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ABSTRACT Identifying relationships amongmultiple datasets is an effective way to summarize information
and has been growing in importance. In this paper, we propose a robust 3-step method for identifying
the relationship structure among multiple datasets based on Independent Vector Analysis (IVA) and
bootstrap-based hypothesis testing. Unlike previous approaches, our theory-backed method eliminates
the need for user-defined thresholds and can effectively handle non-Gaussian data. It achieves this by
incorporating higher-order statistics through IVA and employing an eigenvalue decomposition-based feature
extraction approach without distributional assumptions. This way, our method estimates more interpretable
components and effectively identifies the relationship structure using hierarchical clustering. Simulation
results demonstrate the effectiveness of our method, as it achieves perfect Adjusted Mutual Information
(AMI) for different values of the correlation between the components. When applied to multi-task fMRI
data from patients with schizophrenia and healthy controls, our method successfully reveals activated brain
regions associated with the disorder, and identifies the relationship structure of task datasets that matches our
prior knowledge of the experiment. Moreover, our proposed method extends beyond task datasets, offering
broad applicability in subgroup identification in neuroimaging and other domains.

INDEX TERMS Blind source separation, bootstrap, data-driven, fMRI, independent vector analysis,
relationship structure.

I. INTRODUCTION
In recent years, identifying relationships among multiple
datasets has received growing attention in medical applica-
tions, such as for making group inferences when estimating
brain activations [1] or for better localization of brain
activity [2]. By defining a grouping as a subset of datasets that

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian A. Linte.

share some latent characteristics, analyzing how the datasets
are distributed in these groupings and how these groupings
are related reveals the structure of these relationships.
Identifying this relationship structure provides an even finer
understanding of the complete dataset and therefore goes
beyond only simple identification of the groupings.

One potential application of this is subgroup identifi-
cation [3]. In this context, each dataset corresponds to a
subject, and a grouping of subject datasets is called a subject
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grouping or subgroup. The identified subgroups can be used
in multiple applications. For example, in Electronic Health
Records (EHR) data, identifying subgroups can help uncover
previously unknown connections between illnesses [4], while
in precision medicine, estimating the dose of medication
for a patient can be achieved based on the known dose of
other patients in the same subgroup [5], [6]. Furthermore,
by identifying the relationship structure among the datasets
in a mixed cohort, for example, the associations among data
of patients with schizophrenia, bipolar disorder, and their
subtypes can be found.

There are multiple approaches for subgroup identification.
For example, in [7], a subgroup identification method is
proposed that allows the inclusion of any set of covariates
for classification, while in [8], model-based partitioning
is introduced for estimating a treatment effect function
to identify subgroups that are linked to predictive factors
through a decision tree. Many of these subgroup identi-
fication methods are either model-based [8] or heuristic
approaches [7], and thus have strong assumptions or can
be prone to subjective thresholds. Furthermore, they all
are only identifying the subgroups, but not the relationship
among them. These limitations highlight the need for further
development and refinement of methods that can effectively
learn the relationship structure among multiple datasets data
without subjective choices. Here, data-driven techniques
provide an alternative approach to the problem by extracting
lower-dimensional features linked across multiple datasets.
Joint Blind Source Separation (JBSS) techniques, especially
those based on matrix decompositions such as Independent
Component Analysis (ICA), summarize multiple datasets
through latent variables, called sources/components, that
are directly interpretable, without imposing strong con-
straints [9]. Based on these latent components, subgroups can
be identified as subsets of datasets where the components
within a subgroup are more similar to each other than to those
outside the subgroup.

The well-known matrix decomposition method ICA is
based on a linear mixture model, where a dataset is
decomposed into a mixing matrix and sources, which are
assumed to be statistically independent. ICA has been
found to be successful for decomposing neuroimaging
datasets, e.g., functional Magnetic Resonance Imaging
(fMRI) datasets, where usually little is known about the
underlying sources [9], [10]. ICA has been extended to
analyze multi-set data using either the joint ICA [11] or the
group ICA [10] models, which are limited in performance,
though, as they assume a common mixing matrix or source
vector for all datasets. Independent Vector Analysis (IVA)
is a more flexible extension of ICA to multiple datasets
that makes use of the statistical dependence of the source
components across datasets [9], [12]. Over the years, there
has been an increase in the utilization of IVA for fMRI data
fusion [13], [14] because IVA 1) naturally aligns the sources
across datasets, 2) effectively retains subject variability in
multi-subject fMRI data [15], and 3) can identify common

and distinct brain activations between groups of patients and
controls [13], [14], [16].

In [13], subgroup identification is performed using IVA,
where subgroups of patients with schizophrenia are found
with a semi-heuristic procedure with the goal of better
understanding the underlying heterogeneity of schizophrenia.
An approach based on IVA and Gershgorin discs is used for
subgroup identification in [16], but their method identifies
subgroups within each Source Component Vector (SCV)
separately, which is less robust compared with taking the
information from several SCVs together into account. Amore
comprehensive review of data-driven subgroup identification
methods can be found in [17]. Furthermore, these approaches
only identify the subgroups, but do not reveal their full
relationship structure. For example, in [18], hierarchical
clustering is used for identifying groupings of representative
rules that are used for subgroup discovery instead of
directly revealing the relationship among different datasets.
Finally, the authors of [14] show that information about
the relationship of the datasets can be visually seen in the
covariance matrices of the SCVs estimated by IVA, but they
do not provide an objective method for fusing the information
of all SCVs together to discover the full relationship structure.
Herein lies the novelty of our paper: we do not only
discover groupings of the datasets but also identify their
relationship structure. Moreover, we leverage information
from all SCVs collectively, compared with considering each
SCV individually, which enhances the robustness of our
method.

