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A B S T R A C T

In this paper, we numerically optimize broadband pulse shapes that maximize Hahn echo amplitudes. Pulses
are parameterized as neural networks (NN), nonlinear amplitude limited Fourier series (FS), and discrete time
series (DT). These are compared to an optimized choice of the conventional hyperbolic secant (HS) pulse shape.
A power constraint is included, as are realistic shape distortions due to power amplifier nonlinearity and the
transfer function of the microwave resonator. We find that the NN, FS, and DT parameterizations perform
equivalently, offer improvements over the best HS pulses, and contain a large number of equivalent optimal
maxima, implying the flexibility to include further constraints or optimization goals in future designs.
1. Introduction

The use of shaped pulses in electron paramagnetic resonance (EPR)
spectroscopy is a topic of recent interest [1–6]. They address the
basic challenge that the excitation bandwidth of monochromatic square
pulses is much smaller than the spectral line width of samples. This
situation can arise in nuclear magnetic resonance (NMR), but it is more
broadly relevant in EPR. Typical EPR spectral widths are about 250
MHz for a nitroxide at Q-band (≈ 1.2 T) or ≈ 2 GHz for a Cu(II) complex
at X-band (≈ 0.35 T). Using shaped pulses can increase sensitivity and
excitation bandwidth.

Broadband pulses have been initially designed for NMR, including
the Kunz–Böhlen–Bodenhausen (KBB) approach to generate a Hahn
echo [7–9]. This sequence consists of a frequency-swept (chirped) 𝜋∕2
pulse of length 𝑡p, followed by a chirped 𝜋 pulse of length 𝑡p∕2. The
intention of this sequence is to refocus all the spins within a broad
excitation window. The Fourier transform of this echo gives the spectral
distribution of the excited spin ensemble. The more complete the refo-
cusing, the larger the signal and more accurate the reconstruction of
the spectrum. The original KBB scheme used pulses with constant am-
plitudes and a linear frequency sweep over the designated bandwidth.
Performance can be further improved by shaping the pulses to have an
adiabatic hyperbolic secant (HS) amplitude with the frequency swept
according to a hyperbolic tangent [10–13]. In the last decade, pulse
shaping has become possible in EPR as arbitrary waveform generators
(AWGs) became fast enough to generate shaped pulses that cover
bandwidths larger than those obtainable by hard square pulses. For
this, microwave pulse amplitude and phase are modulated with sub-ns
timing resolution. Currently, AWGs with sampling rates of 1.25 GS/s
or faster are in use.
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However, HS pulses are not optimal. In practice, limited available
power limits the maximum achievable pulse amplitude which in turn
limits the frequency sweep rate and therefore puts a lower bound on
the pulse time. Not only that, relaxation can put an upper limit on pulse
duration. Also, in some sequences, pulse lengths must be shorter than
the evolution periods of the interactions of interest, for instance dipolar
couplings in dipolar EPR. [13]. Thus, along with the constraint of
limited power, constraining the pulse time can cause the performance
of pulses to suffer.

In response, optimal control methods such as composite pulses [14,
15], adiabatic pulses [16,17], optimal control theory (OCT) pulses
using different numerical algorithms [18–22], including gradient ascent
pulse engineering (GRAPE) [23–28], were developed to accomplish
broadband excitation and uniform inversion across a given bandwidth.
In practice, optimal shaped pulses are distorted by nonlinearities in the
power amplifier and by the resonator transfer function, moving them
away from the extremum in the optimization landscape. One can try to
compensate for these distortions post-optimization, but the necessary
compensation may not be possible while respecting constraints such as
limited power at fixed pulse time.

In this paper, we use an optimization method that includes a model
of the full experimental transfer chain and resulting shape distortions
while limiting both the available power along with the length of
pulses. We investigate the use of variously parameterized broadband
pulses for a Hahn echo sequence and the effect of varying the pulse
length ratio on echo amplitude, refocusing time, and refocusing phase.
Due to the freedom of the large parameter space and low number of
constraints, we find the individual pulses (𝜋∕2 and 𝜋) act cooperatively
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Fig. 1. A schematic overview of the experimental transmitter setup (top), its computational representation (middle) and exemplary signals (bottom). The input I/Q shapes are
modeled and sent through a low-pass filter, amplifier compression function, and a resonator transfer function before they are used in the spin quantum dynamics calculation of
the echo.
as done previously with NMR COOP pulses [29–32]. This shows that
cooperatively performing pulses are still optimal under transmission
distortions and in the presence of a power constraint while in limited
pulse length time. Performances of individual pulses as well as of
the entire pulse sequence are compared. Section 2 summarizes the
transmitter model and the spin physics model, Section 3 describes
the pulse parameterizations used, Section 4 provides details about the
optimization method, and Section 5 discusses the results.

2. Model

In order to model distortions that affect the pulse shapes, we closely
follow the transmitter design of a typical EPR spectrometer. This is
illustrated in Fig. 1. First, AWG-generated in-phase and quadrature
drive functions 𝐼(𝑡) and 𝑄(𝑡) with amplitudes in the range [−1, 1] are
set up using different parameterizations described in detail in the
next section. We model the limited output bandwidth of the AWG by
applying a low-pass filter with transfer function

𝐻lp(𝜔) = 1

1 + (

𝜔∕𝛤
)2

. (1)

to 𝐼 and 𝑄 via convolution, yielding

𝐼lp(𝑡) = 𝑉DAC−1 [𝐻lp(𝜔) ⋅  [𝐼(𝑡)]
]

(2)

where  represents the Fourier transform, and 𝑉DAC represents the
conversion factor from the digital-to-analog converter (DAC). 𝛤 rep-
resents the 3-dB bandwidth of the filter. The 𝑄 channel pulse shape
is similarly distorted into 𝑄lp(𝑡). The conversion factor between the
dimensionless input and the voltage output is combined with other
overall multiplicative factors at the end of the transmission chain
model.

The IQ upconversion of the low-pass filtered 𝐼lp(𝑡) and 𝑄lp(𝑡) to the
carrier frequency 𝜔c yields

𝑉 (𝑡) = 𝐼lp(𝑡) cos(𝜔c𝑡) ±𝑄lp(𝑡) sin(𝜔c𝑡) (3)

where the sign depends on whether the carrier reference for the Q
channel mixer is phase shifted +90 or −90 degree relative to the carrier
for the I channel mixer.

