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Large-Scale Independent Vector Analysis (IVA-G)
via Coresets

Ben Gabrielson , Hanlu Yang , Trung Vu , Vince Calhoun , Fellow, IEEE, and Tülay Adali , Fellow, IEEE

Abstract—Joint blind source separation (JBSS) involves the
factorization of multiple matrices, i.e. “datasets”, into “sources”
that are statistically dependent across datasets and independent
within datasets. Despite this usefulness for analyzing multiple
datasets, JBSS methods suffer from considerable computational
costs and are typically intractable for hundreds or thousands of
datasets. To address this issue, we present a methodology for
how a subset of the datasets can be used to perform efficient
JBSS over the full set. We motivate two such methods: a
numerical extension of independent vector analysis (IVA) with the
multivariate Gaussian model (IVA-G), and a recently proposed
analytic method resembling generalized joint diagonalization
(GJD). We derive nonidentifiability conditions for both methods,
and then demonstrate how one can significantly improve these
methods’ generalizability by an efficient representative subset
selection method. This involves selecting a coreset (a weighted
subset) that minimizes a measure of discrepancy between the
statistics of the coreset and the full set. Using simulated and real
functional magnetic resonance imaging (fMRI) data, we demon-
strate significant scalability and source separation advantages of
our “coreIVA-G” method vs. other JBSS methods.

Index Terms—Joint blind source separation, independent
vector analysis, multiset canonical correlation analysis.

I. INTRODUCTION

THE goal of joint blind source separation (JBSS) is to
factorize several datasets arranged as matrices into com-

ponents that maximize a measure of statistical dependence
across the datasets while maximizing independence within each
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dataset. In BSS terminology, each individual component is
called a “source”. By this understanding, JBSS naturally gen-
eralizes blind source separation (BSS) of a single dataset by
exploiting an additional statistical power: source dependence
across the datasets. This not only estimates sources with greater
interpretability, but also aligns sources across datasets and pro-
vides additional means to compare datasets via their uncov-
ered source dependencies. JBSS has been frequently used for
analyzing medical imaging datasets [1], [2], [3], [4], but has
seen applications in various other domains, such as remote
sensing [5], frequency domain analysis [6], molecular property
prediction [7], and various other applications.

The primary characteristic of JBSS is exploiting cross-dataset
dependencies via constructing sets of dependent sources, typ-
ically called “source component vectors” (SCVs). Each SCV
includes one source from each dataset, and JBSS methods typ-
ically operate by maximizing dependence within each SCV and
independence across different SCVs.

Differences between JBSS methods largely hinge on the mea-
sure of statistical dependence being utilized. Mutual informa-
tion is the primary measure used in independent vector analysis
(IVA) [6], [8], a multi-dataset generalization of independent
component analysis (ICA) for BSS. IVA algorithms parameter-
ize each SCV by a multidimensional probability density func-
tion (PDF) to model statistical dependencies within and across
SCVs. IVA methods offer some of the most powerful estimation
capabilities of JBSS, yet IVA algorithms are burdened by higher
computational expenses.

On the other hand, simpler methods such as multiset canon-
ical correlation analysis (MCCA) [2], [5], [9], [10] and vari-
ants of generalized joint diagonalization (GJD) [11], [12], [13]
exploit only source correlations as the measure of dependence,
which leads to significantly more efficient algorithms with pos-
sibly less powerful estimation capabilities. An IVA algorithm
most comparable with these methods is one assuming a mul-
tivariate Gaussian distribution (IVA-G) [14]. As dependence
between Gaussian random vectors is described only by correla-
tion, IVA-G similarly enjoys lower computational complexity
and thus IVA-G has become a practical algorithm for per-
forming IVA. Theoretically, algorithms exploiting only source
correlation have been shown capable of estimating underlying
SCVs, so long as the SCVs do not possess covariance matrices
that are related to each other in certain aspects [14], [15].

Despite the powerful statistical capabilities of JBSS,
many JBSS methods are computationally infeasible for very
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TABLE I
NOTATIONS USED IN THIS PAPER. VECTORS ARE GIVEN AS COLUMN VECTORS, E.G. w[k]

n IS A COLUMN VECTOR, AND (w
[k]
n )� A ROW VECTOR, WITH �

DENOTING THE TRANSPOSE. DATASETS AND SOURCES (E.G. x[k], s[k], AND y[k]) ARE REPRESENTED AS EITHER A RANDOM VECTOR, OR BY T OBSERVED

SAMPLES OF A RANDOM VECTOR (E.G. x[k] ∈ R
N /X[k] ∈ R

N×T )

K number of total datasets (dataset index k = 1, . . . ,K)
N number of SCVs (SCV index n= 1, . . . , N )
T number of samples (sample index t= 1, . . . , T )

x[k] / X[k] kth dataset (∈ R
N / RN×T )

s[k] / S[k] kth dataset’s true sources (∈ R
N / RN×T )

y[k] / Y[k] kth dataset’s estimated sources (∈ R
N / RN×T )

s
[k]
n / s[k]n nth true source in kth dataset (∈ R / RT )

y
[k]
n / y[k]

n nth estimated source in kth dataset (∈ R / RT )
A[k] kth dataset’s mixing matrix (∈ R

N×N )
W[k] kth dataset’s estimated demixing matrix (∈ R

N×N )

a
[k]
n nth column of A[k] (∈ R

N )

(w
[k]
n )� nth demixing vector (row vector) in W[k] (∈ R

N )
sn / Sn nth true SCV over all K datasets (∈ R

K / RK×T )
yn / Yn nth estimated SCV over all K datasets

aaaaaa . (∈ R
K / RK×T )

C
[i,j]
x / Ĉ[i,j]

x (i, j) datasets’ cross-covariance matrix
aaaaaa aaaa / sample cross-covariance matrix (∈ R

N×N )
Cyn / Ĉyn yn’s covariance matrix

aaaaaa aaaa / sample covariance matrix (∈ R
K×K )

Kb number of datasets in the regIVA-G subset

SKb
index set of the Kb subset

s̃n / S̃n nth true SCV of the Kb subset (∈ R
Kb / RKb×T )

