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Abstract

The Poisson equation on both 2-D and 3-D spatial domains is a classical test problem for the performance of
parallel computer code, since its memory-bound code provides a good test of the communication network. Different
implementations of this classical elliptic test problem are tested on taki 2018 up to 32 nodes with two 18-core Intel
Skylake Xeon CPUs, for a total of 36 cores per node, and 384 GB memory each, connected by a high-performance
EDR InfiniBand network. Each case has three versions of the implementation: blocking MPI commands, non-
blocking MPI commands, and non-blocking commands without conditional control flow. For both the 2-D and 3-D
versions, as we double the number of nodes, the runtime is almost halved. This observation confirms the quality
of the InfiniBand interconnect. By progressively doubling the number of processes per node, the runtime is also
halved for the smaller numbers of 1, 2, 4, and 8 processes per node. However, for the largest numbers of 16 and
32 processes per node, the runtime for the code is not significantly reduced. In the case of the 3-D version, some
entries with 32 processes per node are even slower than those with 16 processes per node.

1 Introduction

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core facility
for scientific computing and research on parallel algorithms at UMBC. Started in 2008 by more than 20 researchers
from ten academic departments and research centers from all three colleges, it is supported by faculty contributions,
federal grants, and the UMBC administration. The facility is open to UMBC researchers at no charge. Researchers
can contribute funding for long-term priority access. System administration is provided by the UMBC Division
of Information Technology, and users have access to consulting support provided by dedicated full-time graduate
assistants. See hpcf.umbc.edu for more information on HPCF and the projects using its resources.

In 2017, the user community, represented by 51 researchers from 17 academic departments and research centers
across UMBC, was successful for a third time to secure a grant from the National Science Foundation through its MRI
program (grant no. OAC–1726023) for the extension and state-of-the-art update of HPCF. The HPCF Governance
Committee ultimately decided in 2017–2018 to order a new cluster from Dell using the funds of this grant. The
tests reported here use the new 2018 portion of the CPU cluster in taki. This portion of the CPU cluster consists of
42 compute nodes with two 18-core Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache,
6 memory channels, 140 W power), for a total of 36 cores per node, 384 GB memory (12×32 GB DDR4 at 2666 MT/s)
for a total of 10.6 GB per core, and a 120 GB SSD drive. Figure 1.1 shows a schematic of one of the compute nodes,
showing also the two Intel UPI connections between the CPUs and indicating that each CPU has 6 memory channels
to a DDR4 memory of 32 GB. The nodes are connected by a network of four 36-port EDR (Enhanced Data Rate)
InfiniBand switches (100 Gb/s bandwidth, 90 ns latency) to a central storage of more than 750 TB. See the system
description at hpcf.umbc.edu for photos, schematics, and more detailed information, also on the other portions of the
taki cluster.

This report uses the same test problem that has been used repeatedly to test cluster performance, see [1] for the
2-D spatial domain [2] for the 3-D spatial domain, and the references therein. The problem is the numerical solution of
the Poisson equation with homogeneous Dirichlet boundary conditions on a unit square domain in two or three spatial
dimensions. Discretizing the spatial derivatives by the finite difference method yields a system of linear equations
with a large, sparse, highly structured, symmetric positive definite system matrix. This linear system is a classical
test problem for iterative solvers and contained in several textbooks including [4, 5, 6, 8] for the two-dimensional
case. The parallel, matrix-free implementation of the conjugate gradient method as appropriate iterative linear solver
for this linear system involves necessarily communications both collectively among all parallel processes and between
pairs of processes in every iteration. Therefore, this method provides an excellent test problem for the overall, real-life
performance of a parallel computer on a memory-bound algorithm. The results are not just applicable to the conjugate
gradient method, which is important in its own right as a representative of the class of Krylov subspace methods, but
to all memory-bound algorithms. The implementation uses the C programming language, with MPI (Message Passing
Interface) for communications between distributed-memory cluster nodes.
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Figure 1.1: Schematic of a compute node with two Intel Skylake Xeon CPUs.

This report compares the performance of three versions of code for both cases of 2-D and 3-D spatial domains.
The difference of the three code versions concerns the pairwise nearest process neighbor MPI communication that is
needed in the algorithm. In the first version, blocking communication commands are used, employing an if-statement
to differentiate between even and odd process numbers to prevent deadlock. In the second and third versions, non-
blocking communication commands are utilized, with the third version being without conditional control flow by
eliminating the if-statements within the for-loops.

The studies in this report allow for a number of conclusions:
(1) For both the 2-D and 3-D versions, as we double the number of nodes, the runtime is almost halved. This

observation confirms the quality of the InfiniBand interconnect. By progressively doubling the number of processes
per node, the runtime is also halved for the smaller numbers of 1, 2, 4, and 8 processes per node. However, for the
largest numbers of 16 and 32 processes per node, the runtime for the code is not significantly reduced. In the case
of the 3-D version, some entries with 32 processes per node are even slower than those with 16 processes per node.
This behavior is a typical characteristic of memory-bound code such as this. The limiting factor in the performance
of memory-bound code is memory access. Therefore, we would expect a bottleneck when more processes on each CPU
attempt to access the memory simultaneously than the available 6 memory channels per CPU, as is indicated in the
schematic of a compute node in Figure 1.1.

(2) In both the 2-D and 3-D cases, the arrangement of blocking code, with its deadlock avoidance, renders it
efficient enough to compete with non-blocking code. There is no significant difference in performance between the
code versions. There is also no noticeable improvement when employing non-blocking code without conditional control
flow, which involves no if-statements in this case. In fact, some entries are even slightly slower.

The remainder of this report is organized as follows: Section 2 details the 2-D test problem and discusses the
parallel implementation in more detail, while Section 3 summarizes the solution and method convergence data for the
2-D Poisson equation. Section 4 contains the strong scalability studies for blocking MPI commands, non-blocking MPI
commands, and non-blocking commands without conditional control flow for the 2-D Poisson equation. Following
that, Section 5 details the 3-D test problem and discusses the parallel implementation in more detail, with Section 6
summarizing the solution and method convergence data for the 3-D Poisson equation. Finally, Section 7 contains the
strong scalability studies for blocking MPI commands, non-blocking MPI commands, and non-blocking commands
without conditional control flow for the 3-D Poisson equation.
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2 The Elliptic Test Problem with 2-D Poisson Equation

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary conditions
(see, e.g., [8, Chapter 8])

−4u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit square domain Ω = (0, 1)× (0, 1) ⊂ R2. Here, ∂Ω denotes the boundary of the domain Ω and the Laplace

operator in is defined as 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2
. Using N + 2 mesh points in each dimension, we construct a mesh with

uniform mesh spacing h = 1/(N + 1). Specifically, define the mesh points (xk1
, xk2

) ∈ Ω ⊂ R2 with xki
= h ki,

ki = 0, 1, . . . , N,N + 1, in each dimension i = 1, 2. Denote the approximations to the solution at the mesh points by
uk1,k2 ≈ u(xk1 , xk2). Then approximate the second-order derivatives in the Laplace operator at the N2 interior mesh
points by

∂2u(xk1 , xk2)

∂x21
+
∂2u(xk1

, xk2
)

∂x22
≈ uk1−1,k2

− 2uk1,k2
+ uk1+1,k2

h2
+
uk1,k2−1 − 2uk1,k2

+ uk1,k2+1

h2
(2.2)

for ki = 1, . . . , N , i = 1, 2, for the approximations at the interior points. Using this approximation together with the
homogeneous boundary conditions (2.1) gives a system of N2 linear equations for the finite difference approximations
at the N2 interior mesh points.