The upconverted signal can be rewritten in terms of an amplitude-
and phase-modulated oscillation at the carrier frequency:

𝑉 (𝑡) = 𝑉0(𝑡) cos(𝜔c𝑡 + 𝜑(𝑡)) (4)

with the time-varying amplitude

𝑉0(𝑡) =
√

𝐼2lp(𝑡) +𝑄2
lp(𝑡) (5)

and phase
𝜑(𝑡) = at an2(𝑄lp, 𝐼lp), (6)

2 
where at an2 is the two-argument arctangent. The amplifier amplifies
and additionally distorts this signal, leading to the appearance of higher
harmonics in the amplifier output, 𝑉amp(𝑡). Assuming that the amplifier
is memory-less, the higher harmonics are rejected by the narrow-band
transmission lines, and assuming separation of timescales, i.e. 𝑉0(𝑡)
and 𝜑(𝑡) vary much more slowly than the carrier signal cos(𝜔c𝑡), the
amplified signal is represented by

𝑉amp(𝑡) = 𝐺
(

𝑉0(𝑡)
)

𝑉0(𝑡) cos(𝜔c𝑡 + 𝜑(𝑡)) (7)

where 𝐺 is the gain function, or in terms of 𝐼lp and 𝑄lp

𝑉amp(𝑡) = 𝐼amp(𝑡) cos(𝜔c𝑡) +𝑄amp(𝑡) sin(𝜔c𝑡) (8)

with

𝐼amp(𝑡) = 𝐺(𝑉0(𝑡))𝐼lp(𝑡) (9)

and a similar expression for 𝑄amp(𝑡).
These equations only model amplitude-to-amplitude modulation

(AM/AM) effects of the amplifier and neglect possible amplitude-to-
phase modulation (AM/PM) effects. AM/PM effects would alter the
term 𝜑(𝑡) in Eq. (7) by mixing the I and Q signals.

In order to carry out numerical optimizations we have to specify a
gain function, and we will use

𝐺(𝑉0(𝑡)) = 𝑔
t anh (𝑉0(𝑡)∕𝑉sat )

𝑉0(𝑡)∕𝑉sat
, (10)

where 𝑔 is the small-signal gain factor and 𝑉sat the input saturation
amplitude. 𝑉sat parameterizes the nonlinearity: for 𝑉0(𝑡) ≪ 𝑉sat the
amplifier is in the linear regime, while for 𝑉0(𝑡) ≫ 𝑉sat the amplifier
is saturated. We assume 𝑉sat is constant over the amplifier bandwidth
and that the amplifier bandwidth is wider than the signal bandwidth. In
principle, we could use different nonlinear models such as Rapp, Saleh,
or polynomial models [33], or a tabulated function.

Next, the amplified pulse is transmitted to the resonator. The res-
onator transfer function is well described by

𝐻r es(𝜔) = 1
1 + i𝑄L(

𝜔
𝜔r es −

𝜔r es
𝜔 )

, (11)

where 𝑄L is the loaded Q-value and 𝜔r es is the resonator frequency. This
produces the following pulse shape at the sample inside the resonator,

𝐵1(𝑡) = 𝐶 Re
(

−1 [𝐻r es(𝜔) ⋅ 
[

𝑉phasor (𝑡)
]])

, (12)

where

𝑉phasor (𝑡) =
(

𝐼amp(𝑡) + i𝑄amp(𝑡)
)

e−i𝜔c𝑡 (13)

𝐶 is the resonator conversion factor. In the sample, spins with gyro-
magnetic ratio 𝛾 experience the drive function
𝛾 𝐵1(𝑡) = 𝜔1(𝑡) cos𝜙(𝑡) (14)
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with the drive amplitude 𝜔1 and the phase 𝜙. With this transmitter
chain, the maximum drive amplitude that can be achieved with |𝐼| =
|𝑄| = 1 and 𝜔 = 𝜔r es is 𝜔1,max = 𝛾 𝑔 𝐶 𝑉sat t anh(

√

2𝑉DAC∕𝑉sat ).
Note that there is a subtle difference between imposing separate

constraints on 𝐼 and 𝑄 as we do here versus simply imposing an overall
amplitude constraint. Constraining 𝐼 and 𝑄 independently restricts the
accessible domain in the I/Q plane to a square rather than a circle.
Maximum power is only attained at the four corners of the square when
|𝐼| = |𝑄| = 1, i.e., phases of ±45◦,±135◦. Changing the phase of a
maximum-power pulse will generally result in a power loss. However,
phase cycling can still be carried out in ±90◦ increments since this
domain is symmetric under ±90◦ rotations.

The laboratory frame Hamiltonian for a given spin packet with
Larmor frequency 𝜔r es is

𝐻lab(𝜔r es, 𝑡) = 𝜔r es𝑆𝑧 + 𝜔1(𝑡) cos (𝜙(𝑡))𝑆𝑥, (15)

where 𝑆𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are spin operators. For EPR experiments, 𝜔r es∕2𝜋
is typically on the order of 10–100 GHz while 𝜔1∕2𝜋 is on the order of
tens of MHz, so the rotating-wave approximation is valid when moving
to a frame rotating at the carrier frequency, 𝜔c. The rotating-frame
Hamiltonian for a spin packet off-resonant with the carrier frequency
by 𝛥𝜔 = 𝜔r es − 𝜔c is

𝐻r ot (𝛥𝜔, 𝑡) = 𝛥𝜔𝑆𝑧 + 𝜔1𝑥(𝑡)𝑆𝑥 + 𝜔1𝑦(𝑡)𝑆𝑦, (16)

where

𝜔1x = 𝜔1(𝑡) cos (𝜙(𝑡) − 𝜔c𝑡), (17)

𝜔1y = 𝜔1(𝑡) sin (𝜙(𝑡) − 𝜔c𝑡). (18)

In experiments, the signal passes back through the resonator and, af-
ter downconversion, a bandwidth-limited video amplifier. The resulting
receiver-side distortions affects all echo signals equally and the optimal
echo shape, obtained when all spin packets align on the same axis along
the 𝑥𝑦-plane, does not change. Incorporating receiver distortions does
not affect the pulse optimization, as the optimal echo shape is formed
when all spins are aligned, regardless of receiver distortions, and so we
do not include it in the model.