ỹn / Ỹn nth estimated SCV of the Kb subset (∈ R
Kb / RKb×T )

s̃
[i]
n / S̃[i]

n s̃n appended with nth true source
aaaaaa aa in ith remaining dataset (∈ R

Kb+1 / R(Kb+1)×T )

ỹ
[i]
n / Ỹ[i]

n ỹn appended with nth estimated source
aaaaaa aa in ith remaining dataset (∈ R

Kb+1 / R(Kb+1)×T )

C
s̃
[i]
n

covariance matrix of s̃[i]n (∈ R
(Kb+1)×(Kb+1))

Ĉ
ỹ
[i]
n

sample covariance matrix of ỹ[i]
n (∈ R

(Kb+1)×(Kb+1))

(c
[i]
n )m vector of cross-correlations of s[i]n with s̃m (∈ R

Kb )

(ĉ
[i]
n )m vector of cross-correlations of y[i]

n with Ỹm (∈ R
Kb )

R̂
[i]
m ( 1

T−1
)2 X[i] Ỹ�

m Ỹm X[i]� (∈ R
N×N )

Ω̃n
1

Kb
[S̃�

n S̃n −
∑N

m=1
m �=n

S̃�
m S̃m] (∈ R

T×T )

Ωn
1
K

[S�
n Sn −

∑N
m=1
m �=n

S�
m Sm] (∈ R

T×T )

X[k]� X[k] kth dataset’s projection embedding (∈ R
T×T )

Ψ mean embedding of all K datasets (∈ R
T×T )

high-dimensional data, particularly with too many datasets
(e.g., hundreds or more). This is especially a concern
given the availability of larger numbers of datasets, and the
benefits of including as many datasets as possible in the
decomposition for capturing the underlying distribution and
relationships in the data. Complexity of JBSS with respect to
the number of datasets K can be shown as at least O(K2)
for even the simplest JBSS methods, however, a recent
JBSS method proposed in [16] called “regIVA-G” allows
for O(K) complexity. This method operates by performing
JBSS first on a small subset of the K datasets to learn
“regressor” sources, and sources from the remaining datasets
are then estimated by maximizing/minimizing correlation
with these regressor sources. The regIVA-G method is so
named because it uses a multivariate Gaussian assumption for
the SCV, and thus can be interpreted as a regression-based
extension of IVA-G. It was further demonstrated that regIVA-G
allows a specified dimension-parameterization for the SCVs:
whereas IVA-G assumes a K-dimensional distribution for the
K-dimensional SCVs, regIVA-G effectively parameterizes
the SCV dimensions by the number of datasets in the
subset. This allows regIVA-G the ability to provide lower-
dimensional parameterizations to over-parameterized SCVs.
Thus, regIVA-G was demonstrated as both feasible to large
numbers of datasets and flexible to the effective dimensionality
of SCVs.

In this paper, we provide a comprehensive methodology for
“regIVA-G”: scaling IVA-G on a subset to a much larger set of
datasets. Our paper provides the following contributions:

• As an alternative to the analytic method proposed in [16],
we propose a numerical method to regIVA-G based on
maximum-likelihood IVA-G [14].

• For the analytic and numerical methods, we give theoret-
ical understanding of their capabilities via deriving non-
identifiability conditions: statistical conditions for when
the methods cannot identify sources in a new dataset.

• Whereas [16] used random subsets, we propose selecting
a subset that minimizes a novel discrepancy-based cost
function [17], [18] between the statistics of the subset
and the statistics of the full set. We derive this discrep-
ancy measure directly from the analytic method’s objec-
tive function, noting the discrepancy is applicable to most
other JBSS methods. We then introduce an efficient subset
selection method to minimize the discrepancy based on
coresets (weighted subsets) [18], [19], [20], [21], [22],
motivating the name “coreIVA-G” for performing IVA-G
with coresets.

We compare performance of the methods with coreset vs.
random subsets, alongside other efficient JBSS algorithms,
on simulated and real functional magnetic resonance imag-
ing (fMRI) datasets. Our results demonstrate that coreIVA-G
can significantly outperform other comparable methods in both
computational and source separation performance.

The paper is organized as follows. Section II formulates
the JBSS problem. Section III introduces IVA and IVA-G.
Section IV introduces the regIVA-G methodology for scaling
IVA-G on a subset to a larger set of datasets, and introduces
two methods for scaling to a new dataset. Section V derives
nonidentifiability conditions for both methods. Section VI in-
troduces a subset selection method by minimizing a discrepancy
measure between the statistics of the subset and the full set. Sec-
tion VII demonstrates performance with respect to simulated
data and real fMRI data. Section VIII concludes with takeaways
and discusses future areas of improvement.
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II. JBSS PROBLEM FORMULATION

We start with the JBSS problem formulation. We have K
datasets, each modeled as linear mixtures of N sources. At
some sample t, the generative model is:

x[k](t) =A[k] s[k](t) , t= 1, . . . , T, k = 1, . . . ,K, (1)

with x[k] = [x
[k]
1 ,…, x

[k]
N ]� ∈ R

N denoting the N observed
signals within the kth dataset, A[k] ∈ R

N×N denoting an un-
known invertible “mixing” matrix, s[k] = [s

[k]
1 ,…, s[k]N ]� ∈ R

N

denoting the kth dataset’s N latent source signals, and (.)�

denotes the transpose. JBSS methods generally do not make
any model assumptions on the A[k] (other than being full rank),
only modeling the s[k]. Note we assume that for each dataset
the number of mixtures is equal to the number of sources N .
In practice, an overdetermined system of more mixtures than
sources is reduced to N mixtures, typically using principal
component analysis (PCA) on each dataset.

The goal of JBSS is to estimate the K datasets’ sources,
via estimating K demixing matrices W[k] ∈ R

N×N that demix
the datasets into the estimated sources y[k] =W[k] x[k], with
y[k] = [y

[k]
1 ,…, y[k]N ]� ∈ R

N . The nth row of demixing matrix
W[k] is given by (w

[k]
n )�, and is used to estimate the nth source

within the kth dataset, via y
[k]
n = (w

[k]
n )� x[k].