Collecting the N2 unknown approximations uk1,k2 in a vector u ∈ RN2

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ RN2×N2

and a right-hand side vector b ∈ RN2

. The components of the right-hand side vector b are given by the
product of h2 multiplied by right-hand side function evaluations f(xk1

, xk2
) at the interior mesh points using the same

ordering as the one used for uk1,k2
. The system matrix A ∈ RN2×N2

can be defined recursively as block tri-diagonal
matrix with N ×N blocks of size N ×N each. Concretely, we have

A =


S T
T S T

. . .
. . .

. . .

T S T
T S

 ∈ RN2×N2

(2.3)

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of A and with T = −I ∈ RN×N

denoting a negative identity matrix for the off-diagonal blocks of A.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for solving

this linear system. The system matrix A is known to be symmetric positive definite and thus the method is guaranteed
to converge for this problem. In a careful implementation, the conjugate gradient method requires in each iteration
exactly two inner products between vectors, three vector updates, and one matrix-vector product involving the system
matrix A. In fact, this matrix-vector product is the only way, in which A enters into the algorithm. Therefore, a
so-called matrix-free implementation of the conjugate gradient method is possible that avoids setting up any matrix,
if one provides a function that computes as its output the product vector q = Ap component-wise directly from
the components of the input vector p by using the explicit knowledge of the values and positions of the non-zero
components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate gra-
dient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual r, the
search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method, each
vector is split into as many blocks as parallel processes are available and one block distributed to each process. That
is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in full on
any process. To understand what this means for parallel programming and the performance of the method, note that
an inner product between two vectors distributed in this way is computed by first forming the local inner products
between the local blocks of the vectors and second summing all local inner products across all parallel processes to
obtain the global inner product. This summation of values from all processes is known as a reduce operation in parallel
programming, which requires a communication among all parallel processes. This communication is necessary as part
of the numerical method used, and this necessity is responsible for the fact that for fixed problem sizes eventually for
very large numbers of processes the time needed for communication — increasing with the number of processes — will
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unavoidably dominate over the time used for the calculations that are done simultaneously in parallel — decreasing
due to shorter local vectors for increasing number of processes. By contrast, the vector updates in each iteration can
be executed simultaneously on all processes on their local blocks, because they do not require any parallel communi-
cations. However, this requires that the scalar factors that appear in the vector updates are available on all parallel
processes. This is accomplished already as part of the computation of these factors by using a so-called Allreduce op-
eration, that is, a reduce operation that also communicates the result to all processes. This is implemented in the MPI
function MPI_Allreduce [7]. Finally, the matrix-vector product q = Ap also computes only the block of the vector q
that is local to each process. But since the matrix A has non-zero off-diagonal elements, each local block needs values
of p that are local to the two processes that hold the neighboring blocks of p. The communications between parallel
processes thus needed are so-called point-to-point communications, because not all processes participate in each of
them, but rather only specific pairs of processes that exchange data needed for their local calculations. Observe now
that it is only a few components of q that require data from p that is not local to the process. Therefore, it is possible
and potentially very efficient to proceed to calculate those components that can be computed from local data only,
while the communications with the neighboring processes are taking place. This technique is known as interleaving
calculations and communications and can be implemented using the non-blocking MPI communication commands
MPI_Isend and MPI_Irecv.

Nominally, the interleaving achieved by using non-blocking communications should be the most efficient way to
program the method. This report prefaces these results by a baseline study using the blocking MPI communication
commands MPI_Send and MPI_Recv. Additionally, another experiment uses the non-blocking MPI communication
command without conditional control flow by avoiding the if-statements inside the for-loops.

3 Convergence Study for the Model Problem with 2-D Poisson Equation

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit square
Ω = (0, 1)× (0, 1) with right-hand side function f(x1, x2) = (−2π2)

(
cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)

)
, for

which the true analytic solution in closed form u(x1, x2) = sin2(πx1) sin2(πx2) is known. On a mesh with 32 × 32
interior points and mesh spacing h = 1/33 ≈ 0.030303, the numerical solution uh(x1, x2) can be plotted vs. (x1, x2)
as a mesh plot as in Figure 3.1 (a). The shape of the solution clearly agrees with the true solution u(x1, x2) of the
problem. At each mesh point, an error is incurred compared to the true solution u(x1, x2). A mesh plot of the error
u− uh vs. (x1, x2) is shown in Figure 3.1 (b). We see that the maximum error occurs at the center of the domain of
size about 3× 10−3 (note the scale on the vertical axis), which compares well to the order of magnitude h2 ≈ 10−3 of
the theoretically predicted error.

To check the convergence of the finite difference method as well as to analyze the performance of the conjugate
gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method is
started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector norm
of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of the

(a) Numerical solution uh (b) Error u− uh

Figure 3.1: Mesh plots of (a) the numerical solution uh vs. (x1, x2) and (b) the error u− uh vs. (x1, x2).
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Table 3.1: Convergence study of the finite difference method for the 2-D Poisson equation with serial code.

N DOF ‖u− uh‖ Ratio #iter wall clock time memory usage (GB)
HH:MM:SS seconds predicted observed

1024 1,048,576 3.1266e–06 — 1,581 00:00:09 8.79 < 1 < 1
2048 4,194,304 7.8019e–07 4.01 3,192 00:01:41 100.57 < 1 < 1
4096 16,777,216 1.9366e–07 4.03 6,452 00:15:04 904.21 < 1 < 1
8192 67,108,864 4.7376e–08 4.09 13,033 02:04:33 7,472.74 2 2.01

16384 268,435,456 1.1545e–08 4.10 26,316 17:02:09 61,329.24 8 8.02

N ×N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension of the linear system), the norm of the
finite difference error ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors ‖u− u2h‖/‖u− uh‖ , the number of
conjugate gradient iterations #iter, the observed wall clock time in HH:MM:SS and in seconds, and the predicted
and observed memory usage in GB for studies performed in serial. More precisely, the serial runs use the parallel
code run on one process only, on a dedicated node (no other processes running on the node), and with all parallel
communication commands disabled by if-statements. The wall clock time is measured using the MPI_Wtime command
(after synchronizing all processes by an MPI_Barrier command). The memory usage of the code is predicted by
noting that there are 4N2 double-precision numbers needed to store the four vectors of significant length N2 and
that each double-precision number requires 8 bytes; dividing this result by 10243 converts its value to units of GB,
as quoted in the table. The memory usage is observed in the code by checking the VmRSS field in the the special file
/proc/self/status.