More precisely, in this paper, we propose a powerful
method for identifying the relationship structure among
multiple datasets by leveraging key properties of IVA. To the
best of our knowledge, no other method exists to achieve
this goal. In our 3-step method, 1) a latent representation
of the datasets is found using IVA, 2) the SCVs are
identified that contain information about the relationship
of the datasets, and 3) features are extracted from these
SCVs as the input of a hierarchical clustering algorithm.
By finding how close these datasets are to each other, our
method does not only identify groupings of the datasets but
also fully discovers their relationship structure in a resulting
dendrogram. We summarize the contributions of this work as
follows:
• developing a method for identifying the relationship
structure among multiple datasets,

• verifying the success of our method by identifying a
meaningful relationship structure in multi-task fMRI
datasets, as the method groups together the task datasets
from similar tasks, and

• revealing interpretable latent components in the fMRI
data and observing significantly stronger deactivation of
the Default Mode Network (DMN) areas in patients with
schizophrenia compared with healthy controls.

With simulated datasets, we experimentally demonstrate the
superior performance of our proposed method compared with
the competing techniques. Our paper is organized as follows:
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We formulate the problem in section II and explain our
method for solving it in section III. Then, we evaluate our
method in simulations in section IV, apply it to real multi-task
fMRI data in sectionV, and finally summarize and discuss the
main findings of our paper in section VI.

II. PROBLEM FORMULATION
Let x[k] ∈ RR denote the k th dataset, where R denotes the
dimension of the dataset.
Given K datasets, identify their relationship structure, i.e.,

group datasets based on the similarity (high statistical depen-
dence) between their latent variables. Note that this cannot be
achieved through simple clustering approaches, as revealing
the relationship structure relies on the dependence of the
latent variables across datasets.

The datasets are assumed to be generated according to the
following model:

x[k] = A[k]s[k], k = 1, . . . ,K , (1)

where s[k] ∈ RR is the latent source vector containing R
source components, andA[k]

∈ RR×R is the unknown mixing
matrix. For example, in fMRI data, R can correspond to the
number of subjects, and the sources are spatial maps.

Let the r th Source Component Vector (SCV) be defined
as the concatenation of the r th source component of all K
datasets [9]:

sr =
[
s[1]r . . . s[K ]

r

]T
∈ RK , (2)

where s[k]r ∈ R denotes the r th source component of the k th

dataset. Without loss of generality, the source components
are assumed to be zero-mean and unit-variance. Furthermore,
we assume the source components to be independent among
SCVs, which is a common assumption for identifying
source components by only observing datasets [19]. This
way, the definition of an SCV allows to capture the
dependence information across multiple datasets within an
SCV. As the source components are zero-mean and unit-
variance, the covariance matrix of the r th SCV coincides with
its correlation matrix and can be defined as

Cr = E
[
srsTr

]
∈ RK×K . (3)

In [13] and [14], it is shown that information about the
relationship of the datasets can be inferred from the linear
dependence (correlation) of the source components across
datasets. This information is revealed in the covariance
matrices of the SCVs. An SCV covariance matrix with all
non-zero off-diagonal values implies that all components
within that SCV are dependent, and hence describes a
common SCV, i.e., with the components common across all
datasets [13]. Similarly, an SCV covariance matrix exhibiting
a block-diagonal structure (with off-block elements equal
to 0) implies that all components within each block are
dependent. We call SCVs with these covariance matrices
structured. Note that this also holds for covariance matrices
that can be transformed into block-diagonal matrices using

an orthogonal permutation matrix P ∈ RK×K s.t. C̃r =

PCrPT is block-diagonal. While common SCVs only provide
limited useful information about the relationship between
the datasets, structured SCVs are most informative for this.
Consequently, in this paper, we are primarily interested in
identifying the structured SCVs and then using them for
identifying the relationship structure of the datasets.

III. METHOD
In this paper, we propose a method for identifying the
relationship structure among multiple datasets. Figure 1
shows the three steps of which our method consists:
1) estimation of latent sources, 2) identification of common
and structured SCVs, and 3) identification of the relationship
structure using structured SCVs. The following sections
explain the details of each step.

A. STEP 1: ESTIMATION OF SCVS
To be able to infer information about the relationship structure
from the SCV covariance matrices, the unknown source
components in the SCVsmust be estimated from the observed
datasets. For this, we use IVA.

1) INDEPENDENT VECTOR ANALYSIS
The generative model for IVA is given by (1). The goal of IVA
is to jointly estimate the K source vectors [12]

ŝ [k] =W[k]x[k], (4)

where ŝ [k] ∈ RR denotes the estimate of s[k], and W[k]
∈

RR×R is the demixing matrix for the k th observed dataset. The
degree of independence is measured by mutual information
among the estimated SCVs, defined as [9]

I (̂s1; . . . ; ŝR) =
R∑
r=1

(
K∑
k=1

H
(̂
s [k]r

)
− I (̂sr )

)

−

K∑
k=1

log
∣∣∣det (W[k]

)∣∣∣− C, (5)

where I (̂sr ) is the mutual information of the K source
components in the r th estimated SCV ŝr , H

(̂
s [k]r

)
denotes

the entropy of ŝ [k]r , and C is a constant term. By minimizing
the mutual information among the estimated SCVs, IVA
maximizes independence among the SCVs, while simultane-
ously maximizing the mutual information within each SCV.
Through the selection of an appropriate multivariate density
model, IVA can take either second-order or all-order statistics
into account [9]. IVA can correctly estimate the SCVs if
and only if there exist no subsets of source components
within two SCVs that meet the following conditions: 1) the
source components in the subsets are Gaussian distributed
and independent of the other source components within the
same SCV, and 2) the source components in the subsets of the
two SCVs have proportional covariance matrices [9]. Hence,
IVA is able to identify a very broad class of signals.
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FIGURE 1. Visualization of our proposed method for identifying the relationship structure among multiple datasets. We have K observed datasets of
dimension R × V , where V is the number of voxels and R the (reduced) dimension of the data. In step 1, the latent sources in the SCVs Ŝr are
estimated by applying IVA on the observed datasets. In step 2, the SCVs are identified as structured or common by applying an eigenvalue
decomposition (EVD) on their covariance matrices and using the proposed bootstrap technique (BT) to estimate d̂r , i.e., the number of eigenvalues
greater than 1. If d̂r = 1, the r th SCV is identified as common, and if d̂r > 1, as structured. We denote the indices of the structured SCVs as
S = {i1, . . . , i|S|}. In Step 3, the d̂r leading eigenvectors of the structured SCVs are concatenated to form a feature matrix, which is the input of
hierarchical clustering. The resulting clusters are the identified groupings (in this example, there are two groupings: orange and green), and the
dendrogram reveals the relationship structure among the datasets.