With T samples of data, the observed datasets are represented
by matrices X[k] = [x[k]

1 ,…, x[k]
N ]� ∈ R

N×T , and the model
(1) is given as X[k] =A[k] S[k], with sources given by S[k] =
[s[k]1 ,…, s[k]N ]� ∈ R

N×T , and estimated sources given byY[k] =

W[k] X[k] = [y[k]
1 ,…, y[k]

N ]� ∈ R
N×T .

To model dependencies across datasets, JBSS formulations
assume that sources of the same index n are dependent across
the K datasets, thus forming N sets of K sources. In IVA ter-
minology, each of these sets is referred to as a “source compo-
nent vector” (SCV). The nth SCV is denoted by sn = [s

[1]
n ,…,

s
[K]
n ]� ∈ R

K , and is estimated by yn = [y
[1]
n ,…, y[K]

n ]� ∈ R
K .

Over T samples, the nth SCV is represented by the matrix Sn =

[s
[1]
n ,…, s[K]

n ]� ∈ R
K×T , estimated byYn = [y

[1]
n ,…, y[K]

n ]� ∈
R

K×T . Typically each SCV is modeled as independent from
all other SCVs, thus any two sources across the datasets are
modeled as dependent only if they correspond to the same index
n (nth SCV).

JBSS algorithms can only identify demixing matrix vectors
(w

[k]
n )� (and thus the estimated sources y[k]n ) up to scaling and

permutation ambiguity within each dataset. JBSS additionally
orders sources to align with the order of SCVs, such that the
nth source within a dataset corresponds to the nth SCV.

Additionally, JBSS implementations typically involve stan-
dardizing and prewhitening each dataset prior to estimation, as
this considerably simplifies the calculations involved in solving
these problems [23]. It is notable that when datasets are stan-
dardized and prewhitened, then provided that the SCVs are un-
correlated (and thus sources are uncorrelated within datasets), it
follows that the residual mixing matrices A[k] become asymp-
totically orthogonal for the observed datasets X[k] as T →∞.
We will assume for the remainder of the paper that datasets are
standardized and prewhitened prior to JBSS, thus each mixture

and source is zero mean unit variance. However, as in practice
we deal with finite T , we do not generally assume that the A[k]

are orthogonal.

III. IVA AND IVA-G: BACKGROUND

This section explains the JBSS methodology of IVA, and
explains that a multivariate Gaussian parameterization of the
SCVs leads to the IVA-G method. We explain that despite
IVA-G being perhaps the most efficient IVA method, IVA-
G is computationally limited, thus motivating the regIVA-G
methodology outlined in the following section.

A. Independent Vector Analysis (IVA)

The fundamental assumption of IVA is that the N SCVs are
independent, and thus JBSS can be performed by minimizing a
measure of dependence among the SCVs. A useful and general
measure of dependence is the mutual information among the
N SCVs. Given estimated SCVs yn (determined by demixing
matrices W[k]), this leads to the general IVA cost function:

BJ IVA (W) �
N∑

n=1

H
{
yn

}
−

K∑

k=1

log
∣∣∣det

(
W[k]

) ∣∣∣ (2)

where W is the collection of W[k] for k = 1, . . . ,K, and
H{yn} is defined as the entropy of SCV estimate yn, which is
specifically defined by its PDF [8]. The term log | det

(
W[k]

)
|

acts as a penalty effectively ensuring that sources are close to
being uncorrelated within each dataset.

B. IVA With Multivariate Gaussian Distribution (IVA-G)

IVA-G [14] is a variant of the general IVA cost (2) where
each SCV’s PDF is modeled as multivariate Gaussian with
independent and identically distributed (i.i.d.) samples t. The
IVA-G cost is thus given by :

J IVA-G(W) =
1

2

N∑

n=1

log

∣∣∣∣det
(
Ĉyn

)∣∣∣∣ −
K∑

k=1

log

∣∣∣∣det
(
W[k]

)∣∣∣∣ + c

(3)

where we define Ĉyn
= 1

T−1 Yn Y�
n ∈ R

K×K as the sample
covariance matrix of SCV yn, and c = 1

2NK log(2πe) is a
constant. Minimizing (3) can also be explained as minimizing
correlation amongst the N SCVs while also maximizing the
correlation within each SCV [14], [16].

Despite its efficiency among IVA methods, IVA-G nonethe-
less suffers from computational complexity. We consider the
minimum computations required for IVA-G numerical meth-
ods provided in [14]: computing the gradient. Here, we ignore
the one-time initial costs of estimating the Ĉ

[i,j]
x = 1

T−1 X[i]

X[j]� ∈ R
N×N , the dataset cross-covariances, for 1≤ i, j ≤

K. Asides from estimating the Ĉ[i,j]
x , each iteration requires up-

dating all NK demixing vectors w[k]
n , where each w

[k]
n update

involves an update of W[k] of O(N3) complexity, an update of
Ĉyn

of O(N2K) complexity, and an update of Ĉ−1
yn

of O(K3)
complexity. If IVA-G requires q iterations to converge, this leads
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Fig. 1. illustration of the regIVA-G methodology.

a total complexity of O(q(N4K +N3K2 +NK4)). This leads
IVA-G to becoming computationally infeasible for large K,
motivating the need for the low complexity alternative methods
described in the following sections.

IV. REGIVA-G: SUBSET-BASED METHODS FOR

LARGE-SCALE IVA-G

We now provide an overview of the main methodology of
the paper: using a subset of the datasets to efficiently perform
IVA-G on all datasets. The methodology was first introduced in
the preliminary work of [16] and was called “regIVA-G” due
to the solution being a multilinear-regression of the subset’s
estimated SCVs. For simplicity, we refer to this methodology as
“regIVA-G” when using a general choice of subset (e.g.
a random subset), and later refer to the methodology as
“coreIVA-G” when using a coreset (weighted subset) selected
to best represent the statistics of the K datasets.