In all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time that the
mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent, as predicted
by the numerical theory for the finite difference method [3, 6]. The fact that this convergence order is attained also
confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate solution of the
linear system. The increasing numbers of iterations needed to achieve the convergence of the linear solver highlights the
fundamental computational challenge with methods in the family of Krylov subspace methods, of which the conjugate
gradient method is the most important example: Refinements of the mesh imply more mesh points, where the solution
approximation needs to be found, and makes the computation of each iteration of the linear solver more expensive.
Additionally, more of these more expensive iterations are required to achieve convergence to the desired tolerance for
finer meshes. And it is not possible to relax the solver tolerance, because otherwise its solution would not be accurate
enough and the norm of the finite difference error would not show a second-order convergence behavior, as required by
its theory. The observed memory usage in units of GB rounds to within less than 1 GB of the predicted usage. This
good agreement between predicted and observed memory usage in the last two columns of the table indicates that
the implementation of the code does not have any unexpected memory usage in the serial case. The wall clock times
and the memory usages for these serial runs indicate for which mesh resolutions this elliptic test problem becomes
challenging computationally. Notice that the very fine meshes show very significant runtimes and memory usage;
parallel computing clearly offers opportunities to decrease runtimes as well as to decrease memory usage per process
by spreading the problem over the parallel processes.

We note that the results in Table 3.1 agree with past results for this problem, see [1] and the references therein.
This ensures that the parallel performance studies in the next section are practically relevant, since a correct solution
of the test problem is computed.
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4 2-D Performance Studies on taki 2018

This section presents the strong scalability studies using MPI-only code on taki 2018 using the default Intel compiler
and Intel MPI. The Intel compiler icc and the Intel MPI implementation, currently version 18.0.3, are accessed on taki
through the wrapper mpiicc. Since the compiler and MPI implementation are the defaults, they are available after the
module load default-environment command in the .bashrc file in the user’s home directory that is automatically
executed upon login to taki. We use the compiler options -O3 -std=c99 -Wall -mkl for the Intel Skylake CPUs.

HPCF uses the slurm workload manager (slurm.schedmd.com) for job scheduling. The slurm submission script
uses the mpirun command to start the job, with the option -print-rank-map that is supposed to print the MPI’s
rank mapping. The number of nodes are controlled by the --nodes option and the number of MPI processes per node
by the --ntasks-per-node option. For a performance study, each node that is used is dedicated to the job with the
remaining cores idling by using the --exclusive flag. Correspondingly, we request all memory of the node for the job
by --mem=MaxMemPerNode.

We conduct complete performance studies of the test problem for five progressively finer meshes of N = 1024, 2048,
4096, 8192, 16384. These studies result in progressively larger systems of linear equations with system dimensions
ranging from about 1 million for N = 1024 to over 250 million for N = 16384.

Tables 4.1, 4.2, and 4.3 collect the results of the performance studies on the 2018 portion of the CPU cluster in
taki. For each mesh resolution of the five meshes with N = 1024, 2048, 4096, 8192, 16384, the parallel implementation
of the test problem is run on all possible combinations of nodes from 1 to 32 by powers of 2 and processes per node
from 1 to 32 by powers of 2. The table summarizes the observed wall clock time (total time to execute the code)
in HH:MM:SS (hours:minutes:seconds) format. The upper-left entry of each subtable contains the runtime for the
1-process run, i.e., the serial run, of the code for that particular mesh. The lower-right entry of each subtable lists the
runtime using 32 cores on 32 nodes for a total of 1024 parallel processes working together to solve the problem. Notice
that each node has two 18-core CPUs for a total of 36 cores, so even with 32 processes per node, several cores are not
used by our job and remain available for the operating system and other system tasks.

2-D Performance Studies using Blocking MPI Commands

The blocking MPI commands used in this study study are MPI_Send and MPI_Recv. MPI_Recv will block the com-
munication until it receives messages from another process. The implementation has all even-numbered processes
(id%2 == 0) send first and then receive, and vice versa for all odd-numbered processes. This is to ensure that there
is no ”deadlock” and to improve efficiency.

We choose the mesh resolution of 16384 × 16384 in Table 4.1 to discuss in detail as example. Reading along the
first column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately
halve the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well
as from 4 to 8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there
is still a significant improvement in runtime, although not the halving we observed previously. Finally, while the
decrease in runtime from 16 to 32 processes is small, the runtimes still do decrease, making the use of all available
cores advisable. We observe that the behavior is analogous also in all other columns for this subtable. This behavior
is a typical characteristic of memory-bound code such as this. The limiting factor in performance of memory-bound
code is memory access, so we would expect a bottleneck when more processes on each CPU attempt to access the
memory simultaneously than the available 6 memory channels per CPU indicated in Figure 1.1.

Reading along each row of the 16384 × 16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to
32 nodes. This behavior observed for increasing the number of nodes confirms the quality of the high-performance
InfiniBand interconnect. Also, we can see that the timings for anti-diagonals in Table 4.1 are about equal, that is for
instance, the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node.
Thus, it is advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 4.1, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 8 to 10 for corresponding entries. The relative
performance in each of the subtables in Table 4.1 exhibits largely analogous behavior to the 16384 × 16384 mesh, in
particular the 8192× 8192 mesh subtable. For smaller meshes, some times for larger numbers of nodes are eventually
so fast that improvement is small with more processes per node, but behavior is analogous for the more significant
times.
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Table 4.1: Wall clock time in HH:MM:SS using blocking MPI commands for the 2-D Poisson equation.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1048576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:09 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4194304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:41 00:00:48 00:00:19 00:00:08 00:00:04 00:00:02
2 processes per node 00:00:47 00:00:19 00:00:07 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:24 00:00:11 00:00:04 00:00:02 00:00:01 00:00:00
8 processes per node 00:00:12 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00
16 processes per node 00:00:08 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:06 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:15:00 00:07:21 00:03:31 00:01:39 00:00:42 00:00:15
2 processes per node 00:07:21 00:03:31 00:01:36 00:00:42 00:00:15 00:00:08
4 processes per node 00:03:43 00:01:46 00:00:50 00:00:21 00:00:08 00:00:04
8 processes per node 00:01:49 00:00:52 00:00:25 00:00:11 00:00:04 00:00:02
16 processes per node 00:01:14 00:00:36 00:00:17 00:00:05 00:00:02 00:00:01
32 processes per node 00:01:03 00:00:30 00:00:13 00:00:03 00:00:02 00:00:01

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67108864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 02:04:50 01:02:04 00:30:32 00:15:04 00:07:13 00:03:20
2 processes per node 01:01:42 00:30:33 00:15:07 00:07:14 00:03:23 00:01:27
4 processes per node 00:31:09 00:15:20 00:07:36 00:03:40 00:01:44 00:00:45
8 processes per node 00:15:39 00:07:35 00:03:47 00:01:50 00:00:53 00:00:24
16 processes per node 00:10:31 00:05:16 00:02:34 00:01:14 00:00:36 00:00:13
32 processes per node 00:08:56 00:04:26 00:02:11 00:01:04 00:00:29 00:00:09

(e) Mesh resolution N ×N = 16384× 16384, system dimension 268435456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 17:00:09 08:33:59 04:14:08 02:07:06 01:02:54 00:30:45
2 processes per node 08:30:15 04:17:52 02:08:52 01:03:30 00:31:06 00:14:55
4 processes per node 04:16:11 02:09:40 01:04:05 00:31:30 00:15:30 00:07:32
8 processes per node 02:07:47 01:03:18 00:31:43 00:15:45 00:07:49 00:03:49
16 processes per node 01:27:40 00:43:55 00:21:32 00:10:46 00:05:18 00:02:36
32 processes per node 01:12:18 00:36:40 00:18:24 00:09:10 00:04:34 00:02:17
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2-D Performance Studies using Non-Blocking MPI Commands

The technique of implementing non-blocking MPI commands is known as interleaving calculations and communications
and can be implemented using commands MPI_Isend and MPI_Irecv [7].

