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Research Journey

When | first enrolled in UMBC, | had a strong desire to be involved
in STEM research, which was further encouraged and supported
by the Meyerhoff Scholars Program. Through participating in
the Louis Stokes Alliance for Minority Participation (LSAMP)
Research Program my freshman year, | joined The Padmanabhan
Lab in the Biological Sciences Department as an undergraduate
researcher. To furtherexplore myresearch interests, | was seeking
a summer internship that combined my interests in both biology
and computer science for the summer after my junior year. My
LSAMP advisor suggested that | apply to the National Science
Foundation's Big Data REU 2022 at UMBC. The research project
was a great fit because the project's applications were in cancer
biology while the actual project was solely computational.
Specifically, my project explores how the utilization of
graphics processing units (GPUs) can be advantageous when
used with machine learning models to improve proton beam
therapy for cancer.
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Abstract

Proton beam therapy utilizes proton beams to treat cancerous
tumors while avoiding unnecessary radiation exposure to
surrounding healthy tissues. Real-time imaging of proton beams
while they travel through a patient's body can make this form
of radiotherapy more precise and safer for the patient. The use
of a Compton camera is one proposed method for real-time
imaging of the prompt gamma rays that are emitted by proton
beams. Unfortunately, some of the Compton camera data is
flawed, and the image reconstruction algorithm yields noisy and
insufficiently detailed images to evaluate proton delivery for the
patient. Machine learning can be a powerful tool to clean up the
Compton camera images. Previous work used a deep residual
fully connected neural network, but the use of recurrent neural
networks (RNNs) has been proposed since they use recurrence
relationships to make potentially better predictions. In this work,
RNN architectures using two different recurrent layers are tested,
the LSTM and the GRU. Although the deep residual fully connected
neuralnetworkachieves over 75%testingaccuracyand our models
achieve only over 73% testing accuracy, the simplicity of our RNN
models containing only 6 hidden layers as opposed to 512 is a
significant advantage. This greatly decreases the amount of time
it takes to load the model from the disk, potentially enabling the
use of Compton camera image reconstruction in real time during
patient treatment. A graphics processing unit (GPU), known to
perform complex mathematical calculations to display high-
quality graphics, could enable the use of this approach in a clinical
setting since they are small and affordable.
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1. Introduction

Proton beam therapy has gained popularity as a cancer treatment
due to its many advantages. With cancer being the second highest cause
of death in the United States, radiation therapies have been widely used
as a treatment [9]. Also known as radiotherapy, radiation therapy uses
high-energy particles such as x-rays, gamma rays, or protons, to damage
the DNA of target cancer cells. X-ray therapy can deliver dosage at the
tumor site, and its radiation continues to travel through the body until it
exits on the other side. This may potentially harm healthy surrounding
tissues and organs that are unnecessarily exposed to radiation. In con-
trast, proton beams have a finite range that can be controlled, and de-
posit the majority of their energy just before they stop depositing energy.
This sharp energy increase of the proton beam right before stopping is
known as the Bragg peak. Since almost no radiation is delivered beyond
the Bragg peak, healthy tissue can be spared from unnecessary radiation
[9]. Thus, the Bragg peak allows proton therapy to be advantageous in
delivering the radiation dosage directly at the tumor site without travel-
ing further into the body.

To take full advantage of the properties of proton therapy, we must
have an efficient technique to image the prompt gamma rays produced
by the beam in real-time, as they travel through the patient’s body. A
Compton camera is one instrument that can be used to detect the prompt
gamma rays emitted when the proton beam travels through the body.
Moreover, an algorithm is available to reconstruct the beam’s image from
the prompt gamma data, which then provides an indirect image of the
proton beam. Unfortunately, a lot of the raw data of the Compton camera
is flawed, and the reconstruction algorithm yields noisy and insufficiently
detailed images to evaluate the proton delivery for the patient |7, 8].