The regIVA-G methodology is illustrated in Fig. 1. The three
steps of regIVA-G are summarized as follows:

1) partitioning step: divide the K datasets into two groups
(K =Kb + Ka), the Kb regressors and the Ka regressed:
• Kb datasets that form the subset estimated by IVA-G

(whose sources will form regressors)
• Ka remaining datasets (“new” datasets) that will be

regressed onto the regressor sources of the subset
2) subset estimation step: perform IVA-G on the Kb subset,

estimating the subset’s W[k] and corresponding N SCVs
Ỹn, which we call regressor SCVs.

3) regression step: use the regressor SCVs to separately es-
timate N sources in each of the Ka remaining datasets.
Each source in remaining dataset X[i] is estimated such
that it is maximally correlated to one regressor SCV and
maximally uncorrelated to the N − 1 other SCVs.

Unlike IVA-G or other JBSS methods, this methodology
estimates sources in each remaining dataset independently of
other remaining datasets. As a result, this methodology exhibits
asymptotically linear complexity with respect to K, provided
that Kb is fixed and Ka → ∞. With large K, regIVA-G’s
complexity is dominated by the O(K) regression step.

In the following sections, we overview two methods for
performing the regression step: one being the explicit numerical
minimization of the IVA-G cost, and the other being the GJD-
type analytic solution proposed in [16].

A. regIVA-G-N (Numerical Method)

The regIVA-G method for numerically minimizing the IVA-
G cost, which we refer to as regIVA-G-N, is simply described:
for each remaining X[i], estimate W[i] by performing IVA-G on
the Kb subset’s datasets appended with X[i] (thus performing
on Kb + 1 total datasets), while updating only that ith dataset’s
W[i] (fixing constant the subset’s W[k] to those W[k] estimated
in the subset estimation step).

We first provide notations for the regIVA-G-N subproblem
over Kb + 1 datasets as to differentiate from IVA-G over all
K datasets, namely we introduce new notations concerning
the ith subproblem’s SCVs. We first denote s̃n ∈ R

Kb as the
nth SCV of the subset, and s̃

[i]
n = [s̃�n , s

[i]
n ]� ∈ R

Kb+1 as the
nth SCV of the subset appended with s

[i]
n , the nth source in

the ith dataset. These quantities respectively correspond to the
estimated SCVs: ỹn ∈ R

Kb and ỹ
[i]
n = [ỹ�

n , y
[i]
n ]� ∈ R

Kb+1.
Over T samples, the SCVs are represented by the matrices S̃n

∈ R
Kb×T , S̃[i]

n = [S̃�
n , s

[i]
n ]� ∈ R

(Kb+1)×T , Ỹn ∈ R
Kb×T and

Ỹ
[i]
n = [Ỹ�

n ,y
[i]
n ]� ∈ R

(Kb+1)×T .
Using this notation, we can write the cost function per each

ith remaining dataset as a modified version of (3). If we de-
note the nth estimated SCV’s sample covariance by Ĉ

ỹ
[i]
n

=
1

T−1 (Ỹ
[i]
n ) (Ỹ

[i]
n )� ∈ R

(Kb+1)×(Kb+1), and ignore the constant
term, the regIVA-G-N cost function is given by:

JregIVA-G-N(W
[i])=

1

2

N∑

n=1

log

∣∣∣∣det
(
Ĉ

ỹ
[i]
n

) ∣∣∣∣ − log

∣∣∣∣det
(
W[i]

)∣∣∣∣

(4)

All methods for minimizing (3) are also applicable to (4); the
only difference with (4) is that all W[k] are fixed for k �= i.

For each of the Ka remaining datasets, regIVA-G-N’s re-
gression step involves IVA-G to minimize (4) over Kb + 1
datasets. Given IVA-G’s complexity described in Section III-B,
it follows that the complexity of regIVA-G-N’s regression step
is O(Ka q(N4 +N3(Kb + 1) +N(Kb + 1)3)).

B. regIVA-G-A (Analytic Method)

The analytic method proposed in [16], which we refer to
as regIVA-G-A, is a highly efficient alternative to the previ-
ously described numerical method with cost described in (4).
In contrast to (3) and (4), regIVA-G-A measures the degree of
source dependence by the squared correlation between sources,
analogous to generalized joint diagonalization (GJD) costs [11],
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[12], [13]. Furthermore, unlike regIVA-G-N in (4) where each
dataset’s sources are estimated jointly (via W[i]), regIVA-G-A
involves separate estimation of each source (via each w

[i]
n ).

We now describe regIVA-G-A’s objective function. Corre-
lation of the nth source in X[i] with each of the mth SCV’s
sources is given by (ĉ

[i]
n )m = 1

T−1 Ỹm X[i]� w
[i]
n ∈ R

Kb .
The degree of correlation with that SCV is measured by the
sum of squared correlations with sources in the mth SCV:
||(ĉ[i]n )m||22 = (ĉ

[i]
n )�m (ĉ

[i]
n )m = w

[i]
n

� R̂
[i]
m w

[i]
n , where we

define R̂
[i]
m � ( 1

T−1 )
2 X[i] Ỹ�

m Ỹm X[i]� ∈ R
N×N . Using

these R̂
[i]
m , regIVA-G-A’s objective function measures the cor-

responding nth source’s degree of correlation with its nth SCV,
weighted against the correlation with the N − 1 other SCVs:

J regIVA-G-A (w[i]
n ) = w[i]

n
�[

R̂[i]
n −

N∑

m=1
m �=n

R̂[i]
m

]
w[i]

n (5)

Subject to ||w[k]
n ||2 = 1, the w

[i]
n that maximizes (5) is esti-

mated by the principal eigenvector of
[
R̂

[i]
n −

∑N
m=1
m �=n

R̂
[i]
m

]
.