We now consider an ensemble of spin packets, each governed by a
Hamiltonian with its own 𝜔r es, ranging over a spectral distribution of
width 𝛿. We choose to place 𝜔c in the center of this distribution, so that
𝛥𝜔 ranges from −𝛿∕2 to +𝛿∕2. To obtain the effect of a given pulse we
must solve an ensemble of Schrödinger equations for the propagators
𝑈 ,

i�̇� (𝛥𝜔, 𝑡) = 𝐻r ot (𝛥𝜔, 𝑡)𝑈 (𝛥𝜔, 𝑡), (19)

corresponding to the different resonant frequencies across the relevant
spectral width.

With our mapping between the I/Q inputs and the driving functions
in the spin Hamiltonian, 𝜔1𝑥 and 𝜔1𝑦, we can solve Eq. (19) for both the
𝜋∕2 and 𝜋 pulses for a representative ensemble of Larmor frequencies
within the desired band. Using the initial condition of 𝑈 (𝑡 = 0) = 1,
where 1 is the identity matrix, we can solve the ensemble of differen-
tial equations, giving us a corresponding evolution operator for each
Larmor frequency. The evolution operators for the 𝜋∕2 and 𝜋 pulse
are denoted as 𝑈 𝑖

𝜋∕2 and 𝑈 𝑖
𝜋 , where 𝑖 indexes the Larmor frequencies.

We combine these propagators with the free evolution periods in the
rotating frame to obtain the total propagators

𝑈 𝑖
t ot (𝑡) = 𝑈 𝑖

f r ee(𝑡)𝑈 𝑖
𝜋𝑈

𝑖
f r ee(𝜏1)𝑈 𝑖

𝜋∕2 (20)

where 𝑡 = 0 now denotes the end of the 𝜋 pulse and the beginning of
the second free evolution period. The signal due to a particular spin
packet is
𝑀⟂,𝑖(𝑡) = 2 t r

(

𝑈 𝑖
t ot (𝑡)𝜌0𝑈 𝑖†

t ot (𝑡)𝑆+

)

, (21)

where 𝜌 is the initial density matrix for each spin, 𝜌 = 1∕2 − 𝑆 .
0 0 𝑧

3 
Fig. 2. Four different parameterizations of a pulse shape (blue: in-phase, red: out of
phase).

The total magnetization signal from all spins is given by averaging
over all spin packets,

𝑀⟂(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
𝑀⟂,𝑖(𝑡), (22)

where in our optimization the Larmor frequencies were sampled from
a uniform distribution. Our goal is to determine optimal shapes of
𝐼(𝑡) and 𝑄(𝑡) that maximize the total magnetization signal, 𝑀⟂(𝑡). As
a check on the spin physics, all of the pulses generated were also
tested and confirmed using the matlab package Easyspin, an open-
source software that allows for the simulation and analysis of EPR
spectra [34,35]. The optimized pulse shapes and code are publicly
available [36].

3. Parameterizations

We start by considering the original KBB broadband pulse sequence
using generalized HS shapes for the 𝜋∕2 and 𝜋 pulses. KBB is not the
only broadband refocusing sequence we could use. For instance, the
CHORUS sequence [37,38] uses linear swept pulses with effectively
rectangular amplitude profiles that have more integrated power than
hyperbolic secant pulses for a fixed 𝐵1 amplitude and sequence time,
and features improved robustness to 𝐵1 field inhomogeneity [21,39].
However, we consider a strongly power-constrained regime with lim-
ited amplitude and pulse lengths where 𝐵1 field inhomogeneity is a
secondary concern. In this regime, HS pulses are preferable because
they require less power off resonance, where it is costly to compensate
for the profile of the resonator transfer function. Therefore, in this work
we will use the KBB sequence with HS pulses as a baseline against
which to compare other shaped pulses (see Fig. 2). Then, while retain-
ing the general bipartite structure of a 𝜋∕2 pulse followed by a 𝜋 pulse,
to introduce more shape flexibility, we consider three models with
significantly more parameters: a nonlinear amplitude-limited Fourier
series (FS), a discrete-time series (DT), and a neural network (NN). We
do not constrain the pulse flip angles to be 𝜋∕2 and 𝜋, but we will still
refer to them by those labels in continuity with the KBB design and in
anticipation that the optimization process will indeed drive them to be
such.

3.1. Generalized HS pulses

For representing generalized HS pulses, we use excitation functions
of the form [4,40]

𝜔 (𝑡) = 𝐴 sech
(

2𝑛−1𝛽 𝑡∕𝑇 𝑛) (23)
1 | |
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�̇�HS(𝑡) = 𝛥𝜔BW

⎛

⎜

⎜

⎝

∫ 𝑡
−𝑇 ∕2 sech

2(2𝑛−1𝛽 |𝜏∕𝑇 |𝑛
)

d𝜏

∫ 𝑇 ∕2
−𝑇 ∕2 sech

2 (2𝑛−1𝛽 |𝜏∕𝑇 |𝑛
)

d𝜏
− 1

2

⎞

⎟

⎟

⎠

, (24)

where −𝑇 ∕2 ≤ 𝑡 ≤ 𝑇 ∕2, and 𝜔1(𝑡) and �̇�HS(𝑡) are the amplitude
and instantaneous driving frequency at time 𝑡 in the rotating frame.
Although 𝑛 is usually considered to be a positive integer (𝑛 = 1 in the
original KBB scheme), we extend the definition to include non-integer
𝑛 by using the absolute value of the time. Similarly, while 𝛥𝜔BW is
typically set to the desired excitation bandwidth, we allow this to be a
free parameter as well.

These functions are converted to 𝜔1𝑥 and 𝜔1𝑦 used in Eq. (16) by
using

𝜔1𝑥 = 𝜔1(𝑡) cos(𝜙HS(𝑡)), (25)

𝜔1𝑦 = 𝜔1(𝑡) sin(𝜙HS(𝑡)), (26)

with the phase 𝜙HS(𝑡) given by

𝜙HS(𝑡) = ∫

𝑡

−𝑇 ∕2
�̇�(𝜏)𝑑 𝜏 . (27)

The 𝜋∕2 and 𝜋 pulses of this form are chosen such that, following KBB,
the two pulse durations have the ratio 𝑇𝜋∕2∕𝑇𝜋 = 2. The values of
𝛽 , 𝑛, and 𝛥𝜔BW, along with 𝜔1𝑥 and 𝜔1𝑦 for each of the two pulses are
free parameters, and we optimize them for refocusing spins across a
bandwidth of 𝛿. We do not require the two pulses to produce 𝜋∕2 and
𝜋 rotations for any spin packet, but only restrict 𝐴 ≤ 𝜔1,max.