Machine learning can be used to clean the raw Compton camera
data by identifying and removing false data before image reconstruction
[7,8]. Research efforts to clean the Compton camera data have led to
the use of neural networks. Shallow networks like the one in [7] use 1
to 2 hidden layers to perform simple classifications of simulated prompt
gamma data under ideal conditions that do not represent the irradia-
tion conditions encountered during clinical proton beam radiotherapy.
This shallow network in [7] is a binary classification network that simply
determines which event data are true events and should be used for re-
construction and which are false events that should not be used for recon-
struction. This is improved upon in [8] by using the deep residual fully
connected neural network described in [3] for triple event classification.
This neural network consists of 64 residual blocks with 8 fully connected
layers per block yielding a total of 512 hidden layers. Each layer had 256
neurons per layer, a 45% dropout rate, and used leaky ReLU activation.
More detailed results and discussions about the impact of neural network
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processing on the use and viability of Compton camera-based imaging in
clinical proton radiotherapy are the focus of [8], while providing details
on the network and its training are the focus of [3]. The full capabilities
of the described neural network are specified in [2], where preprocessing
the data, all classification capabilities, and postprocessing output data
are described in detail. Other recent work [1, 10] focused on hyperparam-
eter studies on the deep residual fully connected neural network from [3],
varying batch sizes, neurons, and layers. The use of recurrent neural net-
works (RNNs) is proposed in [1] since they use recurrence relationships
in sequence data sets to make potentially better predictions. The poten-
tial for RNNs to be an improvement over feedforward neural networks
(FNNs) is shown in [6].

In this work, we test RNN architectures using two different recur-
rent layers because of their potential for classifying sequence data, the
Long Short-term Memory (LSTM) (discussed in Section 3.1) and the
Gated Recurrent Unit (GRU) (discussed in Section 3.2). The LSTM uses
memory cells with gates and a carry track to encode and learn from se-
quence data. The GRU uses two gating units to encode and learn from
sequence data. The goal of this change in the type of network architec-
ture is to examine data as a sequence of interactions rather than one
single event, but preliminary results do not show any benefit. We use
models with 4 GRU layers and with 4 LSTM layers and achieve similar
testing accuracy as the deep residual fully connected model from [3].
The model with 4 GRU layers outperforms the deep residual fully con-
nected model in 3 classes but has a larger gap (within 10%) in accuracy
in the other 10 classes. The model with 4 LSTM layers outperforms the
previous deep residual fully connected model in only 2 classes but has a
smaller gap (within 6%) in accuracy in the other 11 classes. Although the
deep residual fully connected model achieves slightly higher accuracy in
nearly every class, the simplicity of our RNN models containing only 6
hidden layers (4 recurrent and 2 fully connected) as opposed to 512 is an
advantage. And importantly in a clinical setting, this advantage could en-
able the use of real-time Compton camera image reconstruction during
patient treatment.

A graphics processing unit (GPU), known to perform complex math-
ematical calculations to display high-quality graphics, could enable the
use of this approach in a clinical setting since they are small in size and
affordable. With this motivation, we use the available GPU partitions in
the UMBC High Performance Computing Facility (hpcf.umbc.edu) to
test and compare their performance for this application problem. HPCF
has several GPU partitions in the clusters taki and ada. The taki sys-
tem has two GPU partitions 2013 and 2018. For 2018, This 1 GPU node
has four NVIDIA Tesla V100 GPUs (5120 computational cores over 84
SMs, 16 GB onboard memory) connected by NVLink, two 18-core In-
tel Skylake CPUs, and 384 GB of memory (12 x 32 GB DDR4 at 2666

nithya navarathna Q 57



MT}s). The 2013 GPU node contains 18 hybrid CPU/GPU nodes, each
with two NVIDIA K20 GPUs (2496 computational cores over 13 SMs,
4 GB onboard memory), two 8-core Intel E5-2650v2 Ivy Bridge CPUs
(2.6 GHz clock speed, 20 MB L3 cache, 4 memory channels), and 64
GB of memory (8%8 GB DDR3). Networks built on Taki were built using
Tensorflow v2.4.0 (www.tensorflow.org) with the bundled Keras module.
We also used SciKit-learn v0.23.dev0 (https://scikit-learn.org/stable/) to
preprocess and normalize the data. Moreover, pandas v1.1.0 (https://pan-
das.pydata.org/) and NumPy v1.18.1 (www.numpy.org) were also used to
help preprocess the data. Finally, we used the Matplotlib v3.5.1 (www.
matplotlib.org) library to graph our results.

