let εj ∼ D(0, σ2
j )

and e0 ∼ D(0, σ2
0) represent the uncertainty around streamflow and initial baseflow. By

substitution, and after collecting like terms, we get

QBj =(τ j1µ0 + τ j−11 τ2µ1 + · · ·+ τ1τ2µj−1 + τ2µj)+

(τ j1e0 + τ j−11 τ2ε1 + · · ·+ τ1τ2εj−1 + τ2εj). (2.3)

Using vector notation to rewrite equation (2.3), we obtain:

QBj = γTX + εTX (2.4)

whereX =
[
τ j1 , τ

j−1
1 τ2, · · · , τ1τ2, τ2

]T
, γ = [µ0, µ1, · · · , µj−1, µj]

T and ε = [e0, ε1, · · · , εj−1, εj]T .

Treating X as non-random and γ as a constant, the variance of the modified equation (2.4)

is the variance of the error term εTX, V ar(QBj|X) = V ar(εTX), and consequently,

Var(QBj|X) = XTCov(εT )X (2.5)

where Cov(εT ) is the covariance matrix of εT . This is a matrix with size (j + 1) × (j + 1)

composed of the variance of each term on the main diagonal and the covariance between

each individual term on the off diagonal. To find the total estimated variance of QBj, we

will use the following formula:

Var(QBj) = E
[
Var(QBj|X)

]
+ Var

[
E(QBj|X)

]
. (2.6)

Substituting equation (2.5) into equation (2.6) gives,

Var(QBj) = E
[
XTCov(εT )X

]
+ Var

[
E(QBj|X)

]
= XTCov(εT )X + Var

[
E(QBj|X)

]
.
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Now we need to find the expected value of QBj|X. Since ε is distributed with a mean of

0, the expected value of that term is just 0, which leaves the expected value of (QBj|X) to

be γTX, where γ is a vector of constants and X is a vector of τ1 and τ2. Substituting this

value gives

Var(QBj) = XTCov(εT )X + Var(γTX)

= XTCov(εT )X + γTCov(X)γ

where Cov(X) is the covariance matrix of X with dimension (j + 1)× (j + 1) composed of

the variance of each term on the main diagonal and the covariance between each individual

term on the off diagonal.

We note that this procedure can be carried out provided that σ2 and σ2
0 are available

or estimable. We do not have enough information to assess these parameters and thus we

provide these details as a part of our recommendations.

3 Numerical Methods

We have implemented the two methods in the statistical software R. These codes are available

and accessible upon request. The following following sections explain the functions we wrote.

We use this font to represent these R functions and objects.

3.1 Bootstrapping the recession constant

The Bootstrap function takes in four variables: a list of streamflow observations from one

site (Q), a list of baseflow estimates from one site (Q 0), a sample of α values calculated from

the streamflow (dat), and the number of j days to calculate the variance. Figure 3.1 displays

the algorithm for estimating the variability of streamflow using the bootstrap method.

Bootstrapping the recession constant, α, involves re-sampling, with replacement, from

the supplied alpha data to obtain a new sample of 572 α values. The median is obtained

from the new sample, and then stored in a vector. This process is repeated K times to

produce K different α values stored in a vector alpha. Then, a vector of K β values, beta,

is calculated by calling the beta function and passing through alpha, Q, and Q 0.

Calling the calc Qb function and passing through Q, j, alpha, and beta will calculate

the respective baseflow. The calc Qb function calculates baseflow using formula 2.1 and

returns a vector of QB values for a single j at each alpha and beta pair. Then the variance

is calculated using the Q B vector and stored in a vector of variances. This process is then

repeated for each j. The function returns the vector of variances.
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Upper Limit
Lower Limit

DATA 𝛽 function

BOOTSTRAP 𝛼

Generate QB
(Explicit Function)

Variance of QB
Return vector
of variances

Con�dence Interval

Plots

Figure 3.1: The bootstrap algorithm generates K samples of the recession constant to esti-

mate the variability of the baseflow.

3.2 Delta Method

The function final var for Delta method takes in the same four variables as the Bootstrap

function: Q 0, Q, dat, and j. We first take the mean and standard deviation of dat and

store it in the variables alpha and std respectively. We use the numericDeriv function in

R to calculate the derivative of the calc Qb function with respect to α, and then substitute

in the singular alpha value along with the vector of Q 0 and Q. This will return a vector

of Q B (Qb deriv), one Q B for each j. Each value in Qb deriv is then substituted into

(2.2) for g′(α0), and std is substituted in for σ, see Figure 3.2. This produces a vector

of variances (final var), one variance for each j. Finally, the function returns the Delta

method variances.