IVA-L-SOS [15] assumes that the SCVs underlay a
multivariate Laplacian distribution while allowing for a
non-identity covariance matrix. This way, dependence is not
only measured by higher-order statistics, but correlations,
i.e., second-order statistics, are also taken into account.
As it has been shown that the modeling assumptions of
IVA-L-SOS are a good match for the properties of real fMRI
data [13], [15], we will use it in our method. However, if our
method is applied to data with different source distributions,
Step 1 can be replaced by another source separation method
with appropriate assumptions for that type of data.

2) SAMPLES
In practice, we observe V samples of each dataset x[k], which
form the observed datasetsX[k]

∈ RR×V . Then, the estimated
source matrices are

Ŝ[k] =W[k]X[k]
∈ RR×V , (6)

and the r th estimated SCV is defined as

Ŝr =
[(̂

s [1]r :

)T
. . .

(̂
s [K ]
r :

)T
]T
∈ RK×V , (7)

where ŝ [k]r : ∈ R1×V denotes the r th row of Ŝ[k], i.e., the r th

estimated source component of the k th dataset. The estimation
of the SCVs with samples is shown in Step 1 in Figure 1.

B. STEP 2: IDENTIFICATION OF COMMON AND
STRUCTURED SCVS
In Step 2, we must determine which of the estimated SCVs
are common and which are structured. Only the structured
SCVs contain information about the relationship between the
datasets, and thus, only these structured SCVs are utilized in
Step 3 to determine features for identifying the relationship
structure.
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The SCVs estimated by IVA-L-SOS can be identified as
either common or structured based on the eigenvalues of
their covariance matrices. Let the Eigenvalue Decomposition
(EVD) of the true covariance matrix of the r th SCV Cr
(defined in (3)) be

Cr = Ur diag (λr )UT
r (8)

where Ur ∈ RK×K contains the eigenvectors of Cr
as columns, and λr ∈ RK contains the corresponding
eigenvalues. When Cr = I, where I denotes the identity
matrix, all its eigenvalues are equal to 1. However, when
Cr ̸= I, some eigenvalues are different from 1. Let dr be
defined as the number of eigenvalues of Cr that are greater
than 1. We assume that the SCV covariance matrices have
only one of the following two structures:
• For common SCVs, where all the source components
within an SCV are correlated with each other, the
covariance matrix Cr has 1s on the diagonal, and all
off-diagonal values (corresponding to the correlation
coefficients) are non-zero. In [20], it is shown that, under
certain conditions on correlation coefficients, Cr has
exactly one eigenvalue greater than 1, i.e., dr = 1.

• For structured SCVs, the covariance matrix Cr
is block-diagonal with 1s on the diagonal and
zero off-block values (or can be permuted into a
block-diagonal matrix C̃r = PCrPT, where P ∈ RK×K

is an orthogonal permutation matrix). We assume that
the covariance matrices of structured SCVs have at least
two blocks. To determine the number of eigenvalues
greater than 1 for such SCV covariance matrices,
we present the following corollary:
Corollary 1: Let Cr ∈ RK×K be a block-diagonal
matrix consisting of dr blocks Bi ∈ RKi×Ki such that

Cr =


B1 0 . . . 0

0
. . .

. . .
...

...
. . . Bdr 0

0 . . . 0 I

 ,

and Bi contains 1s on the diagonal and positive entries
on its off-diagonal elements. Then, Cr has exactly dr
eigenvalues greater than one.
As it is proven in [20] that |{λ(Bi) > 1}| = 1
(and the remaining eigenvalues are less than or equal
to 1), it follows naturally for dr blocks in Cr that
|{λ(Cr ) > 1}| = dr . Note that Corollary 1 also holds
if C̃r (and not Cr ) is block-diagonal because C̃r has the
same eigenvalues as Cr .

Under the assumption that a structured SCV consists of at
least two blocks, we can differentiate between a common
SCV (dr = 1) and a structured SCV (dr > 1) by
counting the number of eigenvalues greater than 1. We define
C = {r : dr = 1} as the set of indices of the common SCVs
and S = {r : dr > 1} as the set of indices of the structured
SCVs. In the following, we denote the indices in S as

S = {i1, . . . , i|S|}. (9)

Note that we do not consider SCVs with identity covariance
matrices, which would correspond to completely uncorre-
lated datasets, because we assume that in real data some
correlations typically exist in each SCV.
Now, when we estimate covariance matrices over finite

samples V ,

Ĉr =
1
V
Ŝr Ŝ

T
r , (10)

the estimated correlation coefficients corresponding to the
uncorrelated datasets will not be exactly zero, and thus, more
than dr eigenvalues for a structured SCV will be greater
than 1. Thus, by just counting the eigenvalues greater than
1, dr would be overestimated. Consequently, it is necessary
to estimate dr . Estimating the number of significant eigen-
values is commonly addressed as a model-order selection
problem in the literature [21]. However, these model-order
selection techniques assume certain asymptotic properties (as
V →∞) on the non-significant eigenvalues, for example,
assuming they all or a subset of them are equal to each
other (in [20] and [21]). This is not applicable for the SCV
covariance matrices. For example, if all the source compo-
nents in an SCV covariance matrix would belong to one of
the blocks, and thus there would be no uncorrelated source
components, then for arbitrary correlation coefficients, none
of the non-significant eigenvalues would be equal to each
other.