The ada system has 3 distinct node types. Four nodes each with 8
Nvidia RTX 2080 Ti GPUs each with 11GB GPU memory. Seven nodes
with 8 Nvidia Quadro RTX 6000 GPUs each with 24GB of GPU memo-
ry. Two nodes each with 8x Nvidia Quadro RTX 8000 GPUs each with
48GB memory. Each node has 384 GB of CPU memory (12x32 GB DDR4
at 2933 MT}s) except the two RTX 8000 nodes which have 768GB of CPU
memory(12x64 GB DDR4 at 2933 MT}s). Networks built on ada were
built with the software package Anaconda3 and Tensorflow v2.6.0 with
the bundled Keras module.

The remainder of this report is organized as follows: Section 2 pro-
vides the background on proton beam therapy to treat cancer and the
Compton camera to image prompt gamma rays. Section 3 details the
basics of machine learning and recurrent neural networks, while also
providing details on the LSTM and GRU. Section 4 contains selected
application-oriented results using our trained network, while Section 5
presents the performance results using the GPUs described above.

2. Application Background

2.1 Proton Beam Therapy

Radiation therapy is a form of cancer treatment that uses high doses
of radiation to kill cancer cells. X-ray therapy, a form of radiation thera-
Py, is a common technique used for cancer treatment, where the majority
of the radiation dosage is delivered upon entering the body. Because
of this, the tumor does not receive as high of a concentrated dose as it
should. In addition, X-rays will continue to travel posteriorly into the
human body until it exits on the other side. This is not ideal as there is no
need for extra radiation exposure within the body. Proton therapy on the
other hand, which is another form of radiation therapy, is more efficient
in this manner. Rather than depositing the majority of the dosage at the
entry site, proton therapy works to deposit the majority of the dosage at
the tumor site itself, thus making the process more effective. Proton ther-
apy also has an advantage over X-ray therapy in the sense that the proton
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beam travels no further posterior into the body than the site of the tumor,
allowing for minimal exposure to surrounding tissue. To fully take ad-
vantage of all the benefits that proton therapy has to offer, we must have
a sufficient technique to monitor the proton beam’s path in real time as it
travels through the patient’s body.

When delivering a dosage to a tumor, the professional treating the
patient will create a safety margin that enlarges the treatment area to
ensure that all parts of the tumor are guaranteed to receive dosage. The
safety margin is needed to account for slight movements in the patient
during treatment as well as slightly different positioning of the patient
from one treatment to the next, over several weeks. The availability of
real-time information on the trajectory of the proton beam through the
patient’s body during treatment could enable us to make the safety mar-
gin smaller and use the optimal path. The use of Compton cameras is one
proposed method for the real-time imaging of prompt gamma rays that
are emitted by the proton beams as they travel through the body.

2.2 Compton Camera

The Compton camera is a multi-stage detector that produces data
used to generate images of proton beams used in proton beam therapy
[3]. As protons from the beam enter the body, they interact with cells
in the body causing the emission of prompt gamma rays. Some of these
gamma rays will collide with the Compton camera. An interaction is
when a prompt gamma collides with a stage of the Compton camera. For
each interaction, the camera records x-, y-, z-coordinates and the energy
level of the scatter. The readout of interactions in a single period is called
an event. The raw output data from the camera for each interaction is in
the form (¢;, x;, 9, 2;) where i = 1, 2, 3 for the three stages of the Compton
camera, and e, is the energy level.

Image reconstruction algorithms exist that can recover the path of
the proton beam from the Compton camera data. The Compton cam-
era’s capability to reconstruct full 3D images of the proton beam range
could be used with the patient’s CT scan to compare the planned treat-
ment dose and make adjustments. Radiotherapy treatment requires con-
formity between the treatment plan and the treatment delivery, making
sure that the patient’s bone and soft tissue landmarks are aligned as they
were at the time of treatment planning [9]. If a patient changes position,
such as wiggling, scratching, looking the other way, or doing any other
subtle movement, it could disrupt the treatment plan. By obtaining reli-
able information regarding the patient from the reconstructed images,
clinicians have the opportunity to better ensure that the entire tumor re-
ceives the exact dose as planned while making sure surrounding healthy
tissues are safe.
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Although the Compton camera is able to detect interactions,
prompt gammas are emitted close to the speed of light and, consequent-
ly, the camera is unable to detect the true ordering of interactions in
an event. The false events that do not detect the true ordering of inter-
actions cause noise in the image created, impacting the usefulness of
the image [3]. There are three different types of scatters detected by the
Compton camera:

a. True Triples: In the True Triples event, the Compton camera
will detect the path of the prompt gamma. However, the true
path may be some other ordering. There are a total of 6 total
combinations of True Triple scatters: 123, 132, 213, 231, 312,
321 and, as the data stands, only the 123 ordering is usable.