To benefit from the intuitive behavior of HS pulses, we have to
directly parameterize the pulse at the output of the transmitter chain
of Fig. 1, then invert the transfer functions in order to obtain the
I/Q inputs that should be programmed into the AWG. In contrast, the
other parameterizations considered below are for the input I/Q pulse
shapes themselves and do not require pre-compensation. Also note that
the HS pulses satisfy 𝐼(𝑡)2 + 𝑄(𝑡)2 ≤ 1, lying within the inscribing
circle of the square domain (|𝐼(𝑡)| ≤ 1, |𝑄(𝑡)| ≤ 1) available to the
other parameterizations on the I/Q plane, so the HS parameterization
is clearly at a disadvantage to begin with because it cannot access
as much power as a parameterization that allows, for example, 𝐼 =
𝑄 = 1. However, in order to focus on the less obvious differences
between parameterizations, we have allowed the HS pulses to access
the circumscribing circle, 𝐼(𝑡)2 +𝑄(𝑡)2 ≤ 2.

3.2. Nonlinear amplitude-limited Fourier series

The second pulse shape model we consider consists of a nonlinear
amplitude-limited Fourier series (FS) for the two drive functions

𝐼(𝑡) = t anh
[ 𝑁
∑

𝑛=1
𝑎I,𝑛 cos

(

𝜋 𝑛 𝑡
𝑇

)

]

(28)

𝑄(𝑡) = t anh
[ 𝑁
∑

𝑛=1
𝑎Q,𝑛 cos

(

𝜋 𝑛 𝑡
𝑇

)

]

(29)

for each pulse. Here again −𝑇 ∕2 ≤ 𝑡 ≤ 𝑇 ∕2, and 𝑎I,𝑛 and 𝑎Q,𝑛 are
real-valued coefficients.

The enclosing t anh function limits 𝐼 and 𝑄 to values between −1 and
1 by construction. The reasoning behind imposing the amplitude limit
using t anh, as opposed to scaling the coefficients, is that the maximum
of the Fourier series signal can only be determined using a numerical
search, which renders the cost function itself non-differentiable. Due to
the nonlinearity of t anh, the bandwidths of 𝐼 and 𝑄 are not straight-
forwardly related to the frequencies included in the cosine series,
and the modeled shapes are nonlinear and compressed compared to a
standard cosine series. We choose 𝑁 large enough to cover the desired
bandwidth, 𝜋 𝑁∕𝑇 ≈ 𝛿. Including higher-order terms in the series does
not improve performance, as those terms are severely attenuated by
the resonator in the relevant case where 𝛿 is comparable to resonator
bandwidth 𝜔r es∕𝑄L. We perform an unconstrained optimization over
(𝒂 ,𝒂 ) for each pulse.
I Q

4 
Fig. 3. A representation of the neural network utilized where the input layer is a single
node consisting of the time 𝑡′, 3 hidden layers of 16 nodes each, and the output layer
of the 4 drive signal amplitudes at time 𝑡′.

3.3. Discrete-time series

The third pulse shape model we consider consists of discrete-time
series (DT) for 𝐼 and 𝑄 for each pulse

𝑰 = t anh(𝒂I), 𝑸 = t anh(𝒂Q), (30)

where 𝑰 and 𝑸 are vectors with elements 𝐼𝑖 = 𝐼(𝑖𝛥𝑡) and 𝑄𝑖 = 𝑄(𝑖𝛥𝑡)
for 𝑖 = −𝑁 to 𝑁 . The time increment 𝛥𝑡 is chosen to be on the order of
sub-ns, in accordance with the sampling rates of modern AWGs [41,42].
Just as before, we use an element-wise tanh as an enclosing function
to constrain the values to between −1 and 1. The 𝜋∕2 and 𝜋 pulses are
parameterized by separate (𝒂I,𝒂Q).

3.4. Neural network

Finally, we follow [43] in creating a deep neural network (NN)
model to represent the pulse shapes. The model, represented in Fig. 3,
is
⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐼𝜋∕2(𝑡′𝑇𝜋∕2)

𝑄𝜋∕2(𝑡′𝑇𝜋∕2)

𝐼𝜋 (𝑡′𝑇𝜋 )

𝑄𝜋 (𝑡′𝑇𝜋 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 4◦3◦2◦1(𝑡′), (31)

where each layer 𝑖 takes a 𝑑𝑖-dimensional input vector and maps it to
a 𝑑𝑖+1-dimensional output vector according to the function

𝑖(𝒙) = t anh(𝑖𝒙 + 𝒃𝑖) (32)

with a 𝑑𝑖+1 × 𝑑𝑖 weight matrix 𝑖, a 𝑑𝑖-dimensional bias vector 𝒃𝑖, and
tanh as an element-wise activation function that ensures the outputs
are confined to between −1 and 1. The first layer contains only a single
node (i.e., 𝑑1 = 1) and the input to it is the dimensionless time value
𝑡′ ∈

[

−1∕2, 1∕2
]

. Layers 2, 3, and 4 have 16 nodes, and the final
layer contains four nodes that output the values for the four functions
𝐼𝜋∕2(𝑡′𝑇𝜋∕2), 𝑄𝜋∕2(𝑡′𝑇𝜋∕2), 𝐼𝜋 (𝑡′𝑇𝜋 ), and 𝑄𝜋 (𝑡′𝑇𝜋 ). We optimize the model
parameters 𝒃𝑖 and 𝑖, 644 in total. In this NN model, all four pulse
shapes are controlled by the same set of parameters, which enables the
model to represent possible correlations between the two pulses.

4. Optimization

In order to efficiently represent the distortion chain in our cost
function, we utilize fast Fourier transforms (FFT), sampling the con-
tinuous shapes of the HS, FS and NN models with the same time step,
𝛥𝑡, as in the DT model. To obtain the total echo amplitude, we use a
numerical solver to solve the ensemble of Schrödinger equations (19)
for 250 frequencies spaced equidistantly across the desired band for a
large enough time range to encompass any refocusing point.
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For each model, we optimize over the full vector of parameters 𝒑 to
maximize the echo amplitude irrespective of echo phase. The objective
function is
 (𝒑) = max

𝑡
|𝑀⟂(𝑡)|. (33)

In a KBB pulse sequence, the echo occurs at time 𝑡 = 𝑇𝜋 + 𝜏1 after the
end of the 𝜋 pulse. However, for the other pulse shape models, the echo
can occur at earlier or later times.