To estimate dr for the r th SCV covariance matrix Cr ,
we perform a binary hypothesis test for each k = 1, . . . ,K
with the null hypothesis

H0 : λ[k]r ≤ 1, (11)

and the alternative

H1 : λ[k]r > 1. (12)

Here, λ[k]r is the k th eigenvalue of Cr . As in practice we only

estimate Ĉr , we only know the estimated eigenvalues λ̂
[k]
r .

We define a test statistic T̂ = λ̂
[k]
r − 1, and to perform

the hypothesis test, we must know the distribution of the
statistic underH0 [22]. Neither the sample nor the asymptotic
distribution of the test statistic is known. We, therefore,
propose a bootstrap-based hypothesis test [23] to estimate
this distribution. Under certain conditions, the distribution
estimated by bootstrap converges to the true distribution if
the number of samples goes to infinity (V → ∞) [24], and
thereby we can estimate d̂r for each SCV.
The pseudocode for our method is described in

Algorithm 1. In the following, we describe the steps of the
algorithm.

1) The sample correlation matrix Ĉr =

∣∣∣ 1V Ŝr ŜT
r

∣∣∣ is
calculated (line 1). The absolute value is necessary
because of a possible sign ambiguity in the sources.
Then, an EVD is applied on Ĉr to get the eigenvalues
λ̂r =

[̂
λ
[1]
r , . . . , λ̂

[K ]
r

]
, sorted in descending order

(line 2). Here, λ̂[k]r denotes the estimate of λ
[k]
r .
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Algorithm 1 Bootstrap Algorithm for Estimating d̂r
Input: Ŝr ∈ RK×V , B, Pfa
1: Ĉr ← abs

(
1
V Ŝr Ŝ

T
r

)
2: λ̂r , Ûr ← EVD(Ĉr ) ▷ s.t. λ̂[1]r ≥ · · · ≥ λ̂

[K ]
r

3: for b = 1, . . . ,B do
4: bj← randint(1,V ,V ) ▷ V integers ∼ Uint(1,V )
5: bŜr ← Ŝr (:, bj)
6: bĈr ← abs

(
1
V bŜr bŜ

T
r

)
7: b̂λr , bÛr ← EVD(bĈr )
8: end for
9: for k = 1, . . . ,K do

10: T̂ ← λ̂
[k]
r − 1

11: for b = 1, . . . ,B do
12: bT̂ ∗← b̂λ

[k]
r − λ̂

[k]
r

13: end for
14: T̂∗← sort(T̂∗) ▷ s.t. 1T̂ ∗ ≤ · · · ≤ BT̂ ∗

15: η = ⌊(B+ 1) · (1− Pfa)⌋
16: if T̂ < ηT ∗ then
17: ϵ[k]← 0 ▷ λ

[k]
r ≤ 1

18: else
19: ϵ[k]← 1 ▷ H0 is rejected. λ

[k]
r > 1

20: end if
21: end for
22: d̂r = count_nonzero(ϵ) ▷ Number of ϵ entries equal 1
Output: d̂r

2) The SCVs are resampled with replacement for B times,
where for each resampling, V indices are drawn from
Uint(1,V ) (uniform distribution of integers between
1 and V ) (line 4), and the SCVs are resampled on
those indices (line 5). The resampled SCVs bŜr thus
also have V samples. The prescript b denotes the bth

bootstrap resample.
3) The eigenvalues b̂λr from the covariance matrices

bĈr =

∣∣∣ 1V bŜr bŜT
r

∣∣∣ are calculated (lines 6–7).

4) We define the test statistic T̂ = λ̂
[k]
r − 1 (line 10).

5) The test statistic bT̂ ∗ = b̂λ
[k]
r − λ̂

[k]
r is calculated

(line 12).
6) The values of bT̂ ∗ are sorted in ascending order

(line 14). Using a given false alarm probability Pfa,
a threshold ηT̂ ∗ is found, where η = ⌊(B+1) · (1−Pfa)⌋
(line 15), and ηT̂ ∗ is bT̂ ∗ for b = η. If T̂ > ηT̂ ∗,
then H0 is rejected, i.e., λ

[k]
r is greater than 1 with a

significance of 1− Pfa, and the k th element in a vector
ϵ is set to 1 (lines 16–20).

7) In the end, the number of 1s in ϵ is counted, which
equals to d̂r , the estimated number of eigenvalues
greater than 1 in the r th SCV (line 22).

C. STEP 3: IDENTIFICATION OF THE RELATIONSHIP
STRUCTURE USING STRUCTURED SCVS
In Step 3, the eigenvectors of the covariance matrices of
the structured SCVs are used as features for the hierarchical

clustering. In [20], it is shown that the eigenvector cor-
responding to an eigenvalue greater than 1 characterizes
the correlated datasets for the corresponding block. More
specifically, for each eigenvalue greater than 1, the eigen-
vector element corresponding to a dataset that is not
part of the correlated datasets is 0, while the eigenvector
elements of the correlated datasets are greater than 0. This
means, the dr leading eigenvectors contain information
about the relationship of the datasets within the r th SCV.
As stated in Step 2, the covariance matrices are estimated
from finite samples, and dr is also estimating using the
proposed bootstrap-based hypothesis test. We will thus
use this estimated d̂r from Step 2. As different SCVs
provide complementary information about the relationship
of the datasets, the d̂r leading eigenvectors (r ∈ S) from
all structured SCV covariance matrices are horizontally
concatenated to form a feature matrix, F, of

∑
r∈S d̂r

eigenvector columns, which is then fed into the hierarchical
clustering:

F = concat
(
Ûi1

(
:, 1 : d̂i1

)
, . . . , Ûi|S|

(
:, 1 : d̂i|S|

))
∈ RK×

∑
r∈S d̂r . (13)

This way, our method leverages the knowledge of all SCVs
together instead of performing an analysis separately on
each SCV. The advantage of using hierarchical clustering,
compared with, e.g., K -means clustering, is that no prior
knowledge or estimation of the number of clusters is
necessary. Additionally, while K -means clustering would
only identify the groupings of datasets, which correspond to
the resulting clusters, hierarchical clustering also identifies
the relationship structure among the datasets, which is
revealed in the dendrogram.

