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Nontrivial intensity correlation from a coherent continuous-wave laser beam
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We report an experimental observation of nontrivial intensity correlation of a continuous-wave fiber ring laser.
The laser beam consists of approximately 450 000 independent longitudinal cavity modes, each in a coherent
state representing a group of identical photons. Based on Glauber’s second-order coherence theory, we conclude
that the nontrivial intensity correlation is the result of a randomly created and randomly paired distinguishable
group of identical photons interfering with the pair itself. This result is fundamentally interesting and practically
useful.
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Since Hanbury Brown and Twiss (HBT) discovered inten-
sity correlations in light from thermal (chaotic) sources, it
is well accepted that intensity correlations, i.e., second-order
coherence, can be used to characterize the quantum state of
light [1–4]. Specifically, while light in a thermal state con-
tains such correlations and is thus considered a correlated
state, light in a coherent state, which is free from intensity
fluctuations, does not produce correlations and is considered
a noncorrelated state [5]. This Letter addresses the question:
Can a multi-longitudinal-mode cw laser beam produce non-
trivial intensity correlations as does the light in a thermal
state? While such an inquiry is mainly aimed at fundamen-
tal understanding of the HBT phenomenon, its implications
for quantum-inspired technologies may not be overlooked.
Recently proposed quantum-correlation-based optical sensors
may benefit from use of a bright laser beam as compared to
a thermal light source [6–9]. Here, we report a recent experi-
mental observation of nontrivial intensity correlation from the
joint photodetection of such a laser beam.

The intensity correlation of radiation from lasers has
been studied since the early days of laser physics [10,11,
and references therein]. Tehrani and Mandel studied the
correlations between the clockwise and counterclockwise
propagating cavity modes of a ring laser, and concluded that
“because the two counter-rotating modes of the ring laser
compete partly for the same atomic population...the competi-
tion may...prevent it from reaching a coherent state, free from
intensity fluctuations, that is generally regarded as the charac-
teristic feature of a laser beam” [12]. The observed intensity
correlation results from multimode lasers have been presented
in literature as a result of “mode competition” preventing
individual modes from reaching coherent states [13–22].

Interestingly, the results presented in this Letter show
an HBT-type intensity correlation from a coherent multi-
longitudinal-cavity-mode cw laser beam, henceforth written
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as “multimode laser,” in the TEM00 transverse mode. This
signifies a differing mechanism from multimode lasers
considered in the experimental demonstrations of the afore-
mentioned literature. The multimode laser used for this
measurement is a standard fiber ring laser consisting of an 8-m
Erbium-doped single-mode optical fiber coupled into a 10-km
single-mode fiber ring cavity. This laser generates approxi-
mately 450 000 longitudinal cavity modes, all in the TEM00

transverse mode, and through stimulated emission each of
these cavity modes produce a group of identical photons. We
achieve an accurate match between experimental data and
theoretical calculations for the second-order coherence func-
tion by using Glauber’s quantum theory of optical coherence
[23,24]. In our calculations, each individual group of photons
is modeled as a coherent state, and the overall state of the laser
output is a product of the 450 000 coherent states [25].

We begin our analysis with this theoretical discussion
of the intensity correlation, i.e., the second-order coherence
function, derived from Glauber’s theory of photodetection.
This is then followed by the details of our experimental
scheme and the findings of the measurements.

Following Glauber’s notation, we may consider the state of
a cw laser beam with multilongitudinal modes [4,24]

|�〉 =
∏

m

|�m〉 =
∏

m

|αm(ω)〉, (1)

where m labels the mth cavity mode, or the mth group of
identical photons with frequency ω. The state |αm(ω)〉 is an
eigenstate of the annihilation operator with a complex eigen-
value αm(ω) = am(ω)eiφm (ω), which has a real and positive
amplitude and a phase [26]

âm(ω)|αm(ω)〉 = αm(ω)|α(ω)〉. (2)

Here, we make use of the coherent state representation for
the state of a group of identical photons with n̄ = |α| � 1, n̄
being the average number of identical photons in the coherent
state.

The field operators for the measurements involved in our
experiment, which are the quantum analogues of classical
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electric fields, are

Ê (+)(r j, t j ) =
∑

m

âm(ω) gm(ω; r j, t j )

Ê (−)(r j, t j ) =
∑

m

â†
m(ω) g∗

m(ω; r j, t j ), (3)

where j = 1, 2; gm(ω; r j, t j ) is the Green’s function that
propagates the mth mode from the source to space-time co-
ordinates (r j, t j ) of the jth photodetector Dj . We have also
ignored the constants.