The objective function used for the optimization of the hyperbolic
secant functions is slightly different. As mentioned earlier, because the
HS pulse shapes are the output I/Q pulse shapes, we need to ensure that
the corresponding input I/Q pulse shapes respect the power constraint.
For instance, if the HS pulse had an amplitude of 𝜔1,max while the
instantaneous driving frequency is off-resonant with the resonator, the
input pulse required to compensate for the resonator transfer function
would exceed 𝜔1,max. Thus, we include an extra term in the objective
function to penalize the pulse for exceeding the power limit at any of
the sampling points,

 (𝒑)HS =  (𝒑) −
𝑇 ∕𝛥𝑡
∑

𝑖=0
max

(

0, 𝜔𝑖
in − 𝜔1,max

)

, (34)

where 𝜔𝑖
in is the amplitude at time 𝑖𝛥𝑡 − 𝑇 ∕2 of the pulse when

compensating for the resonator transfer function,

𝜔in(𝑡) = −1 [
[

𝜔1(𝑡)
]

∕𝐻r es(𝜔)
]

, (35)

with 𝜔1(𝑡) as given in Eq. (23). We leave out the factor of 𝛥𝑡 in the
second term in Eq. (34) in order to more heavily weight this term
in the cost function to enforce the amplitude constraint. In practice,
the optimization of  (𝒑)HS leads to the second term being zero and
the optimal value of the objective function is the same as the echo
amplitude.

For the FS parameterization, we use 24 terms per pulse shape, total-
ing 96 free parameters for the sequence. For the DT parameterization,
we use a time step of 𝛥𝑡 = 0.625 ns, resulting in 384 parameters for 𝑇𝜋∕2+
𝑇𝜋 = 120 ns. The NN parameterization uses 644 free parameters, as
described in Section 3.4. We used the Julia package DiffEqFlux.jl [44]
to form the NN parameterization and the BFGS optimizer from the
Zygote.jl and Optim.jl packages for optimizing the various pulse shape
parameterizations [45]. The limiting factor in computational cost is
the numerical solution of Schrödinger’s equation for each of the 250
Larmor frequencies for both pulses at each optimization step. We solved
these in parallel on cluster computing resources with the Bogacki–
Shampine method (BS5) as implemented in the DifferentialEquations.jl
package. All optimizations were terminated upon the condition that
the difference between the current objective function value and the
objective function value 20 steps previous was less than 10−4. All three
large parameterizations took around 500–1000 optimization steps to
converge, whereas the 5-parameter hyperbolic secant model only took
tens of steps. On average, these optimizations took around 2–3 hours to
complete running with 36 cores in parallel. However, this substantial
optimization time is not a problem, as it is a one-time computational
cost for a given spectrometer setup. As long as the distortion chain has
been properly characterized, the computed pulses should work without
(or with minimal) spectrometer-based feedback optimization [46]. The
robustness of these pulses to mischaracterization of the distortion chain
elements and 𝐵1 field inhomogeneity is discussed in Section 5.

5. Results

We performed the optimizations using the parameter values shown
in Table 1, representative of a Q-band EPR spectrometer with a nitrox-
ide sample. The carrier frequency of 33.65 GHz corresponds to a static
magnetic field strength of about 1.2 T. The value of 𝛤 corresponds
to a 3-dB bandwidth of 450 MHz for the AWG. The loaded Q-value
corresponds to a resonator 3-dB bandwidth of 168 MHz. The maximum
power limit of 𝜔 = 84 MHz corresponds to an oscillatory magnetic
1,max

5 
Fig. 4. The optimized pulse shapes as seen by the spins after passing through the chain
of transfer functions shown in Fig. 1, along with the formed echoes, the real part of
the magnetization after rephasing the echo such that the maximum is completely real.
The optimized HS 𝜋∕2 and 𝜋 pulse lengths are 80 and 40 ns long respectively while
the FS, DT, and NN have 𝜋∕2 and 𝜋 pulse lengths of 60 ns each. The phase, 𝜙, of each
echo is also reported.

field strength of about 3 mT. The choice of a 120 ns total pulse time was
made in order to examine a case where the power constraint starts to
deteriorate the performance of the hyperbolic secant pulse. The delay
time, 𝜏1, was chosen to be 100 ns. While this value may affect the path
the optimizer takes through the optimization landscape, pulse shapes
optimized with one value of 𝜏1 produce the same echo amplitude for a
different value of 𝜏1. The nonlinear phase dispersion of the 𝜋∕2 pulse
will still be cancelled by that of the 𝜋 pulse, and changing the delay
time between them only changes the linear part of the phase dispersion,
thus changing the echo time and phase but not the echo amplitude.

The optimization and the resulting analysis does not consider any
spins to be coupled. Chirped pulses in particular have been shown to
create unwanted artifacts compared to rectangular pulses in situations
with coupled electron and nuclear spins [47,48]. A separate analysis
can be performed to determine the effect that these optimized pulse
shapes have on multi-dimensional spectra.

For each of the parameterizations, we also considered three dif-
ferent ratios 𝑇𝜋∕2∕𝑇𝜋 , 2:1, 1:1, and 1:2, keeping the total pulse time
fixed at 120 ns. The KBB sequence requires a 2:1 ratio, i.e. 80 and
40 ns for the 𝜋∕2 and 𝜋 pulses, respectively. However, a 40 ns 𝜋 pulse
requires more power to adiabatically flip spins than the available limit,
so many of the spins are under-rotated and the performance begins to
suffer. Decreasing the time of the 𝜋∕2 pulse while increasing the time
of the 𝜋 pulse will alleviate this issue, but it will also cause the phase
refocusing aspect of the KBB pulse sequence to suffer [3,49]. Here, we
have optimized the HS pulses for 1:1 and 1:2 pulse length ratios to
demonstrate this tradeoff inherent to the KBB design.
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Fig. 5. Results of 20 optimizations each for the three large parameterizations of Fourier
series (FS), discrete time (DT), and neural network (NN) with 80∕40 ns, 60∕60 ns,
and 40∕80 ns pulse lengths from random starting points. The top panel shows the
echo amplitudes for the different pulse types, where the dashed lines are the echo
amplitudes of the best performing hyperbolic secant (HS) pulses for each respective
pulse length ratio. The 3 circled points represent the 3 best performing pulse shapes
for each parameterization that are plotted in Fig. 4. The error bars and dotted lines
show the effect of altering the amplifier compression function as described in the text.
The bottom three panels show the relative echo amplitude reduction for the case where
𝐵1 field is reduced to 80% of its original value, the time between the end of the 𝜋
pulse and the echo maximum, and the phase with which the spins are refocusing, all
versus the echo amplitudes.