D. COMPUTATIONAL COMPLEXITY
We compute the big-O complexity for each step of the
proposed method. In Step 1, the complexity is dominated by

the multiplication of Ĉ−1r ∈ RK×K with Ŝr ∈ RK×V in the
main loop of IVA-L-SOS. In each iteration, Ĉ−1r is updatedK
times per SCV (and thus this multiplication is performed K
times per SCV), which results for all R SCVs in a complexity
of O(IRK 3V ) for I iterations. In Step 2, the dominant cost is
the calculation of the covariance matrices of the resampled
SCVs bŜr ∈ RK×V , which for all B bootstrap resamples in
all R SCVs has complexity O(BRK 2V ). In Step 3, the cost
is dominated by the hierarchical clustering of the K datasets,
which is of complexity O(K 3) [25]. Thus, our method has a
big-O complexity of O(RK 2V (IK + B)).

IV. SIMULATIONS
To demonstrate the performance of our proposed bootstrap
technique, we simulate common and structured SCVs.1

We generate the entries of the SCV covariance matrices Cr

1Python code available at https://github.com/SSTGroup/relationship_
structure_identification
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FIGURE 2. R = 6 simulated SCV covariance matrices (of dimension
10 × 10) for ρ = 0.2. We have d1 = 1, d2 = d3 = d4 = 2, d5 = 3, and
d6 = 4. Using these covariance matrices, 6 SCVs with
Laplacian-distributed sources are generated.

according to the following model:

Cr (k, l) =


1, k = l (diagonal elements)
0, k ̸= l,Cr (k, l) /∈ Bi, 1 ≤ i ≤ dr
ρ + nr (k, l) k ̸= l,Cr (k, l) ∈ Bi, 1 ≤ i ≤ dr

(14)

where Bi is the ith block, ρ is the correlation coefficient of the
correlated sources, and nr (k, l) = nr (l, k) ∼ N (0, 0.0025)
is added variability to fulfill the identifiability conditions of
IVA [9]. Figure 2 shows the structure of the six 10 × 10
SCV covariance matrices in our simulations for ρ = 0.2.
C1 corresponds to a common SCV, i.e., d1 = 1, while the
other SCVs are structured.C2,C3 andC4 all have two blocks,
i.e., d2 = d3 = d4 = 2, C5 has 3 blocks, i.e., d5 = 3, and
C6 has 4 blocks, i.e., d6 = 4. Note that C3 and C4 contain 1
and 4 uncorrelated source components, respectively. Using
these SCV covariance matrices, we generate R = 6 SCVs
Sr ∈ RK×V , each with K = 10 source components and
V = 1000 samples. The samples are drawn from a Laplacian
distribution as described in [26] (in section 6.4), with zero
mean and with covariance matrices specified as shown in
Figure 2.
We perform two experiments. In the first (section IV-A),

we compare the performance of our proposed bootstrap
technique and two competing methods for estimating d̂r
from the true generated SCVs. We use the true sources here
because the identified sources from IVA may be estimated
correctly but not aligned correctly among SCVs, i.e., the
correlated blocks in the covariance matrices may be permuted
among SCVs. Due to this, d̂r of the output of IVA may not
match d̂r of the generated sources. In a second experiment
(section IV-B), we apply the complete method, including
the IVA step and the clustering, on simulated observed
datasets and investigate its robustness for different correlation
coefficients. In both of these scenarios, we did not consider
noise as we assumed that for real data, noise is effectively
removed during a PCA-based dimension reduction step in
the preprocessing. This is based on the assumption that the
problem is essentially overdetermined, i.e., there are more

FIGURE 3. Boxplot of P(d̂r = dr ), r = 1, . . . , 6, for different values of ρ

for the BT, EV and GD technique. On average, BT is always superior to EV
and GD.

FIGURE 4. Average value of d̂r for SCVs 4 and 5 for different values of ρ

for the BT, EV and GD technique. The true values are d4 = 2 and d5 = 3.
The BT technique estimates both values close to the ground truth.

observations than underlying source components of interest,
which is the common scenario in most applications including
ours.

A. ESTIMATING d̂r

We evaluate the performance of three techniques for esti-
mating d̂r from the true sources. The first method is our
proposed bootstrap (BT) technique, described in Algorithm 1,
with B = 1000 bootstrap resamples and Pfa = 0.05. The
second method (EV) directly counts how many eigenvalues

are greater than 1 in the r th SCV, i.e., d̂r = |{k : λ
[k]
r > 1}|.

The third method is the Gershgorin Disc (GD) technique
from [16].

We simulate 50 Monte-Carlo runs. We investigate the two
performance metrics

P(̂dr = dr ) =
#(̂dr = dr )

#runs
, (15)

which estimates the probability that d̂r is estimated correctly,
and µd̂r , which is the average value of the estimated d̂r .

The boxplot of P(̂dr = dr ) for the R = 6 SCVs is shown
in Figure 3 for different values of ρ, with circles denoting
outliers. Notably, our proposed BT technique demonstrates
robust performance by accurately estimating d̂r even for very
small correlation values in the underlying data, showcasing its
effectiveness in handling the Laplacian (non-Gaussian) data
distribution and varying correlation values ρ. In contrast, the
EV technique only achieves high P(̂dr = dr ) values with
increasing ρ, while the GD technique does not perform well
for all values of ρ.

To investigate the reason for small values of P(̂dr = dr )
in the EV and GD technique, we show µd̂4 and µd̂5 in
Figure 4, estimated for the BT, EV and GD techniques.
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We see (blue triangles) that the EV technique overestimates
d4 (also d3, not shown here), with an improvement for higher
ρ values, while the BT (circles) and GD (squares) techniques
estimate the value close to the ground truth for all ρ values.
In orange squares, we see that the GD technique strongly
underestimates d5 (also d2 and d6, not shown) compared
with the BT (circles) and EV (triangles) techniques for all
ρ values. The over- and underestimation of d̂r in the EV
and GD techniques is the reason for the decreased values of
P(̂dr = dr ) compared with the BT technique. Thus, the BT
technique is superior to EV and GD in terms of estimating d̂r .