4 Results

4.1 Bootstrap Method vs. Delta Method

We computed the variance and determined a 95% confidence interval of the baseflow for

each day. The plots for the first K = 1000 days shown in Figures 4.1 and 4.1 illustrate

the variability obtained from each of the methods for the first 1000 days. From these plots,

it can be seen that the margin of error for the Delta method is greater than the margin

of error for the bootstrap method. The averages of the variances confirm this relationship
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Upper Limit
Lower Limit

DATA Mean, 𝛼 

Std Dev of 𝛼

𝛼, Qj , QBj-1

RDF
(Explicit Function)

Variance of QB

numericDeriv( )

Con�dence Interval

Plots

Figure 3.2: The Delta method relies on the derivative of the RDF and the standard deviation

of the recessive constant to estimate the variability of the baseflow.

with an average of 447326.7(L3/t)2 for the Delta method, which surpasses the average of the

bootstrap method, which is 538.8(L3/t)2.

We noted that on Figure 4.1 the confidence interval for the bootstrap method is indistin-

guishable from the observed values of baseflow. Since the variability is minute, we can draw

a conclusion that using the median of the α values instead of the mean has very little to no

effect on the observed variability. This method is more reliable for determining variability

around baseflow.

For the Delta method, the plot exhibits larger variances, as observed in Figure 4.1. We

concluded that this is due to the distribution of α not being asymptotically normal, and a

discontinuity in the derivative of the function when αβ → 1. Based on the calculated α and

β values, we would expect the denominator to be closer to 0 than 1. The resulting variances

are large, and ergo the method is not recommended.

4.2 Parallelized Bootstrap vs. Serial Bootstrap

The plot on Figure fig:Perf is representative of a performance study done when parallelizing

bootstrap for one, four, and 16 processes. Also compared are the running times for the Delta

method. The Delta method consistently run in less time than the Bootstrap method. When

run for the first 1000 days (as shown in Table 4.2) the serial bootstrap code runs for 0.87

minutes and the parallelized form for 4 processes runs for 1.35 minutes. However, when the

code is run for 10000 days, the serial bootstrap runs much slower than the parallel using
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Figure 4.1: Plot of variance using bootstrap method for 1000 days. The three lines are not

discernible. Using the median of alpha adds negligible variability for the baseflow using this

method.

four processes by 54.44 minutes. The latter was the outcome that we had hoped to see from

parallelization.

5 Conclusion

The U.S. Geological Survey’s study of Raffensperger et al. (2017) provided the Recursive

Digital Filter (RDF), an estimation method for baseflow. The RDF is an equation that

depends on the previous day’s baseflow estimate, streamflow measurement of the current

day, a recession constant (α), and the maximum baseflow index (β). Assuming streamflow

values to be constant, the variability of baseflow relies on the parameters α and β as well as

the estimated baseflow of the previous day.

In order to quantify variability, we used the bootstrap method and the Delta method.
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Figure 4.2: Plot of variance using Delta method for 1000 days.

The bootstrap method is a resampling method, which we used to iterate a large number of

samples of α values for a given day. From the resulting estimates of baseflow, we calculated

the average variance to be 538.75(L3/t)2. Compared to the BFI measurements, this variance

was concluded to be negligible. We have also considered the Delta method which relies

on the derivative of the baseflow function along with the mean of the measured α values.

This method produced an average variance of 447,326.7(L3/t)2. With the current α and

β values, the denominator of the baseflow estimator is closer to 0 than 1, which results in

larger variances, thus the Delta method is not recommended.

A performance study was done for the serial and parallelized bootstrap method and the

Delta method. Even when compared with the parallelized bootstrap method, the Delta

method code runs significantly faster. While the study shows that the Delta method runs

faster for the same set of data, we do not recommend this approach because of the possible

discontinuity that occurs when the product of α and β approach 1. While the parallelized

bootstrap method shows a negligible margin of error for the variability of baseflow, it would
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Table 4.1: Perfomance Study of Statistical Algorithms (data times are in minutes)

j Bootstrap Bootstrap Bootstrap Delta

(Days) (1 process) (4 processes) (16 processes) (1 process)

100 0.19 1.08 1.09 0.003

1000 0.87 1.35 1.15 0.007

10000 76.8 22.36 7.17 0.5

20000 343.2 92.4 26.85 2.31

30000 781.2 207.6 58.95 5.6

31046 838.2 223.2 63 6.37
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Figure 4.3: Performance study for Bootstrap method using 1, 4, and 16 processes compared

to Delta method (unparallelized).

be worthwhile to implement the algorithm for multiple sites for a non-constant streamflow.
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