The best HS result overall was for a 2:1 pulse length ratio, with
𝐴𝜋∕2∕2𝜋 = 23.42 MHz and 𝐴𝜋∕2𝜋 = 61.66 MHz for the amplitudes
of the 𝜋∕2 and 𝜋 pulses, 𝛽 = 7.09, 𝑛 = 1.57, and 𝛥𝜔BW∕2𝜋 = 138.51
MHz, which produces an echo amplitude of 0.9070 (see Fig. 4 top). To
quantify the effect of artificially allowing the HS to exceed the power
limit as discussed in Section 4, we also optimized strictly within the
inscribing circle of the allowed domain in the I/Q plane, 𝐼(𝑡)2+𝑄(𝑡)2 ≤
6 
1. This more restricted optimization resulted in an echo amplitude of
0.8621 for our example parameters. Of course, the total extra power
gained from accessing the corners of the square domain diminishes
as the value 𝑉sat decreases, since the amplifier saturates more readily.
Having quantified this effect, below we set it aside and focus on
the performance of other parameterizations compared to the HS with
equivalent maximum power whose echo amplitude is 0.9070. As an
alternative point of comparison, the time length required for an HS
pulse sequence to perform as well as the other optimized pulse shapes
is 180 ns, 50% longer than the other pulses.

For those other pulse parameterizations, all three pulse length ratios
do allow for both full rotation across the bandwidth and refocusing,
with a 1:1 pulse length ratio performing the best. The maximized
echo amplitudes are, in increasing order, 0.9852 for the FS, 0.9928
for the DT, and 0.9951 for the NN. These pulses plotted in Fig. 4
are the drive functions seen by the spins, i.e. after passing through
the low-pass filter, the amplifier, and the resonator transfer function
(thus the pulses are several ns longer than the nominal 60 ns due to
the finite ring-down time). The pulses show irregular shapes; there are
no apparent interpretable features. Clearly, the FS, DT, and NN pulses
offer performance gains compared to the HS for this scenario of short
pulse time and limited power. Among these three parameterizations,
though, there is not one that stands out as particularly advantageous.
As mentioned in Section 3, the reasoning behind using the NN was
to efficiently represent possible correlations between the two pulses.
However, both the FS and DT show equivalent cooperativity in com-
pensating for phase accumulation between the 𝜋∕2 and 𝜋 shapes, and
the NN parameterization offered no extra advantage in that regard. The
pulse shapes before passing through the distortion chain are plotted in
Fig. S1 of the Supplementary Material [50].

All three parameterizations are equivalently efficient computation-
ally, taking around the same number of optimization steps. The reason
for the wide range of performance with many equivalent maxima is that
the landscape contains many local maxima. Any large parameterization
flexible enough to access a large area of that landscape in an unbiased
way will lead to many maxima of varying quality. The outcome of
a particular optimization depends on the initial point, so it is clearly
useful to try many random initial seeds as we have done.

Fig. 5A shows the optimized echo amplitudes for the three parame-
terizations and three pulse length ratios. For each combination of shape
and duration, the results of 20 separate optimization runs with random
starting points are shown. The plots show that for any ratio the best
FS, DT, and NN pulse shapes all outperform even the best 2 ∶ 1 HS
pulse (indicated by vertical dashed lines). For the FS, DT, and NN
parameterizations, the best performing pulses have 1 ∶ 1 pulse length
ratios.

A similar observation regarding pulse length ratios was made by
Kallies and Glaser [32], where they found an optimal ratio of 1 ∶ 1.3
for their set of parameters. They used a different set of constraints,
e.g., 𝜔1,max∕𝛿 = 0.2 and 𝜔1,max ⋅ (𝑇𝜋∕2 + 𝑇𝜋 ) = 6, compared to our
𝜔1,max∕𝛿 = 0.35 and 𝜔1,max ⋅ (𝑇𝜋∕2+𝑇𝜋 ) = 10. However, the two scenarios
are more similar than these numbers would suggest because Ref. [32]
did not account for the effect of a resonator and their pulses allowed
a maximum pulse amplitude that is independent of the instantaneous
driving frequency. Scaling their pulses to our desired bandwidth and
compensating for low-pass filter and resonator, the required pulse
amplitude is about twice as large in order to recover their pulse design
when driving near the edges of the bandwidth. So, accounting for the
transfer chain effectively makes their constraints to be 𝜔1,max∕𝛿 ≈ 0.4
and 𝜔1,max ⋅ (𝑇𝜋∕2 + 𝑇𝜋 ) ≈ 12, similar to ours.

The error bars in Fig. 5A show the effect on the echo amplitude
of reducing the amplifier compression 𝑉sat by 60%, i.e. increasing
amplifier compression without changing maximum output power. The
FS, DT, and NN pulses are all relatively robust against this. This is
because many of the numerically shaped pulses use as much power as
possible, so only the maximum power of the amplifier matters rather
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Table 1
A list of all the values used in the optimizations.

Quantity Value

𝜔c∕2𝜋 33.65 GHz
𝛿∕2𝜋 240 MHz
𝛤∕2𝜋 450 MHz
𝑉sat∕𝑉DAC 1.131
𝑄L 200
𝜏1 100 ns
𝜔r es∕2𝜋 33.65 GHz
𝑇𝜋∕2 + 𝑇𝜋 120 ns
𝜔1,max∕2𝜋 84 MHz

than the shape of the compression function at intermediate power.
This is not entirely clear from the plots of the output pulse shapes
in Fig. 4, but the input pulse shapes of 𝐼 and 𝑄 plotted in Fig. S1
of the Supplementary Material [50] are typically toggling between
their maximum values of −1 and 1, and the values plotted are only
diminished from maximum amplitude due to the effects of the low-pass
filter and resonator. Thus, changing the general shape of the amplifying
function does not affect the pulse shapes much. The HS pulse shapes,
on the other hand, do use the full range of the amplifier, and the dotted
lines show how their performance is substantially diminished under the
same 𝑉sat reduction.