We choose the mesh resolution of 16384 × 16384 in Table 4.2 to discuss in detail as example. Reading along the
first column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately
halve the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well
as from 4 to 8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there
is still a significant improvement in runtime, although not the halving we observed previously. Finally, while the
decrease in runtime from 16 to 32 processes is small, the runtimes still do decrease, making the use of all available
cores advisable. We observe that the behavior is analogous also in all other columns for this subtable. This behavior
is a typical characteristic of memory-bound code such as this. The limiting factor in performance of memory-bound
code is memory access, so we would expect a bottleneck when more processes on each CPU attempt to access the
memory simultaneously than the available 6 memory channels per CPU indicated in Figure 1.1.

Reading along each row of the 16384 × 16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to
32 nodes. This behavior observed for increasing the number of nodes confirms the quality of the high-performance
InfiniBand interconnect. Also, we can see that the timings for anti-diagonals in Table 4.2 are about equal, that is for
instance, the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node.
Thus, it is advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 4.2, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 8 to 10 for corresponding entries. The relative
performance in each of the subtables in Table 4.2 exhibits largely analogous behavior to the 16384 × 16384 mesh, in
particular the 8192× 8192 mesh subtables. For smaller meshes, some times for larger numbers of nodes are eventually
so fast that improvement is small with more processes per node, but behavior is analogous for the more significant
times.

When comparing absolute runtime in Table 4.1 and Table 4.2, we observed that there’s no significant difference
between implementing blocking MPI commands or non-blocking MPI commands. For example, in the 16384× 16384
mesh subtables, some entries in Table 4.1 are slightly smaller and other entries in Table 4.2 are slightly smaller. The
differences are also quite random and negligible.
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Table 4.2: Wall clock time in HH:MM:SS using non-blocking MPI commands for the 2-D Poisson equation.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1048576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:09 00:00:04 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4194304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:41 00:00:58 00:00:19 00:00:07 00:00:04 00:00:02
2 processes per node 00:00:46 00:00:19 00:00:07 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:24 00:00:10 00:00:04 00:00:02 00:00:01 00:00:00
8 processes per node 00:00:12 00:00:05 00:00:03 00:00:01 00:00:00 00:00:00
16 processes per node 00:00:08 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:06 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:15:04 00:07:20 00:03:29 00:01:38 00:00:40 00:00:16
2 processes per node 00:07:22 00:05:05 00:01:37 00:00:41 00:00:23 00:00:08
4 processes per node 00:03:39 00:01:47 00:00:50 00:00:22 00:00:12 00:00:04
8 processes per node 00:01:48 00:00:52 00:00:25 00:00:10 00:00:06 00:00:02
16 processes per node 00:01:15 00:00:36 00:00:16 00:00:05 00:00:03 00:00:01
32 processes per node 00:01:04 00:00:30 00:00:13 00:00:03 00:00:01 00:00:01

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67108864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 02:04:33 01:02:15 00:30:54 00:15:00 00:07:12 00:03:16
2 processes per node 01:01:53 00:30:56 00:15:07 00:07:11 00:03:17 00:01:23
4 processes per node 00:30:51 00:15:16 00:07:34 00:03:39 00:01:42 00:00:45
8 processes per node 00:20:39 00:07:44 00:03:49 00:01:50 00:00:53 00:00:24
16 processes per node 00:10:30 00:05:14 00:02:34 00:01:15 00:00:36 00:00:12
32 processes per node 00:08:56 00:04:25 00:02:11 00:01:04 00:00:27 00:00:13

(e) Mesh resolution N ×N = 16384× 16384, system dimension 268435456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 17:02:09 09:39:42 04:13:20 02:05:28 01:01:41 00:30:12
2 processes per node 08:30:55 04:13:17 02:05:38 01:02:10 00:30:36 00:14:43
4 processes per node 04:12:34 02:06:51 01:03:12 00:31:18 00:15:26 00:07:30
8 processes per node 02:06:54 01:03:56 00:44:51 00:15:44 00:07:47 00:03:48
16 processes per node 01:26:24 00:43:42 00:21:30 00:10:55 00:05:16 00:02:35
32 processes per node 01:12:43 00:36:26 00:18:28 00:09:13 00:04:31 00:02:18
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2-D Performance Studies using Non-Blocking Code Without Conditional Control Flow

Both previous studies use if-statements as the conditional control flow. This study is focused on the non-blocking code
without if-statements. The following snippets of pseudo-code explain the code with and without conditional control
flow inside the for-loops:

2-D non-blocking code WITH if-statements:

f o r ( i = 0 ; i < N; i ++){
i f ( i > 0 ) code f o r i > 0
i f ( i < N−1) code f o r i < N−1

}

2-D non-blocking code WITHOUT if-statements:

code f o r i = 0

f o r ( i = 1 ; i < N−1; i ++){
code f o r 0 < i < N−1

}

code f o r i = N−1

This study has the same combinations of nodes as the previous two studies. The Table 4.3 setup is also the same.
We choose the mesh resolution of 16384 × 16384 in Table 4.3 to discuss in detail as example. Reading along the

first column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately
halve the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well
as from 4 to 8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there
is still a significant improvement in runtime, although not the halving we observed previously. Finally, while the
decrease in runtime from 16 to 32 processes is small, the runtimes still do decrease, making the use of all available
cores advisable. We observe that the behavior is analogous also in all other columns for this subtable. This behavior
is a typical characteristic of memory-bound code such as this. The limiting factor in performance of memory-bound
code is memory access, so we would expect a bottleneck when more processes on each CPU attempt to access the
memory simultaneously than the available 6 memory channels per CPU indicated in Figure 1.1.

Reading along each row of the 16384 × 16384 mesh subtable, we observe that by doubling the number of nodes
used, and thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to
32 nodes. This behavior observed for increasing the number of nodes confirms the quality of the high-performance
InfiniBand interconnect. Also, we can see that the timings for anti-diagonals in Table 4.3 are about equal, that is for
instance, the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node.
Thus, it is advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 4.3, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 8 to 10 for corresponding entries. The relative
performance in each of the subtables in Table 4.3 exhibits largely analogous behavior to the 16384 × 16384 mesh, in
particular the 8192× 8192 mesh subtables. For smaller meshes, some times for larger numbers of nodes are eventually
so fast that improvement is small with more processes per node, but behavior is analogous for the more significant
times.