b. Double-to-Triples (DtoT): In the DtoT event, the Compton
camera will detect the path of a single prompt gamma as a
true triple. However, in reality, two prompt gammas had vary-
ing paths. One prompt gamma could have been detected as
the first and third interaction and the second prompt gamma
could have been mistaken as the second interaction. Similar to
true triples, there are a total of 6 misdetection orderings: 124,
134, 214, 234, 324, 314. The second prompt gamma interaction
is classified as “4” in the misdetection orderings. In this case,
without processing the data, all 6 orderings are unusable.

c. False Triples: In a false triples event, the Compton camera
will detect a true triple whereas, in reality, there were three
different prompt gammas. As a result, this entire event pro-
vides no insight into the path of a single prompt gamma
and must be discarded.

2.3 The Need for Machine Learning

To make proton beam therapy more effective, real-time imaging
is needed to verify the location and effectiveness of the proton beam,
in particular the location of the Bragg peak. Machine learning is capa-
ble of classifying which type of scatter event occurred based on data
provided by the Compton camera. These classifications lead to the re-
moval of unusable data which will clean the resulting image. A clear-
er image allows for treatment verification. A sufficiently accurate ma-
chine learning model could produce an image that is clear enough to
be used in proton beam therapy as a form of treatment verification.
A machine learning algorithm will need approximately 90% testing
accuracy to be useful for clinicians.
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3. Machine Learning

Machine learning is a type of artificial intelligence where a machine
is trained to identify specific trends and patterns to make predictions
from data. In the case of Compton camera data, the machine learning
algorithm will try to predict the appropriate class for a scatter event.
The main benefit of machine learning is its efficiency in producing re-
sults that would take humans alone much longer to produce. There are
four different ways that a machine can be taught: supervised, unsuper-
vised, semi-supervised, and reinforcement. Supervised learning is a form
of learning where the machine is provided a labeled data set that has
regular input data as well as the desired output data. This allows the
machine to produce a model that has been fitted appropriately. Unsuper-
vised learning is used when one wants to identify hidden patterns within
an unlabeled data set. This allows the machine to identify any trends it
finds in the data without special instruction. Semi-supervised learning is
a mixture of supervised and unsupervised where the model is provided
some labeled data and a large amount of unlabeled data. Reinforcement
learning is similar to the way humans learn where the machine will inter-
act with the data and there will be either a positive or negative reward de-
pending on whether the machine does something the programmer wants
or not. The method used in this study is supervised learning because the
data set contains both the data from the scatter event and the correspond-
ing label of which event scatter took place.

Recurrent neural networks (RNNs) are efficient neural networks
used for time series tasks. They work similarly to a coupling process in
biology. They rely on information from the previous system or “loop”
to move forward with the next. In this type of neural network, the se-
quence or order of the network is very important. The system can be read
and executed differently if the elements of both series are in different
orders. In the case of RNNs, elements include an input layer, hidden
layers, and an output layer. RNNs use back-propagation through time to
illustrate gradients. The difference between RNN backpropagation and
other methods such as in a feed-forward network is that sum errors are
necessary at each time step because of the shared parameters throughout
the network. Several types of RNNs are distinguished by the pathways
between inputs and outputs. RNNs may also contain activation functions
that allow a neuron to translate the input into a specific output. Finally,
there are a few RNN structures that vary depending on the desired use.
There are bidirectional recurrent neural networks, long short-term mem-
ory, and gated recurrent units. Bidirectional recurrent networks rely on
future data to generate predictions.

RNNs are a viable option for Compton camera data because of their
ability to encode information about previous events. Shaping an event in
the Compton camera as a sequence of three interactions each with five
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features, we have transformed the data produced by the Compton cam-
era into a sequence. Using the sequence of interactions, the RNN will be
able to predict the ordering of interactions, i.e., the appropriate scatter.