In the 𝐵1 field attenuation plot in Fig. 5B, we plot the fractional re-
duction of the echo amplitude when the 𝐵1 field is reduced to 80%. This
probes how robust the echo amplitude is to 𝐵1 field inhomogeneity. The
best HS pulse is one of the more robust pulses against 𝐵1 field inhomo-
geneity, since it is constructed as an adiabatic frequency sweep. Other
pulse types include equivalently robust pulses, but generally there is no
correlation between echo amplitude and robustness to inhomogeneity
because the pulses were not optimized for robustness. In Fig. S3 of
the Supplementary Material [50], we also plot echo amplitude versus
resonator quality factor and versus 𝐵1 field inhomogeneity.

In the refocusing times plot of Fig. 5C, we plot the time between
the end of the 𝜋 pulse and the peak of the echo signal for 𝜏1 =
100 ns. Most refocusing times fall in the range between 80 and 140 ns.
Similarly to the results of Ref. [32], the middle of this optimal range is
slightly longer than the waiting time 𝜏1. There is no correlation of echo
refocusing time with pulse parameterization or pulse length ratio.

The refocusing phase plot in Fig. 5D shows no evidence for a
predominant echo phase. This is surprising, since one could imagine
echo phase preferences in the presence of the |𝐼| ≤ 1, |𝑄| ≤ 1 power
constraint, where the maximum drive amplitude can only be achieved
with driving phases ±45◦,±135◦.

This ensemble of optimizations from different random seeds shows
that there is no unique pulse shape that is optimal. Of course, there is
always a trivial degeneracy of rotating both 𝐼 and 𝑄 by ±90◦,±180◦
resulting only in a change of echo phase by the same angle (the degen-
eracy is four-fold rather than continuous due to the power constraint
being a square rather than a circle in the I/Q plane), retaining the same
refocusing time and echo amplitude. But beyond that, Fig. 5 shows
that there are many pulse shapes with equivalent echo amplitudes that
are not simply related by a phase transformation, as is clear from the
different echo refocusing times. The fact that the landscape harbors
many comparable maxima suggests that there remains a significant
amount of flexibility in the parameterized pulses that could be used to
satisfy additional constraints, such as favoring a particular refocusing
time or phase (as in [32]), robustness to 𝐵1 inhomogeneity, echo phase
independence from 𝜏1, or some other desirable property.

In Fig. 6 we examine the action of the individual pulses by plotting
the 𝑧-projection of a spin packet after it is rotated from the ground state
by the shaped 𝜋∕2 pulse,

2⟨𝑆𝑧(𝜔)⟩𝜋∕2 = 2 t r (𝑈𝜋∕2𝜌0𝑈
†
𝜋∕2𝑆𝑧), (36)

where 𝜌0 is the ground state density matrix, and similarly for the 𝜋
pulse. We plot over a frequency range extending slightly outside the
7 
Fig. 6. The excitation profiles of the optimized pulses for the 𝜋∕2 pulse (left), and the
𝜋 pulse (right), calculated from Eq. (36).

𝛿 bandwidth. Recall that we have not constrained the first and second
pulse to be a 𝜋∕2 and a 𝜋 pulse. Yet, Fig. 6 shows that inside the desired
band the optimization always produces nearly perfect 𝜋∕2 and 𝜋 pulses,
suggesting this basic structure is optimal for refocusing. This is not an
artifact of a particular initialization of the parameters — we initialize
randomly and the initial pulse shapes are not 𝜋∕2 or 𝜋 rotations. We
also see that for the FS, DT, and NN parameterizations, the effect of
the pulses on spins outside the bandwidth varies wildly with frequency
compared to the HS pulses which do not excite these spins.

Fig. 6 strongly suggests that the improvement of the optimal FS,
DT, and NN pulses compared to the HS pulse comes from (i) improved
performance near the band edges and (ii) improved intra-band 𝜋 rota-
tion performance in the presence of the power constraint. For a more
comprehensive visualization of the spin dynamics, in Fig. S2 of the
Supplementary Material [50] we plot the total magnetization in 𝑥, 𝑦,
and 𝑧 during each of the optimized pulse sequences.

In Fig. 7 we further characterize the action of the sequence as a
whole on any given spin packet. The top left panel in Fig. 7 is a plot
of the phase dispersion at the refocusing time. This is calculated by
first computing the individual spin packet phases as a function of offset
frequency,

𝜙(𝜔) = ar g
(

t r (𝜌r ef ocus𝑆†
+)
)

, (37)

where

𝜌r ef ocus = 𝑈t ot (𝑡r ef ocus)𝜌0𝑈†
t ot (𝑡r ef ocus), (38)

and 𝑡r ef ocus denotes the time at which the peak of the echo occurs. The
average phase for spin packets within the band, which corresponds to
the phase of the echo is

𝜙avg =
1
𝛿 ∫

𝛿∕2

−𝛿∕2
𝜙(𝜔′)d𝜔′, (39)

and the phase dispersion plotted is
𝛥𝜙(𝜔) = 𝜙(𝜔) − 𝜙avg. (40)

In other words, this is the azimuthal angle between the spin packet and
the refocusing axis. The top right panel in Fig. 7 is a plot of the polar
angle each spin packet forms with the 𝑧-axis at the refocusing time,

𝜃(𝜔) = ar ccos (2 t r (𝜌r ef ocus𝑆𝑧)
)

. (41)

From these top two panels we see that the phase dispersion and
the polar angle with the FS, DT, and NN pulses are closer to ideal
than with the HS pulse. The highly oscillatory polar angle compared
to individual polar angles obtained in Fig. 6 is because the effect of
a 𝜋 pulse on a spin packet depends upon the phase of the spin packet,
which varies rapidly as a function of offset frequency due to the waiting
time between the pulses.