B. IDENTIFYING THE RELATIONSHIP STRUCTURE
As we have shown that the BT technique is superior to EV
and GD in terms of estimating d̂r , we evaluate our complete
method for identifying the relationship structure only using
BT. We are not aware of other methods to identify the
relationship structure, and not only groupings of the datasets,
with whom we could compare our method.

We generate the SCVs as in section IV-A and the datasets
as X[k]

= A[k]S[k], where the elements of A[k]
∈

R6×6 are drawn fromN (0, 1). After performing IVA-L-SOS
with 20 random initializations and choosing the estimated
sources of the most consistent run2 as in [27], the BT
technique is applied to the estimated SCVs to estimate d̂r .
The d̂r leading eigenvectors of the structured SCVs are
concatenated in a feature matrix F, which we feed into the
hierarchical clustering. Hierarchical clustering is performed
using the linkage function from scikit-learn [28] with the
‘ward’ linkage (minimizing the variance of the clusters) and
visualized using the dendrogram function.

Figure 5 shows the ground truth of the dendrogram for
clustering the datasets using the SCV covariance matrices of
this experiment. Ground truth means that we set dr manually
and use the dr eigenvectors of the true (instead of sample)
covariance matrix for clustering. In the figure, the labels of
the datasets are denoted on the x-axis, and the y-axis shows
the distance between the clusters. A small distance means
that the corresponding clusters are very similar. We see that
three groupings exist in the datasets, i.e., datasets 5–7 form
one grouping (orange), datasets 8–10 form a second grouping
(green), and datasets 1–4 form a third grouping (red). We also
see that the groupings of datasets 5–7 and 8–10 are closer
to each other than to that of datasets 1–4. The labels that
result from the clustering are the same within each cluster
but with arbitrary ordering. By denoting the true label for the
k th dataset with ck , we choose c1 = c2 = c3 = c4 = 1,
c5 = c6 = c7 = 2, and c8 = c9 = c10 = 3.
We are not aware of a performance metric that captures

how well the relationship structure of the datasets is
estimated; instead, we use the Adjusted Mutual Information
(AMI) [29] between the true and estimated clusters, which
evaluates if the groupings are identified correctly. The AMI

2Python code available at https://github.com/SSTGroup/independent_
vector_analysis [14]

FIGURE 5. The ground truth dendrogram for our simulations shows the
relationship structure of the 10 datasets. There exist 3 groupings:
consisting of datasets 5–7 (orange), 8–10 (green), and 1–4 (red).

is a normalized metric based on the mutual information of
the true and estimated clustering, i.e., the AMI is equal to 1
if the true and the estimated clusters are equal, and equal
to 0 if the mutual information between the true and estimated
clusters equals the expected value of the mutual information
between the true and a random clustering. Furthermore, the
AMI corrects for the permutation ambiguity between the true
and the estimated clusters. Our method has an AMI of 1 for
ρ = 0.2, 0.5, 0.8, i.e., it correctly identifies the groupings in
100% of the runs for all the correlation values.

V. REAL FMRI MULTI-TASK DATA
Finally, we apply our method on real multi-task fMRI data.
Data frommultiple tasks provide complementary information
about the brain [30], [31] because different tasks involve
cognitive functions that are either task-specific or common
across all tasks [32]. By analyzing multiple datasets jointly,
the function of and relationship between brain networks
can be identified [32], which helps to understand the brain
organization [33]. Furthermore, jointly analyzing data from
multiple cognitive tasks may also help to understand complex
disorders like schizophrenia, which is a neuropsychiatric
disorder associated with cognitive deficits [30], [34] and
altered connections between brain regions [35]. These altered
connections might not be captured when analyzing only the
data from a single task [30]. By analyzing data from multiple
tasks jointly, latent neural patterns, i.e., biomarkers, may
be revealed, which help yield new features like a common
network for the tasks that captures differences between
patients with schizophrenia and controls [11], [35].

A. DATASETS AND PREPROCESSING
We apply our proposed method on 10 fMRI datasets from the
MIND Clinical Imaging Consortium (MCIC) collection [36],
which are collected from 271 subjects (121 patients with
schizophrenia and 150 healthy controls) that perform three
different tasks: Auditory Oddball (AOD), Sensory Motor
(SM), and Sternberg Item Recognition Paradigm (SIRP).
In the AOD task, three stimuli are played: a frequent standard
stimulus (1 kHz tone), an infrequent target stimulus (1.2 kHz
tone), and an infrequent novel stimulus (computer-generated,
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complex sound). After hearing the target stimulus, the subject
must press a button with the right index finger. During the
SM task, tones are played in increasing order until the highest
pitch is reached, then in decreasing order. The subject must
press a button with the right thumb every time a new tone
occurs. The SIRP task consists of two phases, encoding
(SIRP-E) and probe (SIRP-P). In the encoding phase, a set of
digits is presented on a screen, and the subject needs to learn
this set. In the following probe (SIRP-P), digits are presented
subsequently in a pseudo-random order. The subject must
press a button with the right thumb if the digit was in the set
and with the left thumb if not.

We expect task-specific activations of the auditory brain
regions for the auditory tasks (AOD and SM) and of the
visual brain regions for the visual tasks (SIRP), along with
activations of the Default Mode Network (DMN) for all
tasks. This prior knowledge about the relationship of the task
datasets provides us with the opportunity to directly assess
the success of the proposed method with real data, which
is typically not easily achievable, as for real data one often
does not know the true relationship structure. Furthermore,
as the data is collected from patients and controls, we can
also use these datasets to evaluate which tasks show a clearer
discrimination of patients with schizophrenia.