3.1 Long Short-Term Memory

A Long Short-Term Memory (LSTM) neural network is a type of
RNN that is traditionally used for natural language processing and time
series forecasting. The unique aspect of LSTM is that it contains a mem-
ory cell. This memory cell is used to store certain pieces of information
that may be needed later in the training process, called a state. The mem-
ory cell has three gates to determine the state: forget gate, input gate,
and output gate. The forget gate controls what stored information can
be forgotten. The input gate controls what information should be used to
change the state of the memory cell, and the output gate controls which
part of that information is needed at a given time. As stated previously,
RNNs use the output of one step and carry it over into the next step in
addition to the new data input. The memory cell was added to combat
the main issue with RNNs which is long-term dependency whereas more
and more information is fed into the RNN, it becomes less effective in
learning because the network cannot remember everything.

3.2 Gated Recurrent Unit

A Gated Recurrent Unit (GRU) is essentially a streamlined version
of the LSTM in Section 3.1. The GRU has gating units that modulate
the flow of information inside the unit. The GRU factors in the previous
short-term dependency with a reset gate by using a linear interpolation
between the previous activation function value and the current one. The
GRU also factors in previous long-term dependencies with an update
gate by taking a linear sum between the existing state and the newly
computed state. Unlike the LSTM the GRU does not have separate mem-
ory cells.

4. Machine Learning for
Compton Camera Imaging

For our studies, we trained the neural network on a data set that
was generated using a Monte Carlo simulation and that consisted of
1,443,993 records and 15 features. These features represent each interac-
tion’s spatial coordinates, Euclidean distance, and energy deposition. An
interaction is a grouping of three spatial coordinates and an energy level.
Each row is either a triple, double-to-triple or a false triple and consists
of three interactions each. Our training data set only consisted of True
Triples, Double-to-Triple scatter, and False events. Furthermore, when
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testing the neural network, we used datasets that used 150MeV (Mega
electron Volt) beams with three different dosage rates: 20kMU (kilo Mon-
itor Unit), 100kMU, and 180kMU. The larger kMU values correspond to
more intense dosage rates. Both the training and testing datasets were re-
shaped to be sequentially read. Therefore, each record of 15 features was
reshaped to 3 interactions of 5 features each: three spatial coordinates,
Euclidean distance, and energy deposition. Each record is fed into the
neural network as a sequence of 3 interactions. The testing data contains
37,151 testing data points for 20kMU/min, 17,425 for 100kMU/min, and
12,254 for 180kMU/min from MCDE model test 1 150MeV. More details
on these studies and results are available in [4, 5].

Model Accuracy Load Time
DRFCN (512 FCL) 75.8% 47s
1LSTM, 256 FCL 74.6% 24s

4 .STM w/ more neurons 74.4% 15s
2LSTM, 128 FCL 74.2% 13s

4 LSTM, 64 FC 70.0% 11s

4 GRU 73.4% 10s
4LSTM 73.2% 7s

Table 1: Comparison of top-performing models with the deep residual fully
connected network (DRFCN) from [3].

The key results of our work are summarized in Table 1 and are
detailed in [5]. The Model column refers to the architecture of the model
used. The first row shows the results of the deep residual fully connect-
ed network (DRFCN) in [2]; this model has 512 fully connected layers
(FCL). All of the following rows correspond to the various models tested
in [5] while 4 GRU represents the model with 4 GRU layers and 2 dense
layers of 128 and 64 neurons. 4 LSTM represents the model with 4 LSTM
layers and 2 dense layers of 128 and 64 neurons. The Accuracy column
represents the overall testing accuracy of the model at the dosage rate of
100kMU/min. The Load Time column represents the observed wall clock
time in seconds to load the model from its saved state to an active state,
i.e., from disk to GPU memory.
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Figure 1: Image (a) uses testing data without the NN classification for data correction, called
"uncleaned” data. Image (b) uses testing data with NN classification for data correction, called
the “cleaned” data with the 4-layer LSTM model. Testing data used comes from MCDE model test1
150MeV. Results for additional treatment regimes are included in [4].

The DRFCN model has the highest accuracy of 75.8% with a load
time of 47s. The models in the last two rows of the table have accuracies
of 73.4% and 73.2% respectively while loading in 10s and 7s. These 4 GRU
and 4 LSTM models are much simpler with only 6 hidden layers instead
of 512. In particular, they have a factor of 85 fewer layers while being only
2% less accurate. These two recurrent models are also 4 times faster to
disk an advantage when treating the patient.