The second-order coherence function, or correlation func-
tion, is thus [3,25,27]

G(2)(r1, t1; r2, t2)

= 〈Ê (−)(r1, t1)Ê (−)(r2, t2)Ê (+)(r2, t2)Ê (+)(r1, t1)〉

=
〈∑

m

ψ∗
m(r1, t1)

∑
n

ψ∗
n (r2, t2)

×
∑

q

ψq(r2, t2)
∑

p

ψp(r1, t1)

〉
(4)

Here, we have used

〈�|Ê (+)(r j, t j )|�〉 = 〈�|
∑

m

âm(ω) gm(ω; r j, t j )|�〉

=
∑

m

αm(ω) gm(ω; r j, t j )

=
∑

m

ψm(r j, t j ), (5)

and defined ψm(r j, t j ) as the effective wave function of the
mth “subfield”—an entity that consists of a large number of
identical photons—that is measured by Dj [4,25].

Due to the random relative phases between the subfields,
the only surviving terms in Eq. (4) are the m = q and n = p
terms. So, we are left with

G(2)(r1, t1; r2, t2)

=
∑

m

ψ∗
m(r1, t1)ψm(r1, t1)

∑
n

ψ∗
n (r2, t2)ψn(r2, t2)

+
∑
m �=n

ψ∗
m(r1, t1)ψn(r1, t1)ψ∗

n (r2, t2)ψm(r2, t2)

=
∑
m,n

∣∣∣∣ 1√
2

[ψm(r1, t1)ψn(r2, t2) + ψn(r1, t1)ψm(r2, t2)]

∣∣∣∣
2

.

(6)

Written in its final arrangement, this indicates the superposi-
tion of two different yet indistinguishable quantum probability
amplitudes: (1) one or more identical photons from the mth
longitudinal mode triggers D1 at (r1, t1) while one or more
identical photons from the nth longitudinal mode triggers D2

at (r2, t2); and (2) one or more identical photons from the mth
longitudinal mode triggers D2 at (r2, t2) while one or more
identical photons from the nth longitudinal mode triggers
D1 at (r1, t1) [28]. The second-order coherence function, or
correlation function, of a multimode cw laser beam is thus
the result of a nonlocal interference: a randomly created and

randomly paired distinguishable group of identical photons
interfering with the pair itself [4].

In Eq. (6), the cross-interference term is the “nontriv-
ial” contribution to the second-order coherence function
G(2)(r1, t1; r2, t2), corresponding to the intensity fluctuation
correlation (IFC) of the cw laser beam measured jointly by
D1 and D2,

〈�I (r1, t1)�I (r2, t2)〉
=

∑
m �=n

ψ∗
m(r1, t1) ψn(r1, t1) ψ∗

n (r2, t2) ψm(r2, t2), (7)

while the product of the mean intensities measured by each
photodetector is

〈I (r1, t1)〉〈I (r2, t2)〉
=

∑
m

ψ∗
m(r1, t1)ψm(r1, t1)

∑
n

ψ∗
n (r2, t2)ψn(r2, t2). (8)

The normalized G(2)(r1, t1; r2, t2) is thus related to the inten-
sity fluctuation correlation as

g(2)(r1, t1; r2, t2) ∝ 1 + 〈�I (r1, t1)�I (r2, t2)〉
〈I (r1, t1)〉〈I (r2, t2)〉 . (9)

In the calculations so far, we have assumed an idealized,
true single-frequency cavity mode. Realistically, we may have
to take into account the finite spectral bandwidth of a cavity
mode with the following integral:

ψm(r j, t j ) =
∫

�ω

dω αm(ω) gm(ω; r j, t j )

	
[ ∫

�ν

dν αm(ν) e−iντm j

]
e−iωmτ j

= Fτm j {a(ν)} e−iωmτ j , (10)

where we have assumed a point-to-point free propagation.
ν = ω − ωm is the detuning frequency from the central fre-
quency ωm of the mth cavity mode, and a(ν) is the spectral
function of the cavity mode. Here, each cavity mode has been
modeled as a wave packet with carrier frequency ωm and an
“envelope,” which is the Fourier transform of the spectral dis-
tribution function of the mth mode. We have also introduced
the notations τ j ≡ t j − r j/c and τm j = τ j − tm, where tm is the
emission time of the mth cavity mode.