For each remaining dataset, regIVA-G-A involves calculating
the N SCVs’ R̂[i]

n (of complexity O(N3Kb)), the N
[
R̂

[i]
n −∑N

m=1
m �=n

R̂
[i]
m

]
(of O(N3)), and the principal eigenvector of each

[
R̂

[i]
n −

∑N
m=1
m �=n

R̂
[i]
m

]
per w[i]

n (of O(N3)). Thus, complexity of

regIVA-G-A’s regression step is O(Ka(Kb + 2)N3).
It is notable that because the w

[i]
n are separately estimated in

each ith dataset, this analytic method does not explicitly max-
imize source uncorrelatedness within each dataset (unlike the
numerical method). Instead, uncorrelatedness within datasets is
indirectly achieved by maximizing uncorrelatedness with the
subset’s SCVs. This difference between the regIVA-G methods
leads to differences in estimation capabilities, highlighted in
Section VII when simulating correlated SCVs.

In the next section, we derive conditions on the data’s gener-
ative model for which regIVA-G is unable to uniquely identify
the true sources (via demixing vectors w[k]

n ) subject to scale and
permutation ambiguity, which we refer to as the nonidentifia-
bility conditions of regIVA-G.

V. REGIVA-G NONIDENTIFIABILITY CONDITIONS

This section is dedicated to deriving the nonidentifiability
conditions of regIVA-G: statistical conditions on the data’s gen-
erative model for which regIVA-G is unable to identify sources
S[i] in the regression step of a new dataset X[i]. When these
conditions are not satisfied, precise inference of S[i] is possible
such that one can achieve Y[i] = S[i], via achieving W[i] =
(A[i])−1, subject to scale and permutation ambiguities.

Denoting a
[i]
n as the nth column ofA[i] and (w

[i]
n )� as the nth

row of W[i], identifiability occurs for the nth source if w[i]
n =

a
[i]
n subject to scale and permutation ambiguity.
These proofs use notations defined earlier in the paper, and

proceed under the following assumptions:
• T →∞, thus the data’s true statistics are known (e.g.,
C

[i,j]
x = E

{
x[i]x[j]�}

∈ R
N×N for 1≤ i, j ≤K)

• uncorrelated SCVs (E
{
sm s�n

}
= 0 for m �= n)

• prewhitened datasets (thus A[k] are orthogonal matrices)
• the subset’s sources have been estimated exactly

(Ỹn = S̃n ∈ R
Kb×T ), thus our only concern is identifying

the remaining datasets’ sources (via their W[i])
Nonidentifiability of regIVA-G depends on the SCV covari-

ances, which we require notation for. From Section IV-A we
remind the nth regIVA-G SCV is defined s̃

[i]
n = [s̃�n , s

[i]
n ]�

∈ R
Kb+1, which is the subset’s nth SCV s̃n ∈ R

Kb appended
with the new dataset’s nth source s

[i]
n . We also define:

• C
s̃
[i]
n

= E{s̃[i]n s̃
[i]
n

�
} ∈ R

(Kb+1)×(Kb+1) as the covariance

matrix (also correlation matrix) of s̃[i]n
• (c

[i]
n )m = E{s[i]n s̃�m}� ∈ R

Kb as the vector containing
correlations of the new dataset’s nth source s

[i]
n with all

sources in the subset’s mth SCV s̃m.
For convenience, we denote i=Kb + 1 within the regression

step, such that [(c[i]n )�n , 1] is the last row/column of C
s̃
[i]
n

.
The following theorem states the nonidentifiability condi-

tions shared by regIVA-G-N and regIVA-G-A.
Theorem 1 (regIVA-G nonidentifiability conditions): We

follow all assumptions listed at the beginning of Section V.
Considering the nth source in the ith remaining dataset s[i]n ,
corresponding to demixing vector w

[i]
n , it follows that s[i]n is

nonidentifiable (w[i]
n �= a

[i]
n subject to scale and permutation am-

biguity) if and only if for any 1≤m �= n≤N , both (c
[i]
n )n =

0 ∈ R
Kb and (c

[i]
m)m = 0 ∈ R

Kb .
Simply stated: For s[i]n to be nonidentifiable, s[i]n and another

source s
[i]
m must be uncorrelated to their corresponding SCVs.

We first derive these conditions for regIVA-G-N’s (4), and
later derive these conditions for regIVA-G-A’s (5).

A. regIVA-G-N Nonidentifiability

Proof: We outline the two main steps in this proof:
1) show regIVA-G-N’s regression step is actually a particu-

lar variation of ICA, and thus regIVA-G-N can be more
easily studied via the ICA nonidentifiability conditions.

2) show that regIVA-G-N’s Fisher Information Matrix
(FIM) is singular if and only if (c

[i]
m)m = 0 and

(c
[i]
n )n = 0.

Before connecting regIVA-G-N to ICA, we first introduce
some preliminaries regarding the IVA cost function.

IVA requires specification of pn(yn), the (chosen) differen-
tiable PDF of the nth SCV (for n= 1, . . . , N ). Associated with
this PDF is the score function for the nth SCV [8], [14]:

[Φ(Sn)]kt =
∂ log pn(Sn)

∂ s
[k]
n (t)

;
k = 1, 2, . . . , K
t= 1, 2, . . . , T

Regarding the regIVA-G-N subproblem over Kb + 1
datasets, we define the score function for the ith subproblem’s
nth true SCV by φ(s̃

[i]
n ) = [φ(s̃n)

�,φ(s̃
[i]
n )]� ∈ R

Kb+1

and nth estimated SCV by φ(ỹ
[i]
n ) = [φ(ỹn)

�,φ(ỹ
[i]
n )]�

∈ R
Kb+1.