To illustrate the effect that network event classification can have on
the PG images produced from the camera data, reconstructed PG im-
ages are shown in Figure 1. The image in the left column is the PG
image reconstructed with raw data before neural network classification,
called the “uncleaned” data. The image in the right column is the PG
image reconstructed with data after it has been corrected based on the
neural network classifications, called the “cleaned” data. Since each PG
image is from data collected during delivery of the same 150MeV proton
beam, they will have the same position and range even though they are
reconstructed from data collected at different dose rates. We observed an
improved visual appearance of the beam in which the start point and end
point are now easily distinguishable at all three dose rates. The method
used to reconstruct these images is described in [3].
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5. GPU Performance Tests on
Taki and Ada Partitions

The tests in Table 2 were performed to compare the performances
of the 2013 taki partition with the 2018 taki partition, along with the three
GPUs of ada- RTX 2080 Ti, RTX 6000, and RTX 8000. All studies in the
performance comparison study were run using a deep fully connected
neural network whose architecture is similar to the model in [3] with re-
sidual blocks and some hyperparameter changes. The hyperparameters
used for these tests include 128 layers with 256 neurons, a batch size of
8192, a learning rate of le-3, and varying epochs from 64 to 1024 epochs.
Table 2 record the performance times for each partition based on the
number of epochs. The taki 2018 partition performs the fastest complet-
ing the job in 4 hours, 13 minutes, and 42 seconds for 1024 epochs. The
slowest performance is that of the taki 2013 partition, which takes 15
hours, 49 minutes, and 31 seconds for the same number of epochs. All
three ada partitions perform similarly and are slightly slower than the
taki 2018 partition. The taki 2018 partition is at least three times faster
when compared to the taki 2013 partition and is the most efficient parti-
tion to use for future studies.

In Table 2, the taki 2018 GPU cluster was shown to have the fastest
GPU node. The performance of the GPU nodes on ada is very similar
to those on the taki 2018 GPU, but ada has many more available GPUs.
There are 56 RTX 6000 GPUs available and only 4 GPUs available on
taki 2018. The taki 2013 GPUs are too slow for the studies in this research.
The number of high-performance GPUs on ada is a huge advantage for
performing numerous simulations simultaneously.

The Load Time measurements from Table 1 report observations
on a reference computer, a basic laptop with an 11th Gen Intel Core
i7-1165G7 CPU at 2.80 GHz with 16 GB of memory. The laptop has
Intel Optane Memory H10 with 512 GB Intel QLC 3D NAND solid state
drive connected by PCle 3.0 x4 with NVMe interface. The GPU on the
laptop is an Intel Iris Xe Graphics card. On a large cluster like taki or
ada, described at the end of Section 1, these times would be slower,
since the central rotating disk storage is much larger and connected only
via network cables to the compute nodes. Even with high-performance
fiber-optic cables, this is slower than a direct connection from solid-state
storage inside a laptop. However, such direct connection and the use of
solid-state storage are more realistic for the type of computer used in a
clinical setting in a treatment room. The use of a GPU in the treatment
laboratory can significantly decrease the load times, and it is a realistic
possibility since GPUs are small, affordable, and can easily fit in the treat-
ment room. More details on these studies and results are available in [4].
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a.Performances with 64 epochs

Cluster Partition Total Time (hh:mm:ss)
taki 2013 00:59:49
taki 2018 00:16:01
ada RTX 2080 00:19:17
ada RTX 6000 00:20:32
ada RTX 8000 00:21:08

b. Performances with 128 epochs

Cluster Partition Total Time (hh:mm:ss)
taki 2013 01:59:06
taki 2018 00:31:48
ada RTX 2080 00:39:16
ada RTX 6000 00:40:05
ada RTX 8000 00:41:06

c. Performances with 256 epochs

Cluster Partition Total Time (hh:mm:ss)
taki 2013 04:57:11
taki 2018 01:03:21
ada RTX 2080 01:18:38
ada RTX 6000 01:20:04
ada RTX 8000 01:20:17
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d. Performances with 512 epochs

Cluster Partition Total Time (hh:mm:ss)
taki 2013 10:30:07
taki 2018 02:06:39
ada RTX 2080 02:38:19
ada RTX 6000 02:40:09
ada RTX 8000 02:41:34

e.Performances with 1024 epochs

Cluster Partition Total Time (hh:mm:ss)
taki 2013 15:49:31
taki 2018 04:13:42
ada RTX 2080 05:09:07
ada RTX 6000 05:18:45
ada RTX 8000 05:25:41

Table 2: Table of takiand ada performances with varying epochs.
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