In the bottom left panel of Fig. 7 we plot the projection of each spin
packet onto the refocusing axis in the 𝑥𝑦-plane,

⟨𝑅⟩ = 2 t r (𝜌r ef ocus
(

cos(𝜙avg)𝑆𝑥 + sin(𝜙avg)𝑆𝑦
))

. (42)

The FS, DT, and NN pulses are clearly more consistent in cooperatively
producing an echo across the bandwidth.
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Fig. 7. Behavior of spin packets as a function of offset frequency. Phase difference
𝛥𝜙 relative to average phase at refocusing time (top left), polar angle 𝜃 at refocusing
time (top right), projection onto the refocusing axis in the 𝑥𝑦-plane at refocusing time
(bottom left), and effective time evolution for each of the 𝜋∕2 and 𝜋 pulses (bottom
right) calculated from Eqs. (40)–(42) and (48) respectively.

In the bottom right panel of Fig. 7 we explore the cooperativity
of the shaped 𝜋∕2 and 𝜋 rotations using the effective evolution time
defined in Ref. [32]. Consider the density matrix as a function of offset
frequency at three intermediate times: immediately after the 𝜋∕2 pulse,
immediately before the 𝜋 pulse, and immediately after the 𝜋 pulse,

𝜌1(𝜔) = 𝑈𝜋∕2𝜌0𝑈
†
𝜋∕2 (43)

𝜌2(𝜔) = 𝑈f r ee(𝜏1)𝜌1(𝜔)𝑈†
f r ee(𝜏1) (44)

𝜌3(𝜔) = 𝑈𝜋𝜌2(𝜔)𝑈†
𝜋 . (45)

The phase accumulated from the 𝜋∕2 pulse is
𝜙𝜋∕2(𝜔) = ar g

(

t r (𝜌1(𝜔)𝑆†
+)
)

(46)

and that accumulated from the 𝜋 pulse is
𝜙𝜋 (𝜔) = ar g

(

t r (𝜌3(𝜔)𝑆†
+)
)

− ar g
(

t r (𝜌2(𝜔)𝑆†
+)
)

. (47)

Unwrapping these phases about the center frequency, the effective
evolution times are defined as [32]

𝜏ef f ,𝜋∕2(𝜔) =
𝜙𝜋∕2(𝜔) − 𝜙𝜋∕2(0)

𝜔
(48)

𝜏ef f ,𝜋 (𝜔) =
𝜙𝜋 (𝜔) − 𝜙𝜋 (0)

𝜔
. (49)

(The values of 𝜏ef f ,𝜋∕2(0) and 𝜏ef f ,𝜋 (0) are obtained via interpolation.)
This is how long each spin packet would have to freely evolve following
an ideal, instantaneous rotation in order to obtain the same final
dispersion as produced by the actual rotation. For an echo to form, one
must have a linear total phase dispersion (with negative slope) after the
𝜋 rotation. This means any nonlinear phase dispersion acquired from
the 𝜋∕2 rotation must be cancelled by the nonlinear phase dispersion
acquired from the 𝜋 rotation.

In other words, since all the spin packet phases are flipped by
the 𝜋 rotation, echo formation requires 𝜏ef f ,𝜋∕2(𝜔) − 𝜏ef f ,𝜋 (𝜔) to be a
constant [32]. Fig. 7 shows that this is indeed the case for the FS, DT,
and NN pulses, which have nonlinear phase dispersions for the two
pulses but cooperate such that their nonlinear parts mutually cancel.
Note that the difference 𝜏ef f ,𝜋∕2(𝜔) −𝜏ef f ,𝜋 (𝜔) = 𝑡r ef ocus−𝜏1. For example,
in this case, the FS pulse has 𝜏ef f ,𝜋∕2(𝜔) − 𝜏ef f ,𝜋 (𝜔) = −10 ns and so
refocuses at 90 ns while the NN pulse has 𝜏ef f ,𝜋∕2(𝜔) − 𝜏ef f ,𝜋 (𝜔) = 39 ns
and refocuses at 139 ns. The difference 𝜏ef f ,𝜋∕2(𝜔) − 𝜏ef f ,𝜋 (𝜔) is shown in
Fig. S4 of the Supplementary Material [50].

As a specific example, in Fig. 8 we use the spectral distribution
of a solid-state dilute disordered sample of a nitroxide radical with
8 
Fig. 8. Left: an exemplary nitroxide EPR spectrum. Right: the difference between the
exemplary nitroxide spectrum and the Fourier transform of the resulting echoes formed
by the Fourier Series (FS), discrete time (DT), neural network (NN), and hyperbolic
secant (HS) optimized pulse sequences.

a bandwidth of about 240 MHz, shown in the left panel. Because the
bandwidth of this distribution is slightly more than the optimized
bandwidth of 𝛿∕2𝜋 = 240 MHz, the chosen value of the pulse carrier
frequency for each parameterization was also optimized in order to
achieve maximum echo height. In the right panel we plot the differ-
ences between the actual spectrum and the spectra one would recover
from the Fourier transforms of the echoes (note the different scale
compared to the left panel). The FS, DT, and NN parameterizations
result in less error, particularly around the spectral maximum. All
parameterizations have some unrecovered spectral density towards the
lower edge of the spectrum due to the bandwidth of the exemplary
nitroxide spectrum being slightly larger than the optimized bandwidth.

These optimized pulse shapes have not yet been experimentally im-
plemented. To record the echo generated by these pulses with sufficient
fidelity, a receiver of sufficient bandwidth (> 240 MHz) is required.
Higher-bandwidth detection systems with up to 1 GHz of bandwidth
have become available commercially recently (Bruker SpecJet 3 and
VideoAmp 3), so the presented approach is timely and feasible. Also,
non-commercial wideband receiver systems have been built [4].

6. Conclusion

In this paper, we have shown that it is possible to obtain about
a 10% improvement of the Hahn echo amplitude over an optimal,
generalized hyperbolic secant KBB sequence by optimizing nonlinear
amplitude-limited Fourier series, discrete time series, or neural network
parameterized pulses. With these parameterized pulses, we find a 1:1
pulse length ratio is favorable in the presence of power constraints
because it allows more energy to be allotted to the 𝜋 pulse while
the pulse shaping is still able to maintain the refocusing. Interest-
ingly, the optimization landscape for this type of problem has many
equivalent maxima, all of which involve the 𝜋∕2 and 𝜋 pulses coop-
eratively working together to compensate phase dispersions in each
other. We find no marked differences among the three parameteriza-
tions. Furthermore, we have demonstrated that nonlinear effects due
to amplifier compression and resonator transfer can be included in
the optimization workflow, allowing for the usage of the full power
of an amplifier, including its nonlinear region. These results demon-
strate a pathway towards optimal broadband spectral acquisition with
constrained power.
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