Now we connect regIVA-G-N to ICA. If we assume the
statistics are known (T →∞), and we multiply the general IVA
mutual information cost function in (2) by T , the negative of
(2) becomes equivalent to the log-likelihood [8], [14]. Within
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the general IVA log-likelihood gradient, by fixing all W[k]

to constant quantities for k �= i (as done by regIVA-G-N), we
obtain regIVA-G-N’s log-likelihood gradient:

∂J IVA(W
[i])

∂W[i]
= −Φ(Ỹ[i])X[i]� + T

(
W[i]−1

)�
(6)

where φ(ỹ[i]) = [φ(ỹ
[i]
1 ), . . . ,φ(ỹ

[i]
N )] ∈ R

N are the ith
dataset’s score function components, observed over T samples
by Φ(Ỹ[i]) = [φ(ỹ

[i]
1 ), . . . ,φ(ỹ

[i]
N )] ∈ R

N×T .
We now note that this gradient (6) takes the exact same form

as the gradient of the log-likelihood for ICA [24]. Because
of this equivalency, regIVA-G nonidentifiability can be more
easily studied in terms of ICA nonidentifiability.

We refer to [1], [24] for the ICA nonidentifiability conditions.
We focus on the log-likelihood’s Fisher Information Matrix
(FIM), F(W[i]) ∈ R

N2×N2

, as nonidentifiability conditions
are those conditions that make the FIM singular. Evaluated
at the optimum W[i]A[i] = I (subject to scale /permutation
ambiguity), the FIM is block diagonal, with:

• N positive scalars (for each source);
• N(N−1)

2 matrices Fm,n ∈ R
2×2 (for each pair of sources).

As the scalars are positive, invertibility of the FIM depends
only on invertibility of the Fm,n matrices [1], [24], given by:

Fm,n =

[
Km,n 1
1 Kn,m

]
, 1≤m,n≤N,

and provided IVA-G assumes unit variance sources with i.i.d.
samples, then Kn,m = E

{
φ(s

[i]
n )2

}
E

{
s
[i]
m

2
}
= E

{
φ(s

[i]
n )2

}

∈ R (not a function of m).
Then as IVA-G assumes a multivariate Gaussian PDF [14],

the nth SCV’s score function is φ(s̃
[i]
n ) =C−1

s̃
[i]
n

s̃
[i]
n ∈ R

Kb+1,

and E
{
φ(s̃

[i]
n )φ(s̃

[i]
n )�

}
=C−1

s̃
[i]
n

C
s̃
[i]
n

C−1

s̃
[i]
n

=C−1

s̃
[i]
n

. Thus, the

Fm,n are defined by Kn,m = (C−1

s̃
[i]
n

)(i,i), which is the (i, i)th

diagonal entry of the inverse correlation matrix C−1

s̃
[i]
n

.

For the Fm,n to be invertible, it follows Kn,m �= K−1
m,n, or

i.e., (C−1

s̃
[i]
n

)(i,i) �= 1/(C−1

s̃
[i]
m

)(i,i). However, since C−1

s̃
[i]
n

is the
inverse of a correlation matrix, its diagonal entries must obey
(C−1

s̃
[i]
n

)(i,i) ≥ 1 [25], and (C−1

s̃
[i]
n

)(i,i) = 1 is achieved only when

(c
[i]
n )n = 0 (i.e., s[i]n is uncorrelated to its own SCV) [25].
Thus, having (C−1

s̃
[i]
n

)(i,i) = 1/(C−1

s̃
[i]
m

)(i,i) requires that

(C−1

s̃
[i]
n

)(i,i) = 1/(C−1

s̃
[i]
m

)(i,i) = 1, which requires (c[i]n )n = 0 and

(c
[i]
m)m = 0. Thus completes the proof for regIVA-G-N.

B. regIVA-G-A Nonidentifiability

Proof: We first refer back to the regIVA-G-A objective
function in (5). Evaluated at Ỹm = S̃m, (5) is equivalent to

J regIVA-G-A (w[i]
n ) = w[i]

n
�X[i]Ω̃nX

[i]�w[i]
n (7)

where we define Ω̃n = c2
[
S̃�
n S̃n −

∑N
m=1
m �=n

S̃�
mS̃m

]
∈ R

T×T ,

and we define c= 1
T−1 for sake of brevity.

This Ω̃n is equivalently Ω̃n = QnQ
�
n , where we define

Qn = c [zS̃�
1 , . . . , S̃

�
n , . . . , zS̃

�
N ] ∈ C

T×NKb as the horizontal

concatenation of the N SCVs, where all SCVs except the nth
are multiplied by imaginary number z. It follows that:

X[i]Ω̃nX
[i]� =A[i]S[i]QnQ

�
nS

[i]�A[i]�

=A[i]Q[i]
n Q[i]

n
�A[i]�,

where we define Q[i]
n = S[i] Qn ∈ C

N×NKb as the correlations
of all SCVs with each source of the ith dataset. Given uncorre-
lated SCVs, Q[i]

n is represented by the block diagonal matrix of
N vector blocks: Q[i]

n =
⊕N

m=1 γ(m,n) (c
[i]
m)�m, with γ(m,n)

equals 1 when m= n and equals z otherwise.
With Q

[i]
n having this block diagonal structure, it follows that

Q
[i]
n Q

[i]
n

� ∈ R
N×N is a diagonal matrix, with the mth diago-

nal element given by γ(m,n)2 (c
[i]
m)�m (c

[i]
m)m, here γ(m,n)2

equals 1 when m= n and equals −1 otherwise.
We now consider the eigendecomposition of Q[i]

n Q
[i]
n

�. With
Q

[i]
n Q

[i]
n

� being a diagonal matrix, its eigenvectors are given as
an identity matrix, and its eigenvalues are its diagonal elements.
The principal eigenvalue is (c[i]n )�n (c

[i]
n )n ≥ 0, which is the only

eigenvalue capable of being positive.
With A[i] orthogonal, it follows that A[i] Q

[i]
n Q

[i]
n

� A[i]�

has the same eigenvalues of Q[i]
n Q

[i]
n

�, but the corresponding
eigenvectors are the columns of A[i]. Thus when the principal
eigenvalue is positive ((c[i]n )�n (c

[i]
n )n > 0), it follows that the

corresponding principal eigenvector of A[i] Q
[i]
n Q

[i]
n

� A[i]�

is uniquely ±a
[i]
n , in which case identifiability is achieved.

Therefore, nonidentifiability occurs only when the principal
eigenvalue (c

[i]
n )�n (c

[i]
n )n is non-unique.