With this model of the cavity modes, we now calculate the
intensity fluctuation correlation [as clarified in Eq. (7), this
calculation deals with the case m �= n]:

〈�I (τ1)�I (τ2)〉 =
∑
m,n

F∗
τ1m

{a(ν)} eiωmτ1 Fτ1n{a(ν)} e−iωnτ1

× F∗
τ2n

{a(ν)} eiωnτ2 Fτ2m{a(ν)} e−iωmτ2

=
[ ∑

m

F∗
τ1m

{a(ν)}Fτ2m{a(ν)} eiωmτ

]

×
[ ∑

n

Fτ1n{a(ν)}F∗
τ2n

{a(ν)} e−iωnτ

]
,

(11)
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where τ ≡ τ1 − τ2 = (t1 − t2) − (r1 − r2)/c. Calculating one
summation at a time, we find∑

m

F∗
τ1m

{a(ν)}Fτ2m{a(ν)} eiωmτ

	
∫

dtmF∗
τ1m

{a(ν)}Fτ2m{a(ν)}

× [
eiω1τ

[
1 + eiωbτ + ei2ωbτ + · · · + ei(N−1)ωbτ

]]
	 Fτ {a2(ν)}

[
ei(N−1)ωbτ/2 sin(Nωbτ/2)

sin(ωbτ/2)

]
. (12)

Here ωb is the beat frequency between neighboring cavity
modes and N is the total number of cavity modes. The cross-
interference term then reduces to

〈�I (τ1)�I (τ2)〉 ∝ |Fτ {a2(ν)}|2
[

sin2(Nωbτ/2)

sin2(ωbτ/2)

]
. (13)

Here, Nωb is the total range of frequencies present. If elec-
tronic response times are slow relative to the range of optical
beat frequencies present, they result in a time average that
contributes to the broadening of the measured correlation
function.

The second part of the product in Eq. (13) representing the
correlation peaks is independent of the choice of the distribu-
tion function a(ν) for each cavity mode. In other words, the
“envelope” over the correlation peaks, given by the Fourier
transform, does not have any impact on the internal structure
or spacing of the correlation peaks themselves, other than
defining their common profile. In general, the distribution
function a(ν) for each cavity mode may be approximated to
as any form, such as Gaussian or Lorentzian. To use a simple
case as an example, we can model a(ν) as an approximately
constant distribution (i.e., a rectangular function) for each
cavity mode within its spectral bandwidth �ω. Equation (13)
then results in

〈�I (τ1)�I (τ2)〉 ∝ sinc2

(
�ωτ

2

)
sin2(Nωbτ/2)

sin2(ωbτ/2)
, (14)

where, again, �ω is the spectral bandwidth, or linewidth, of
the cavity mode; ωb is the beat frequency between neighboring
cavity modes; and τ ≡ τ1 − τ2. Figure 1 shows two plots
of the normalized correlation function g(2) [which is related
to the IFC via Eq. (9)] with a sinc2 profile. The plots are
generated with the same values of N and ωb but different �ω.
It is clear that the bandwidth of the individual longitudinal
modes determines the width of the sinc2 envelope and, thus,
whether it can be measured within a given temporal range.
Note that the choice of the distribution function a(ν) as well as
the associated parameters used to generate the plots in Fig. 1
are arbitrary and are meant for illustrative purposes. These do
not necessarily represent the laser system in our experimental
arrangement to be discussed later in this report. Additionally,
it should be noted that achieving a maximum value of 2 in the
measurement of the normalized correlation may be contingent
on experimental conditions.

The setup of our experiment is schematically illustrated
in Fig. 2. The radiation source is a laboratory-assembled
fiber laser consisting of a laser controller (not shown in the
figure), an erbium doped fiber amplifier (EDFA), and a single-
mode fiber ring cavity with adjustable length. The EDFA, in

FIG. 1. Theoretical plots of the normalized correlation function
g(2) of Eq. (9), based on the result of Eq. (14); taking N = 100 000
and beat frequency (ωb/2π ) = 20 kHz. The optical delay r1 − r2

has been chosen to be 0, so that the time delays τ1 − τ2 and t1 −
t2 represent the same quantity. (a) Mode width (�ω/2π ) = 35 Hz;
(b) mode width = 200 Hz.

combination with the ring cavity, is used to generate mul-
timode continuous-wave laser beam. Only one of the two
outputs, either clockwise or counterclockwise, of the ring
cavity is used for the intensity correlation measurement. The
laser beam is passed through a fiber beamsplitter and fed
into two identical point-like analog photodetectors D1 and D2,
each of which has a response spectrum bandwidth of 5 GHz.
The output photocurrents of the photodiodes, i1(t1) ∝ I1(t1)
and i2(t2) ∝ I2(t2), together with their registration times t1 and
t2, are processed by the measurement scheme which involves
a combination of a state-of-the-art digitizing oscilloscope with
high real-time bandwidth and a computer for the postprocess-
ing of the data to get the intensity correlation as a function of
t1 − t2.