When comparing absolute runtime in Table 4.2 and Table 4.3, we observed that there’s no significant difference
between the two cases. In fact, most of the entries in Table 4.3 are slightly larger than those in Table 4.2, although the
differences are negligible. Therefore, eliminating conditional control flow won’t significantly improve the performance
in this case.

10



Table 4.3: Wall clock time in HH:MM:SS using non-blocking code without if-statements for the 2-D Poisson equation.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1048576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:09 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4194304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:42 00:00:48 00:00:18 00:00:07 00:00:04 00:00:02
2 processes per node 00:00:48 00:00:19 00:00:07 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:25 00:00:11 00:00:04 00:00:02 00:00:01 00:00:00
8 processes per node 00:00:12 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00
16 processes per node 00:00:08 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
32 processes per node 00:00:06 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:14:52 00:07:22 00:03:31 00:01:37 00:00:39 00:00:15
2 processes per node 00:07:19 00:03:32 00:01:39 00:00:40 00:00:15 00:00:08
4 processes per node 00:03:40 00:01:46 00:00:50 00:00:20 00:00:08 00:00:04
8 processes per node 00:01:49 00:00:52 00:00:25 00:00:10 00:00:04 00:00:02
16 processes per node 00:01:15 00:00:36 00:00:17 00:00:05 00:00:02 00:00:01
32 processes per node 00:01:03 00:00:30 00:00:13 00:00:04 00:00:01 00:00:01

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67108864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 02:02:44 01:02:04 00:31:03 00:15:08 00:07:12 00:03:20
2 processes per node 01:01:48 00:30:53 00:15:08 00:07:12 00:03:22 00:01:30
4 processes per node 00:30:53 00:15:16 00:07:33 00:03:39 00:01:44 00:00:46
8 processes per node 00:15:21 00:07:41 00:03:47 00:01:49 00:00:53 00:00:23
16 processes per node 00:10:29 00:05:16 00:02:33 00:01:14 00:00:35 00:00:12
32 processes per node 00:08:56 00:04:27 00:02:10 00:01:03 00:00:28 00:00:11

(e) Mesh resolution N ×N = 16384× 16384, system dimension 268435456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 17:17:38 08:48:29 04:18:49 02:05:53 01:02:22 00:30:43
2 processes per node 08:34:42 04:18:02 02:09:10 01:03:29 00:31:02 00:14:57
4 processes per node 04:17:04 02:09:17 01:03:48 00:31:52 00:15:31 00:07:33
8 processes per node 02:09:08 01:04:54 00:32:04 00:15:49 00:07:44 00:03:50
16 processes per node 01:26:58 00:44:01 00:21:43 00:10:42 00:05:17 00:02:36
32 processes per node 01:13:00 00:36:52 00:18:25 00:09:10 00:04:34 00:02:17
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5 The Elliptic Test Problem with 3-D Poisson Equation

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary conditions
(see, e.g., [8, Chapter 8] for the two-dimensional analogue)

−4u = f in Ω,
u = 0 on ∂Ω,

(5.1)

on the unit cube domain Ω = (0, 1)× (0, 1)× (0, 1) ⊂ R3 in three spatial dimensions. Here, ∂Ω denotes the boundary

of the domain Ω and the Laplace operator in is defined as 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3
. Using N + 2 mesh points

in each dimension, we construct a mesh with uniform mesh spacing h = 1/(N + 1). Specifically, define the mesh
points (xk1

, xk2
, xk3

) ∈ Ω ⊂ R3 with xki
= h ki, ki = 0, 1, . . . , N,N + 1, in each dimension i = 1, 2, 3. Denote the

approximations to the solution at the mesh points by uk1,k2,k3
≈ u(xk1

, xk2
, xk3

). Then approximate the second-order
derivatives in the Laplace operator at the N2 interior mesh points by

∂2u(xk1
, xk2

, xk3
)

∂x21
≈ uk1−1,k2,k3

− 2uk1,k2,k3
+ uk1+1,k2,k3

h2
, (5.2)

∂2u(xk1
, xk2

, xk3
)

∂x22
≈ uk1,k2−1,k3

− 2uk1,k2,k3
+ uk1,k2+1,k3

h2
, (5.3)

∂2u(xk1
, xk2

, xk3
)

∂x23
≈ uk1,k2,k3−1 − 2uk1,k2,k3

+ uk1,k2,k3+1

h2
(5.4)

for ki = 1, . . . , N , i = 1, 2, 3, for the approximations at the interior points. Using this approximation together with the
homogeneous boundary conditions (5.1) gives a system of N3 linear equations for the finite difference approximations
at the N3 interior mesh points.

Collecting the N3 unknown approximations uk1,k2,k3
in a vector u ∈ RN3

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ RN3×N3

and a right-hand side vector b ∈ RN3

. The components of the right-hand side vector b are given by
the product of h2 multiplied by right-hand side function evaluations f(xk1 , xk2 , xk3) at the interior mesh points using

the same ordering as the one used for uk1,k2,k3 . The system matrix A ∈ RN3×N3

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N2×N2 each, each of which in turn is a block tri-diagonal matrix with
N ×N blocks of size N ×N each. Concretely, we have

A =


S −IN2

−IN2 S −IN2

. . .
. . .

. . .

−IN2 S −IN2

−IN2 S

 ∈ RN3×N3

, S =


T −IN
−IN T −IN

. . .
. . .

. . .

−IN T −IN
−IN T

 ∈ RN2×N2

with the tri-diagonal matrix T = tridiag(−1, 6,−1) ∈ RN×N for the diagonal blocks of S as well as A and identity

matrices IN2 ∈ RN2×N2

and IN ∈ RN×N for the off-diagonal blocks of A and S, respectively.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for solving

this linear system. The system matrix A is known to be symmetric positive definite and thus the method is guaranteed
to converge for this problem. In a careful implementation, the conjugate gradient method requires in each iteration
exactly two inner products between vectors, three vector updates, and one matrix-vector product involving the system
matrix A. In fact, this matrix-vector product is the only way, in which A enters into the algorithm. Therefore, a
so-called matrix-free implementation of the conjugate gradient method is possible that avoids setting up any matrix,
if one provides a function that computes as its output the product vector q = Ap component-wise directly from
the components of the input vector p by using the explicit knowledge of the values and positions of the non-zero
components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate gra-
dient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual r, the
search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method, each
vector is split into as many blocks as parallel processes are available and one block distributed to each process. That
is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in full on
any process. To understand what this means for parallel programming and the performance of the method, note that
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an inner product between two vectors distributed in this way is computed by first forming the local inner products
between the local blocks of the vectors and second summing all local inner products across all parallel processes to
obtain the global inner product. This summation of values from all processes is known as a reduce operation in parallel
programming, which requires a communication among all parallel processes. This communication is necessary as part
of the numerical method used, and this necessity is responsible for the fact that for fixed problem sizes eventually for
very large numbers of processes the time needed for communication — increasing with the number of processes — will
unavoidably dominate over the time used for the calculations that are done simultaneously in parallel — decreasing
due to shorter local vectors for increasing number of processes. By contrast, the vector updates in each iteration can
be executed simultaneously on all processes on their local blocks, because they do not require any parallel communi-
cations. However, this requires that the scalar factors that appear in the vector updates are available on all parallel
processes. This is accomplished already as part of the computation of these factors by using a so-called Allreduce op-
eration, that is, a reduce operation that also communicates the result to all processes. This is implemented in the MPI
function MPI_Allreduce [7]. Finally, the matrix-vector product q = Ap also computes only the block of the vector q
that is local to each process. But since the matrix A has non-zero off-diagonal elements, each local block needs values
of p that are local to the two processes that hold the neighboring blocks of p. The communications between parallel
processes thus needed are so-called point-to-point communications, because not all processes participate in each of
them, but rather only specific pairs of processes that exchange data needed for their local calculations. Observe now
that it is only a few components of q that require data from p that is not local to the process. Therefore, it is possible
and potentially very efficient to proceed to calculate those components that can be computed from local data only,
while the communications with the neighboring processes are taking place. This technique is known as interleaving
calculations and communications and can be implemented using the non-blocking MPI communication commands
MPI_Isend and MPI_Irecv.