As (c[i]n )�n (c
[i]
n )n is the only nonnegative eigenvalue, and all

other eigenvalues are nonpositive, then (c
[i]
n )�n (c

[i]
n )n is non-

unique only when (c
[i]
n )�n (c

[i]
n )n is equal to 0 and one of the

N − 1 other eigenvalues is also equal to 0. This only occurs
for the nth and mth SCVs when (c

[i]
n )�n (c

[i]
n )n = 0 and (c

[i]
m)�m

(c
[i]
m)m = 0, requiring that (c[i]n )n = 0 and (c

[i]
m)m = 0. Thus

completes the proof for regIVA-G-A.
Therefore, for either regIVA-G method, identifiability of S[i]

is possible so long as there is not more than one source in S[i]

that is uncorrelated with its SCV. An example of this occurance
is when several sources are random “noise” sources uncorre-
lated to all other sources in the system. Yet if there is only
one source s

[i]
n where (c

[i]
n )n = 0, then s

[i]
n is still identifiable

because the remaining sources have (c
[i]
m)m �= 0.

It is also notable that this condition specifically depends
on the subset’s sources; with a different choice of subset, the
correlations (c

[i]
n )n will be different. Thus, there can be cases

where identifiability is not possible with one subset and possible
with another.

In the next section, we discuss how performance of the
regIVA-G methodology can be improved by a specific choice
of the subset, referred to as “coreIVA-G”.

VI. COREIVA-G: REGIVA-G WITH CORESET SELECTION

Performance of regIVA-G is predicated on the subset choice.
Intuitively, the best subset is one that is most “representative”
of all K datasets. A perfectly representative Kb subset ideally
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should produce the same results as using all K datasets in place
of the subset, resulting in an estimation that is comparable to
IVA-G on all K datasets simultaneously.

This section develops a measure of a subset’s representative-
ness in the context of IVA-G. To simplify derivations, we as-
sume SCVs are uncorrelated and datasets X[k] are prewhitened,
thus the A[k] are orthogonal. However as we show later, this
measure is also applicable in general when SCVs may not be
uncorrelated or the datasets not prewhitened, and also applica-
ble to other JBSS methods that only model S[k], opening the
possibility of subset-based methods for efficiently optimizing
other JBSS objective functions.

A. coreIVA-G Subset Selection: Cost Function

We start with the regIVA-G-A’s objective function (5), and
assume the subset’s sources are exactly identified such that
Ỹn = S̃n. Our goal will be to compare (5) evaluated over a
particular Kb subset to (5) evaluated over all K datasets.

From Section V-B, we note that (5) can be rewritten as in (7):
J regIVA-G-A (w

[i]
n ) = w

[i]
n

�X[i]Ω̃nX
[i]�w

[i]
n . Here, we scale

(7) via Ω̃n by (T−1)2

Kb
, such that we now redefine Ω̃n = 1

Kb

[S̃�
n S̃n −

∑N
m=1
m �=n

S̃�
m S̃

]
m ∈ R

T×T .

To consider the “representativeness” of the Kb subset’s Ω̃n

matrix over all K datasets, we also consider this matrix over
all K datasets. Thus, we similarly define Ωn = 1

K [S�
n Sn −∑N

m=1
m �=n

S�
m Sm] ∈ R

T×T evaluated over all K datasets.

Comparing the regIVA-G-A (7) over Kb datasets to (7) over
K datasets, these objective functions only differ between Ω̃n

and Ωn. Thus, we can measure the “representativeness” of a
Kb subset by the distance of its Ω̃n from Ωn. If we denote
SKb

as the index set that specifies a Kb subset’s datasets from
the K total, representativeness of that subset can be measured
by the squared Frobenius distance measure R (SKb

) :

R (SKb
) =

∥∥∥Ω̃n −Ωn

∥∥∥
2

F
(8)

=

∥∥∥∥∥∥∥
Σn −

N∑

m=1
m �=n

Σm

∥∥∥∥∥∥∥

2

F

(9)

where we define Σn = 1
Kb

S̃�
n S̃n − 1

K S�
n Sn ∈ R

T×T .
Assuming the N SCVs are uncorrelated to each other, it is

straightforward to show that 〈 vec(Σm), vec(Σn) 〉 = 0 for
m �= n, where vec(.) denotes the vectorization. This is useful
considering vectorized quantities: ‖a+ b‖2F = ‖a‖2F + ‖b‖2F +
2〈a,b〉, as (9) can be equivalently represented using vectorized
forms of matrices, and ‖a+ b‖2F = ‖a‖2F + ‖b‖2F = ‖a− b‖2F
when 〈a,b〉 = 0. Thus, (9) can be rewritten as:

R (SKb
) =

∥∥∥∥∥∥∥
Σn −

N∑

m=1
m �=n

Σm

∥∥∥∥∥∥∥

2

F

=

N∑

n=1

‖Σn‖2F =

∥∥∥∥∥

N∑

n=1

Σn

∥∥∥∥∥

2

F

This allows us to write R (SKb
) in terms of “embeddings”

of each dataset’s sources S[k]�S[k]:
∥∥∥∥∥

N∑

n=1

Σn

∥∥∥∥∥

2

F

=

∥∥∥∥∥∥

N∑

n=1

[
1

Kb

∑

k∈SKb

s[k]n s[k]n

�− 1

K

∑

k∈SK

s[k]n s[k]n

�
]∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥
1

Kb

∑

k∈SKb

S[k]�S[k] − 1

K

∑

k∈SK

S[k]�S[k]

∥∥∥∥∥∥

2

F
(10)

where SK represents the index set of all K datasets.
This (10) is particularly useful because if we assume the

SCVs are uncorrelated and the data is whitened (thus the
A[k] are orthogonal matrices), it follows that S[k]�S[k] =

S[k]�A[k]�A[k]S[k] = X[k]�X[k]. This means that without
even knowing the underlying sources, R (SKb

) can be written
just in terms of the original whitened datasets:

R (SKb
) =

∥∥∥∥∥∥
1

Kb

∑

k∈SKb

X[k]�X[k] −Ψ

∥∥∥∥∥∥

2

F

(11)

where Ψ = 1
K

∑
k∈SK

X[k]�X[k] ∈ R
T×T is what we call the

“mean projection embedding” (MPE) of all K datasets, a fixed
quantity that we aim to approximate with our subset.