For each of the subjects, multiple three-dimensional brain
scans are collected over time during each task. The recorded
scans are then preprocessed as in [35]: Using the Statistical
Parametric Mapping (SPM)MATLAB toolbox [37], a simple
voxelwise linear regression is applied to the data to eliminate
the temporal dimension. The regressors are created by
convolving the hemodynamic response function in SPMwith
the desired predictors for each task, which will be described
in the next paragraph. For each subject and task, the resulting
regression coefficient maps, also called ‘‘contrast images’’,
are flattened and used as one-dimensional features that
capture the variations across subjects. The flattened feature
vectors of length J = 48, 546 voxels are concatenated for
I = 271 subjects to create the k th task dataset X[k]

∈ RI×J ,
k = 1, . . . ,K .

In the AOD task, the occurrences of the novel stimuli
(AOD-N), the target stimuli (AOD-T), and the target with
standard stimuli (AOD-TS) are each modeled as delta
functions and used as predictors. Thus, there are three task
datasets for the AOD task. In the SM task, the whole block is
used as the predictor; thus, there is one SM task dataset. For
both phases of SIRP (E and P), also the whole block is used
as the predictor. This way, the data allows us to analyze the
learning and retrieving phases of this task separately. As the
SIRP task is repeated with 1, 3, and 5 digits in the set, there
are six datasets for the SIRP task. Thus, in total, we have
K = 10 datasets.

B. IMPLEMENTATION DETAILS
As typically the dimension of the datasets is much higher
than the number of latent sources, a dimension reduction via

Principal Component Analysis (PCA) is performed as pre-
processing. This way, each observed dataset is transformed
separately in a lower-dimensional subspace of dimension R.
Then, IVA is performed on the dimension-reduced datasets
X[k]
∈ RR×V to estimate the source matrices Ŝ[k] ∈ RR×V .

From these, the SCVs Ŝr , r = 1, . . . ,R are formed.
As it is mostly the case for real data, also in the MCIC

data, we do not know the ground truth dimension R of the
latent sources. Thus, selecting an appropriate value for R
is important to get meaningful results. Our method gives
robust clustering results for a wide range of values for
R = 20, 21, . . . , 30. In this paper, we present the results
for R = 25 because at this order, the estimated fMRI
activation maps are 1) stable, i.e., not split (as in higher
orders) or merged (as in lower orders), and 2) meaningful,
i.e., physically interpretable.

Our approach is primarily data-driven, with the exception
of two user-selected parameters, the probability of false alarm
Pfa and the number of bootstrap resamples B. With Pfa,
we can directly control the risk of overestimating dr , i.e.,
the number of eigenvalues greater than 1 in the r th SCV
covariance matrix. The higher the value for B is chosen, the
better the distribution is estimated, but for a too high value of
B, there will not be a better estimate at some point. We choose
B = 1000 bootstrap resamples and Pfa = 0.05 to estimate d̂r ,
as these are typical values for these parameters and achieve
good results in general.

As we are also interested in identifying the components
that discriminate between patients and controls, we apply a
two-sample t-test on the first 150 (controls) and the following
121 (patients) values of each column of the estimated mixing
matrix Â[k]

. We consider p-values smaller than 0.05 to be
significant, indicating that the corresponding activated brain
areas are different in patients with schizophrenia and healthy
controls. Using this t-test, we corrected the signs of the
estimated sources Ŝ[k] to overcome the sign ambiguity of
IVA: We made sure that the t-values of the datasets that
show a significant difference between patients and controls
(p < 0.05) are positive or made positive by multiplying the
estimated sources and corresponding subject profiles by −1
(if the t-value is negative). This way, positive values of the
(zero-mean) sources indicate higher activations in controls,
and negative values indicate higher activation in patients.

C. RESULTS WITH THE fMRI DATA
1) IDENTIFICATION OF COMMON AND STRUCTURED SCVs
In Figure 6, a subset of the covariance matrices of the SCVs
estimated by IVA-L-SOS is shown along with the estimated
values for d̂r . Light values correspond to high correlations.
For SCVs 3 and 13, d̂r = 1, thus, these SCVs are identified
as common. SCVs 15–17, 20, 22–23, and 25 are identified as
structured because d̂r > 1. The visible block structure in each
SCV already reveals information about the relationship of the
datasets [14]. For example, the covariance matrix of SCV16
clearly shows high correlations within the AOD and SM tasks
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FIGURE 6. Subset of the estimated SCV covariance matrices. SCVs 3 and 13 are identified as common, and SCVs 15–17, 20, 22–23, and 25 are identified
as structured.

FIGURE 7. Estimated fMRI activation maps corresponding to SCV3. The default mode network and the visual regions are activated higher in controls
(shown by red/yellow voxels), while the sensorimotor areas are activated higher in patients (shown by blue voxels).

FIGURE 8. Estimated fMRI activation maps corresponding to SCV16. The auditory regions are activated higher in controls in the AOD and SM datasets
and not activated in the SIRP datasets.

FIGURE 9. Estimated fMRI activation maps corresponding to SCV17. The visual regions are activated higher in controls in the SIRP-E datasets, higher in
patients in the SIRP-P datasets, and not activated in the AOD and SM datasets.

and within the SIRP tasks, but small correlations across those
tasks.

2) IVA-L-SOS
The estimated source components (fMRI activation maps)
provide information about which brain regions are activated
in which tasks. In the following, we present SCV3, SCV16,
and SCV17 as examples for common and structured SCVs,
because they either show activations in brain areas that are
common in all tasks or correspond to the specific tasks. All
fMRI activation maps are thresholded with |z| = 2 before
visualization and plotted above the structural anatomical

images. Significant p-values are displayed in magenta with
the superscript ∗. Because of the sign correction, red or
yellow voxels indicate that a brain area is activated higher
in controls, and blue voxels indicate higher activation in
patients. Then, we corrected the sign of the non-significant
datasets manually by matching the color (red/blue) of the
activated areas to the significant datasets of the same
task.