Nominally, the interleaving achieved by using non-blocking communications should be the most efficient way to
program the method. This report prefaces these results by a baseline study using the blocking MPI communication
commands MPI_Send and MPI_Recv. Additionally, another experiment uses the non-blocking MPI communication
command without conditional control flow by avoiding the if-statements inside the for-loops.

6 Convergence Study for the Model Problem with 3-D Poisson Equation

To test the numerical method and its implementation, we consider the elliptic problem (5.1) on the unit cube

Ω = (0, 1)× (0, 1)× (0, 1)

with right-hand side function

f(x1, x2, x3) = (−2π2)
(

cos(2πx1) sin2(πx2) sin2(πx3)+sin2(πx1) cos(2πx2) sin2(πx3)+sin2(πx1) sin2(πx2) cos(2πx3)
)
,

for which the true analytic solution in closed form

u(x1, x2, x3) = sin2(πx1) sin2(πx2) sin2(πx3)

is known.
To check the convergence of the finite difference method as well as to analyze the performance of the conjugate

gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 6.1 lists the mesh resolution N of
the N × N × N mesh, the number of degrees of freedom N3 (DOF; i.e., the dimension of the linear system), the
norm of the finite difference error ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors ‖u− u2h‖/‖u− uh‖ , the
number of conjugate gradient iterations #iter, the observed wall clock time in HH:MM:SS and in seconds, and the
predicted and observed memory usage in GB for studies performed in serial. More precisely, the serial runs use the
parallel code run on one process only, on a dedicated node (no other processes running on the node), and with all
parallel communication commands disabled by if-statements. The wall clock time is measured using the MPI_Wtime

command (after synchronizing all processes by an MPI_Barrier command). The memory usage of the code is predicted
by noting that there are 4N3 double-precision numbers needed to store the four vectors of significant length N3 and
that each double-precision number requires 8 bytes; dividing this result by 10243 converts its value to units of GB,
as quoted in the table. The memory usage is observed in the code by checking the VmRSS field in the the special file
/proc/self/status.
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Table 6.1: Convergence study of the finite difference method for the 3-D Poisson equation with serial code.

N DOF ‖u− uh‖ Ratio #iter wall clock time memory usage (GB)
HH:MM:SS seconds predicted observed

128 2,097,152 1.9763e–04 — 244 00:00:04 3.68 < 1 < 1
256 16,777,216 4.9807e–05 3.97 493 00:01:11 70.83 < 1 < 1
512 134,217,728 1.2503e–05 3.98 999 00:20:18 1,217.70 4 4.02

1024 1,073,741,824 3.1327e–06 3.99 2,023 07:19:20 26,359.83 32 33.04

In all cases, the norms of the finite difference errors in Table 6.1 decrease by a factor of about 4 each time that the
mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent, as predicted
by the numerical theory for the finite difference method [3, 6]. The fact that this convergence order is attained also
confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate solution of the
linear system. The increasing numbers of iterations needed to achieve the convergence of the linear solver highlights the
fundamental computational challenge with methods in the family of Krylov subspace methods, of which the conjugate
gradient method is the most important example: Refinements of the mesh imply more mesh points, where the solution
approximation needs to be found, and makes the computation of each iteration of the linear solver more expensive.
Additionally, more of these more expensive iterations are required to achieve convergence to the desired tolerance for
finer meshes. And it is not possible to relax the solver tolerance, because otherwise its solution would not be accurate
enough and the norm of the finite difference error would not show a second-order convergence behavior, as required by
its theory. For the cases up to N ≤ 1024, the observed memory usage in units of GB rounds to within less than 2 GB
of the predicted usage. This good agreement between predicted and observed memory usage in the last two columns
of the table indicates that the implementation of the code does not have any unexpected memory usage in the serial
case. The wall clock times and the memory usages for these serial runs indicate for which mesh resolutions this elliptic
test problem becomes challenging computationally. Notice that the very fine meshes show very significant runtimes
and memory usage; parallel computing clearly offers opportunities to decrease runtimes as well as to decrease memory
usage per process by spreading the problem over the parallel processes.

We note that the results in Table 3.1 agree with past results for this problem, see [2] and the references therein.
This ensures that the parallel performance studies in the next section are practically relevant, since a correct solution
of the test problem is computed.
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7 3-D Performance Studies on taki 2018

This section presents the strong scalability studies using MPI-only code on taki 2018 using the default Intel compiler
and Intel MPI. The Intel compiler icc and the Intel MPI implementation, currently version 18.0.3, are accessed on taki
through the wrapper mpiicc. Since the compiler and MPI implementation are the defaults, they are available after the
module load default-environment command in the .bashrc file in the user’s home directory that is automatically
executed upon login to taki. We use the compiler options -O3 -std=c99 -Wall -mkl.

HPCF uses the slurm workload manager (slurm.schedmd.com) for job scheduling. The slurm submission script
uses the mpirun command to start the job, with the option -print-rank-map that is supposed to print the MPI’s
rank mapping. The number of nodes are controlled by the --nodes option and the number of MPI processes per node
by the --ntasks-per-node option. For a performance study, each node that is used is dedicated to the job with the
remaining cores idling by using the --exclusive flag. Correspondingly, we request all memory of the node for the job
by --mem=MaxMemPerNode.

We conduct complete performance studies of the test problem for five progressively finer meshes of N = 128, 256,
512, 1024. These studies result in progressively larger systems of linear equations with system dimensions ranging
from about 2 million for N = 128 to over 1 billion for N = 1024.