The laser is designed to give a maximum output power of
5 mW, with a maximum pump power of 10 mW, while the
threshold pump power is approximately 0.38 mW. For the
measurements presented in this report, the pump power was
chosen to be in the range 1.4–1.8 mW, far above the threshold
of the laser for reaching a coherent state. The power level of
1.8 mW is also far below the maximum pump power (and
hence the maximum output power of the fiber laser) to avoid
any possible mode locking. The intensity measurement of the
laser beam shows an approximately constant signal without
any pulses, as expected for the cw operation. The power
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FIG. 2. Schematic setup for intensity correlation measurement of a multimode fiber laser. D1 and D2 are two analog photodiodes, and Ch1
and Ch2 are corresponding input channels of the digital oscilloscope.

spectrum recorded by an optical spectrum analyzer (OSA) as
depicted in Fig. 3 shows that the spectral profile of the TEM00

laser beam has a FWHM bandwidth �λ 	 0.07 nm (� f 	
8.6 GHz), with the spectrum peak being in the telecom C
band (in the range of 1562–1563 nm). The presence of smaller
peaks in the spectrum was found to be caused by polarization
inhomogeneities; hence, a fiber polarization controller was
used to ensure that the main peak remains dominant in the
spectrum. Single-mode fiber optic launch cables optimized for
minimum loss in the wavelength range of the laser, ranging
from a few meters to kilometers in length, were used in our
measurements to generate different cavity lengths for testing
the setup and verifying the theoretical results. In this report,
the ring cavity length was chosen to be 10.69 km. For this ring
cavity, the theoretically expected value of mode separation
is ωb/2π = 19.12 kHz [29]. Using the laser bandwidth of
8.6 GHz measured by the OSA, this gives a calculated value
of N = 449 790, which we approximate as N 	 450 000.

The intensity correlation measurement without the use of
optical delay is presented in Fig. 4. This result is, in fact,

FIG. 3. Typical spectral profile of the laser beam, as observed on
an optical spectrum analyzer.

FIG. 4. Typical temporal correlation measurements for the setup
in Fig. 2 for 10.69-km cavity length and zero optical delay (r1 −
r2 = 0). The y axis is g(2)(t1 − t2), which is related to the intensity
fluctuation correlation by Eq. (9). (a) The first peak is located at
t1 − t2 = 0, as expected for a measurement with no optical delay;
while the second peak is around 52.48 µs, thus giving a beat period
of 52.48 µs which is equivalent to the beat frequency of 19.05 kHz.
The subsequent peaks also maintain this beat period of 52.48 µs.
(b) Detailed view of the second peak demonstrating its structure and
a higher precision of its temporal location.
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FIG. 5. Typical profile of the correlation peaks, related to the
“envelope” described by Eq. (13) for the setup in Fig. 2 for 10.69-
km cavity length and zero optical delay. The maximum observable
temporal range is limited by the measurement scheme. The slight
deviation of the baseline of the peaks (representing the trivial part
of the correlation function) from a perfectly horizontal line may be
ascribed to random sources of instabilities in the laser spectrum.

the measure of the normalized second-order coherence, or
correlation, function g(2)(t1 − t2). It is clearly observed that
the correlation function consists of distinct peaks described
by the second term of Eq. (13), representing the intensity
fluctuation correlation, with an average period of 52.48 µs,
equivalent to a beat frequency of 19.05 kHz. This value is
close to the theoretical estimate of 19.12 kHz. The peaks
protruding downward from the baseline are the artifacts re-
sulting from the convolution effect originating from the finite
temporal response of the photodetectors. The FWHM of an
individual peak was found to be 180 ps, with accuracy limited
by the sampling resolution of the oscilloscope as well as the
bandwidth and temporal response of the photodetectors.

For a separate set of measurements done over a longer
temporal range (limited only by the sampling features of

the oscilloscope), we observed the presence of an envelope
over these peaks. A typical result is shown in Fig. 5. The
ability to observe the complete profile in a typical correla-
tion measurement being considered in this work is affected
by the bandwidth of the individual modes, as was depicted
previously in the example of Fig. 1. Hence, the data presented
in Fig. 5 implies that the mode width for our laser system
was too narrow to be observed with the measurement scheme
being employed. While the nature of the curve describing
this envelope could not be determined with certainty due to
the aforementioned limitations, it is reasonable to conclude
that its functional form can, in principle, be modeled by the
Fourier transform of a suitable distribution function a(ν) of
the modes.

In summary, we demonstrated an HBT-type intensity cor-
relation of a multimode cw laser beam. The laser generates a
large number (∼450 000) of longitudinal cavity modes with
TEM00 transverse profile, each containing a large number
of identical photons. The state of each cavity mode can be
represented as a coherent state, and the state of the laser output
is thus a product of the ∼450 000 coherent states. Based on
Glauber’s second-order coherence theory, we conclude that
the observed nontrivial intensity correlation is the result of
a randomly paired distinguishable group of identical photons
interfering with the pair itself. Our results provide a positive
answer to the fundamental question: Can a coherent cw laser
beam produce intensity correlation like thermal light? In ad-
dition to being fundamentally interesting, a bright light source
of cw laser beam with HBT-type intensity correlation can be
useful for quantum technologies.
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