In SCV 3 in Figure 7, we see activations of the DMN
(red areas in slices 4–6). The DMN is known to have a
decreased activation when a task is performed [32], [38].
The higher activation of the DMN in controls means that the
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deactivation is stronger in patients. This can be interpreted
as patients needing to focus more on a task to perform it
well. The sensorimotor regions (blue areas in slices 2–3)
are activated higher in patients and therefore support this
interpretation. There are minor activations in the visual
regions (red areas in slices 7–9), which are expected because
the subjects had their eyes open during all tasks. The very
small p-values in the AOD-T and AOD-TS datasets indicate
that especially when the target stimulus occurs, the patients
are significantly stronger engaged with the task, i.e., have
significantly smaller activation of the DMN. These lower
p-values in the AOD datasets are expected since the AOD
task has been shown to be important in discriminating patients
with schizophrenia and healthy controls, as patients have a
smaller oddball response [39]. In the SIRP-P datasets, there
is no significant difference between patients and controls for
the DMN. In contrast, in the SIRP-E datasets, the p-values
become smaller with increasing task difficulty, i.e., the
deactivations of the DMN become stronger for the patients.
This coincides with the literature, as with an increasing level
of difficulty of a task, the deactivation of the DMN becomes
stronger [32].

The fMRI activation maps corresponding to SCV16 are
shown in Figure 8. The auditory regions (red areas in
slices 5–7) are activated higher in the controls in the AOD and
SM datasets. The p-values are also significant for the AOD
and SM datasets, supporting the literature that activations in
the auditory regions may be a biomarker for differentiating
patients with schizophrenia and healthy controls [40].
In contrast, the fMRI activation maps corresponding to

SCV17, shown in Figure 9, show strong activations in the
visual areas (red/blue areas in slice 7) for the SIRP datasets.
The significant difference between patients and controls
here is found for SIRP-E5 (in accordance with SCV3) and
SIRP-P1. What is most surprising here is that visual regions
are activated higher in controls for the SIRP encoding but
higher in patients for the SIRP probe. An explanation might
be that patients need to focus more on a digit to remember it,
while the controls just briefly see the digit, and their memory
can be accessed faster.

3) IDENTIFICATION OF THE RELATIONSHIP STRUCTURE
The information of all SCVs is fused to identify the
relationship structure among the datasets. As described in
section III-C, the d̂r leading eigenvectors of the structured
SCVs are concatenated to form a feature matrix, which is
the input of the clustering algorithm. The dendrogram for
the hierarchical clustering of the feature matrix is shown
in Figure 10. Here, a grouping refers to a group of task
datasets (in contrast to a group of subjects, as in subgroup
identification). The SIRP tasks form one grouping (orange),
and the AOD and SM tasks form a second grouping (green).
As the SIRP task involves a visual stimulus and the AOD
and SM tasks both involve auditory stimuli, these resulting
groupings are meaningful. Within the SIRP grouping, there

FIGURE 10. The dendrogram for the real data reveals the relationship
structure among the datasets. Two groupings are found, consisting of the
SIRP datasets (orange) and of the auditory datasets, AOD and SM (green).
Within the SIRP datasets, the SIRP-E and SIRP-P datasets form two
groupings. Within the auditory datasets, there is one grouping consisting
of the AOD datasets.

are two finer groupings visible: one consisting of the
encoding datasets and one the other of the probe datasets. This
makes sense because they refer to two different phases of the
SIRP task. Within the auditory grouping, the AOD datasets
form another grouping.

VI. DISCUSSION
In this paper, we have proposed a method to identify the
relationship structure among multiple datasets. Our method
consists of three steps: 1) estimating latent sources from
observed datasets using IVA, 2) identifying structured SCVs
(SCVs whose covariance matrices have more than one
eigenvalue greater than 1), and 3) extracting features from
the structured SCVs, which are then used by hierarchical
clustering to identify the relationship structure among the
datasets. Compared with previous studies, our proposed
method alleviates the need to assume Gaussianity in the data
by 1) including higher-order statistics through the use of
IVA-L-SOS for source estimation, which leads to more inter-
pretable components, and 2) not relying on any distributional
assumptions, which is achieved by estimating the number of
eigenvalues greater than 1 using their theoretical properties
and a bootstrap-based hypothesis testing approach.

Our simulations demonstrate the success of our method
in terms of 1) correctly estimating the number of blocks
per SCV against competing methods and 2) identifying the
relationship structure among multiple datasets. Applying our
method to real multi-task fMRI data has revealed activated
brain areas that are known to be affected by schizophrenia:
We see significantly stronger deactivations of the DMN
in patients and significantly stronger activations of the
auditory brain regions in controls. The identified relationship
structure of the task datasets is consistent with, but extends,
existing work. While we were able to draw conclusions from
the here presented estimated fMRI maps, it is important
to note that interpretation is not always straightforward.
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We have carefully selected and presented SCVs that show
activations in meaningful brain regions, which we identified
according to Brodmann areas [41]. Despite the simplicity
of the task design, many of the unrepresented components
defy straightforward explanation. However, interpreting a
subset of the most meaningful components can already help
in understanding how the brain functions. Thus, a good
guideline is to find a range of R values that lead to stable
results after the dimension reduction and then go through the
estimated components and compare them with established
brain regions such as the Brodmann areas [41] to facilitate
interpretation. It is important to remember that relying solely
on comparisons with known brain atlas components might
cause us to overlook brain regions not included in the user-
defined atlas. Nevertheless, comparing the brain regions with
an atlas provides an initial reference point before conducting
further investigations.

Importantly, the proposed method is not limited to task
datasets but is applicable to more general problems, e.g.,
for identifying subgroups of subjects in neuroimaging, and
other fields. After having provided the confirmation of the
success of our method on these clinically well-understood
datasets, the direct implications for clinical significance and
treatment strategies could be further explored in the future
by applying our method to diverse datasets, with a specific
focus on precision medicine and other relevant applications.
For example, by identifying the relationship structure among
patient datasets, our method allows for a detailed analysis of
associations among data of, e.g., patients with schizophrenia,
bipolar disorder, and their subtypes. However, a limitation
of our proposed method is that it does not identify SCVs
with identity covariance matrices, i.e., SCVs that consist of
completely uncorrelated sources. A possible way to overcome
this limitation in the future may be to adapt the bootstrap test.
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