Tables 7.1, 7.2, and 7.3 collect the results of the performance studies on the 2018 portion of the CPU cluster in
taki. For each mesh resolution of the five meshes with N = 128, 256, 512, 1024, the parallel implementation of the
test problem is run on all possible combinations of nodes from 1 to 32 by powers of 2 and processes per node from 1 to
32 by powers of 2. The table summarizes the observed wall clock time (total time to execute the code) in HH:MM:SS
(hours:minutes:seconds) format. The upper-left entry of each subtable contains the runtime for the 1-process run, i.e.,
the serial run, of the code for that particular mesh. The lower-right entry of each subtable lists the runtime using
32 cores on 32 nodes for a total of 1024 parallel processes working together to solve the problem. Notice that each
node has two 18-core CPUs for a total of 36 cores, so even with 32 processes per node, several cores are not used by
our job and remain available for the operating system and other system tasks. Since the algorithm block-distributes
the data by dividing the last dimension with N mesh points to the p processes (the product of the number of nodes
and the processes per node) is limited to be p ≤ N ; the notation “N/A” in the table indicates where this is violated.

3-D Performance Studies using Blocking MPI Commands

The blocking MPI commands used in this study study are MPI_Send and MPI_Recv. MPI_Recv will block the com-
munication until it receives messages from another process. The implementation has all even-numbered processes
(id%2 == 0) send first and then receive, and vice versa for all odd-numbered processes. This is to ensure that there
is no ”deadlock” and to improve efficiency.

We choose the mesh resolution with N = 1024 in Table 7.1 to discuss in detail as example. Reading along the first
column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately halve
the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well as from 4 to
8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there is still a significant
improvement in runtime, although not the halving we observed previously. Finally, while the decrease in runtime from
16 to 32 processes isn’t ideal, some of the runtimes even increase. We observe that the behavior is analogous also in
all other columns for this subtable. This behavior is a typical characteristic of memory-bound code such as this. The
limiting factor in performance of memory-bound code is memory access, so we would expect a bottleneck when more
processes on each CPU attempt to access the memory simultaneously than the available 6 memory channels per CPU.

Reading along each row of the N = 1024 mesh subtable, we observe that by doubling the number of nodes used, and
thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to 32 nodes.
This behavior observed for increasing the number of nodes confirms the quality of the high-performance InfiniBand
interconnect. Also, we can see that the timings for anti-diagonals in Table 7.1 are about equal, that is for instance,
the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node. Thus, it is
advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 7.1, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 16 to 20 for corresponding entries. The relative
performance in each of the subtables in Table 7.1 exhibits largely analogous behavior to the N = 1024 mesh, in
particular the N = 512 mesh subtable. For smaller meshes, some times for larger numbers of nodes are eventually so
fast that improvement is small with more processes per node, but behavior is analogous for the more significant times.
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Table 7.1: Wall clock time in HH:MM:SS using blocking MPI commands for the 3-D Poisson equation.

(a) Mesh resolution N ×N ×N = 128× 128× 128, system dimension 2097152
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:04 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
2 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 N/A
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 N/A N/A
32 processes per node 00:00:00 00:00:00 00:00:00 N/A N/A N/A

(b) Mesh resolution N ×N ×N = 256× 256× 256, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:11 00:00:36 00:00:17 00:00:08 00:00:04 00:00:02
2 processes per node 00:00:36 00:00:17 00:00:08 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:18 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:09 00:00:05 00:00:02 00:00:01 00:00:01 00:00:00
16 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01 N/A
32 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 N/A N/A

(c) Mesh resolution N ×N ×N = 512× 512× 512, system dimension 134217728
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:20:16 00:10:10 00:05:04 00:02:32 00:01:16 00:00:38
2 processes per node 00:10:13 00:05:05 00:02:36 00:01:17 00:00:39 00:00:19
4 processes per node 00:05:04 00:02:41 00:01:20 00:00:42 00:00:21 00:00:12
8 processes per node 00:02:41 00:01:22 00:00:44 00:00:22 00:00:13 00:00:08
16 processes per node 00:01:55 00:00:59 00:00:31 00:00:17 00:00:10 00:00:07
32 processes per node 00:01:38 00:00:51 00:00:29 00:00:18 00:00:11 N/A

(d) Mesh resolution N ×N ×N = 1024× 1024× 1024, system dimension 1073741824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 07:34:10 03:08:07 01:32:35 00:46:20 00:22:45 00:11:27
2 processes per node 03:26:18 01:31:03 00:45:57 00:23:29 00:11:44 00:05:54
4 processes per node 01:38:18 00:46:58 00:24:11 00:12:10 00:06:17 00:03:15
8 processes per node 00:48:56 00:23:34 00:11:54 00:06:23 00:03:20 00:01:52
16 processes per node 00:31:53 00:16:06 00:08:28 00:04:20 00:02:25 00:01:30
32 processes per node 00:29:59 00:14:06 00:07:13 00:03:59 00:02:25 00:01:33
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3-D Performance Studies using Non-Blocking MPI Commands

The technique of implementing non-blocking MPI commands is known as interleaving calculations and communications
and can be implemented using commands MPI_Isend and MPI_Irecv [7].

We choose the mesh resolution with N = 1024 in Table 7.2 to discuss in detail as example. Reading along the first
column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately halve
the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well as from 4 to
8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there is still a significant
improvement in runtime, although not the halving we observed previously. Finally, while the decrease in runtime from
16 to 32 processes isn’t ideal, some of the runtimes even increase. We observe that the behavior is analogous also in
all other columns for this subtable. This behavior is a typical characteristic of memory-bound code such as this. The
limiting factor in performance of memory-bound code is memory access, so we would expect a bottleneck when more
processes on each CPU attempt to access the memory simultaneously than the available 6 memory channels per CPU.

Reading along each row of the N = 1024 mesh subtable, we observe that by doubling the number of nodes used, and
thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to 32 nodes.
This behavior observed for increasing the number of nodes confirms the quality of the high-performance InfiniBand
interconnect. Also, we can see that the timings for anti-diagonals in Table 7.2 are about equal, that is for instance,
the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node. Thus, it is
advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 7.2, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 16 to 20 for corresponding entries. The relative
performance in each of the subtables in Table 7.2 exhibits largely analogous behavior to the N = 1024 mesh, in
particular the N = 512 mesh subtable. For smaller meshes, some times for larger numbers of nodes are eventually so
fast that improvement is small with more processes per node, but behavior is analogous for the more significant times.

When comparing absolute runtime in Table 7.1 and Table 7.2, we observed that there’s no significant difference
between implementing blocking MPI commands or non-blocking MPI commands for the 3-D Poisson equation. For
example, in the N = 1024 mesh subtables, some entries in Table 7.1 are slightly smaller and other entries in Table 7.2
are slightly smaller. The differences are also quite random and negligible.
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Table 7.2: Wall clock time in HH:MM:SS using non-blocking MPI commands for the 3-D Poisson equation.

(a) Mesh resolution N ×N ×N = 128× 128× 128, system dimension 2097152
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
2 processes per node 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 N/A
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 N/A N/A
32 processes per node 00:00:00 00:00:00 00:00:00 N/A N/A N/A

(b) Mesh resolution N ×N ×N = 256× 256× 256, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:11 00:00:35 00:00:17 00:00:08 00:00:04 00:00:01
2 processes per node 00:00:35 00:00:17 00:00:08 00:00:03 00:00:02 00:00:01
4 processes per node 00:00:18 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:09 00:00:05 00:00:02 00:00:01 00:00:01 00:00:00
16 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 00:00:00 N/A
32 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 N/A N/A

(c) Mesh resolution N ×N ×N = 512× 512× 512, system dimension 134217728
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:20:18 00:10:10 00:05:00 00:02:31 00:01:15 00:00:37
2 processes per node 00:09:57 00:05:00 00:02:32 00:01:16 00:00:38 00:00:18
4 processes per node 00:05:03 00:02:32 00:01:18 00:00:40 00:00:20 00:00:11
8 processes per node 00:02:42 00:01:22 00:00:42 00:00:21 00:00:11 00:00:07
16 processes per node 00:01:55 00:00:56 00:00:30 00:00:15 00:00:09 00:00:05
32 processes per node 00:01:43 00:00:50 00:00:27 00:00:16 00:00:09 N/A

(d) Mesh resolution N ×N ×N = 1024× 1024× 1024, system dimension 1073741824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 07:19:20 03:34:28 01:29:36 00:45:18 00:22:41 00:11:17
2 processes per node 03:07:46 01:30:13 00:45:25 00:22:23 00:11:29 00:05:54
4 processes per node 01:28:08 00:46:40 00:23:35 00:11:38 00:05:59 00:03:08
8 processes per node 00:48:04 00:23:46 00:11:53 00:06:00 00:03:07 00:01:40
16 processes per node 00:31:41 00:17:33 00:08:14 00:04:12 00:02:13 00:01:21
32 processes per node 00:33:17 00:13:37 00:07:10 00:03:46 00:02:12 00:01:17
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3-D Performance Studies using Non-Blocking Code Without Conditional Control Flow

Both previous studies use if-statements as the conditional control flow. This study is focused on the non-blocking code
without if-statements. The following snippets of pseudo-code explain the code with and without conditional control
flow inside the for-loops:

3-D non-blocking code WITH if-statements:

f o r ( j = 0 ; j < N; j ++){
f o r ( i = 0 ; i < N; i ++){

i f ( j > 0 ) code f o r j > 0
i f ( i > 0 ) code f o r i > 0
i f ( i < N−1) code f o r i < N−1
i f ( j < N−1) code f o r j < N−1

}
}

3-D non-blocking code WITHOUT if-statements:

code f o r j = 0

f o r ( j = 1 ; j < N−1; j ++){
code f o r 0 < j < N−1

}

code f o r j = N−1

Notice that each piece of code here also doesn’t have if-statements about i, which is similar to the 2-D version.

We choose the mesh resolution with N = 1024 in Table 7.3 to discuss in detail as example. Reading along the first
column of this mesh subtable, we observe that by doubling the number of processes from 1 to 2 we approximately halve
the runtime from each column to the next. We observe the same improvement from 2 to 4 processes as well as from 4 to
8 processes. We also observe that by doubling the number of processes from 8 to 16 processes, there is still a significant
improvement in runtime, although not the halving we observed previously. Finally, while the decrease in runtime from
16 to 32 processes isn’t ideal, some of the runtimes even increase. We observe that the behavior is analogous also in
all other columns for this subtable. This behavior is a typical characteristic of memory-bound code such as this. The
limiting factor in performance of memory-bound code is memory access, so we would expect a bottleneck when more
processes on each CPU attempt to access the memory simultaneously than the available 6 memory channels per CPU.

Reading along each row of the N = 1024 mesh subtable, we observe that by doubling the number of nodes used, and
thus also doubling the number of parallel processes, we approximately halve the runtime all the way up to 32 nodes.
This behavior observed for increasing the number of nodes confirms the quality of the high-performance InfiniBand
interconnect. Also, we can see that the timings for anti-diagonals in Table 7.3 are about equal, that is for instance,
the runtime for 2 nodes with 1 processes per node is almost same as for 1 node with 2 processes per node. Thus, it is
advisable to use the smallest number of nodes with the largest number of processes per node.

When comparing now all subtables in Table 7.3, we observe that when we double the size of the mesh from one
subtable to the next, the runtimes increase by a factor of about 16 to 20 for corresponding entries. The relative
performance in each of the subtables in Table 7.3 exhibits largely analogous behavior to the N = 1024 mesh, in
particular the N = 512 mesh subtable. For smaller meshes, some times for larger numbers of nodes are eventually so
fast that improvement is small with more processes per node, but behavior is analogous for the more significant times.

When comparing absolute runtime in Table 7.2 and Table 7.3, we observed that although most of the entries in
Table 7.3 are slightly smaller than those in Table 7.2, there’s no significant difference between the two cases. For
example, in N = 1024 subtables, some timings are still smaller in Table 7.2, like the entry with 32 processes per node
and 2 nodes. Therefore, eliminating conditional control flow won’t significantly improve the performance in this case.
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Table 7.3: Wall clock time in HH:MM:SS using non-blocking code without if-statements for the 3-D Poisson equation.

(a) Mesh resolution N ×N ×N = 128× 128× 128, system dimension 2097152
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:00:04 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
2 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 N/A
16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 N/A N/A
32 processes per node 00:00:00 00:00:00 00:00:00 N/A N/A N/A

(b) Mesh resolution N ×N ×N = 256× 256× 256, system dimension 16777216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:01:11 00:00:35 00:00:17 00:00:08 00:00:03 00:00:01
2 processes per node 00:00:37 00:00:17 00:00:08 00:00:04 00:00:01 00:00:01
4 processes per node 00:00:18 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:09 00:00:05 00:00:02 00:00:01 00:00:01 00:00:00
16 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 00:00:00 N/A
32 processes per node 00:00:06 00:00:03 00:00:02 00:00:01 N/A N/A

(c) Mesh resolution N ×N ×N = 512× 512× 512, system dimension 134217728
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:20:12 00:10:31 00:05:13 00:02:30 00:01:14 00:00:36
2 processes per node 00:10:01 00:05:00 00:02:34 00:01:18 00:00:38 00:00:18
4 processes per node 00:05:06 00:02:34 00:01:18 00:00:41 00:00:20 00:00:10
8 processes per node 00:02:41 00:01:22 00:00:42 00:00:22 00:00:11 00:00:07
16 processes per node 00:01:52 00:00:58 00:00:30 00:00:16 00:00:09 00:00:05
32 processes per node 00:01:37 00:00:51 00:00:28 00:00:15 00:00:09 N/A

(d) Mesh resolution N ×N ×N = 1024× 1024× 1024, system dimension 1073741824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 07:10:07 03:23:24 01:31:37 00:45:23 00:22:29 00:11:07
2 processes per node 03:21:59 01:30:11 00:46:20 00:23:18 00:11:41 00:05:44
4 processes per node 01:39:44 00:46:14 00:23:44 00:12:05 00:06:00 00:03:06
8 processes per node 00:47:46 00:23:44 00:12:10 00:06:06 00:03:11 00:01:45
16 processes per node 00:31:33 00:16:08 00:08:14 00:04:17 00:02:14 00:01:21
32 processes per node 00:28:55 00:13:40 00:07:06 00:03:53 00:02:11 00:01:17
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