This allows directly measuring a subset’s representativeness
before JBSS, motivating combinatorial optimization methods to
select a subset that “best” minimizes (11).

We now discuss how (11) can be used to define “representa-
tiveness” in the general JBSS context, not just for IVA-G.

Most JBSS methods represent datasets as linear subspaces
(specifically all JBSS methods that model only the S[k] and
not the A[k]), as these methods are invariant to the A[k]. Both
X[k] and S[k] effectively provide orthonormal bases for the
same N dimensional linear subspace of R

T . While a choice
of orthonormal basis for this kth subspace is not unique, the
quantity X[k]� X[k] ∈ R

T×T , commonly known as a projec-
tion matrix, provides a unique, canonical representation of that
kth subspace. This is because X[k]� X[k] is invariant to any
realization of orthonormal basis X[k] (as X[k]� X[k] = X[k]�

A A� X[k] for any orthogonal matrix A ∈ R
N×N ).

While X[k]� X[k] is more commonly referred to as a pro-
jection matrix (e.g. in ordinary least squares regression), in
the study of linear subspaces via the Grassmannian manifold
[26], X[k]� X[k] is called the “projection embedding” of its
linear subspace (as it “embeds” the subspace into a unique
coordinate in R

T 2

). When these X[k]� X[k] are averaged across
K datasets, the resultant “mean projection embedding” (MPE)
Ψ provides a statistic capturing information shared across the
subspaces (namely, subspaces that are “most shared” across the
X[k]). In that sense, (11) can be interpreted as a discrepancy-
based cost function [17], [18], [21] measuring distance between
a subset’s and the full set’s MPEs.

This discrepancy can be further decreased if we con-
sider weighted subsets. If we assign weight λk ∈ R to each
kth dataset, where weights can be organized into a vector

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 04,2025 at 14:59:16 UTC from IEEE Xplore.  Restrictions apply. 



GABRIELSON et al.: LARGE-SCALE INDEPENDENT VECTOR ANALYSIS (IVA-G) VIA CORESETS 237

λ = [λ1, . . . , λKb
] ∈ R

Kb , then we can consider a weighted
variation of (11):

R (SKb
,λ) =

∥∥∥∥∥∥
1

Kb

∑

k∈SKb

λk X[k]�X[k] − Ψ

∥∥∥∥∥∥

2

F

, (12)

Methods that use weighted subsets to minimize discrepancy-
based costs are referred to as coreset methods [18], [19], [20],
[21], [22], and thus we refer to “coreIVA-G” as the “regIVA-
G” methodology where a weighted subset is constructed to
minimize (12). In coreIVA-G, we also apply these weights λk to
the subset estimation and regression steps, such that regIVA-G’s
objectives in (4) and (5) coincide with the weighted discrepancy
in (12).

B. Overview of coreIVA-G

We now overview the coreIVA-G methodology:
1) partitioning step: select Kb datasets that minimize (11),

simultaneously learning coreset weights λk. Divide the K
total into this Kb coreset and the Ka remaining datasets.

2) subset estimation step: perform a weighted IVA-G
on the coreset, estimating weighted regressor SCVs.

3) regression step: use the weighted regressor SCVs to sep-
arately estimate sources in each of the Ka remaining
datasets, using either regIVA-G-N or regIVA-G-A.

Weighting can simply be done by multiplying each coreset
X[k] by its respective λk, and steps 2-3 are performed using
weighted datasets in place of their nonweighted versions.

For the purpose of efficiently minimizing (12), we consider
greedy methods that progressively add one dataset to the subset
until Kb datasets are selected. Furthermore, it is significantly
more efficient to use kernel methods to minimize (12), as a
greedy method would otherwise require constructing the sub-
set’s MPE at each ith step for i = 1, . . . ,Kb. Instead, kernel
methods define the cost only in terms of the kernels between
datasets, which only need to be calculated once at the beginning
of the subset selection. The canonical choice of kernel for
(12) is the inner product between the datasets’ embeddings:
〈 vec(X[k]�X[k]), vec(X[k]�X[k]) 〉. However, it is more con-
venient to use the “projection kernel” [26]:

ker(i, j) =
1

N

∥∥∥∥
1

T − 1
X[i]X[j]�

∥∥∥∥
2

F

=
1

N

∥∥∥Ĉ[i,j]
x

∥∥∥
2

F

The kernel is normalized in [0 1], where 0 indicates the sub-
spaces are orthogonal, and 1 indicates the subspaces are equiv-
alent. This is especially useful as the Ĉ

[i,j]
x can be calculated

as done with IVA-G, thus Ĉ[i,j]
x can be used for both the kernel

and the JBSS procedure. Our implementation of minimizing
(12) is the “weighted kernel herding” (WKH) method [22], a
greedy method with theoretical guarantees such as the property
of “weak submodularity”. It is notable that when greedily per-
forming WKH such that each new kth dataset is learned aside
its weight λk, this ensures that (12) can only decrease or stay
constant as the subset size increases.

A final consideration is how the subset size Kb should be
determined for coreIVA-G. Provided that the kernels between

the K datasets are organized into a matrix Θ ∈ R
K×K such

that (Θ)i,j = ker(i, j), we may assume that the optimal Kb

is the number of datasets necessary to model Θ with a low-
rank approximation. Thus we may assume Kb is the “rank” of
Θ, motivating techniques using the eigenspectra of Θ to select
Kb. However with WKH, as (12) can only decrease or stay
constant as the subset size increases. a practical choice of Kb

can be made at the point which (12) stops decreasing, which
agrees with the aforementioned rank-based methods provided
that Θ is low-rank. In practice when Kb is not specified in the
greedy procedure, we select Kb when the Kbth weight wKb

is
sufficiently small: wKb

≤ τ . We find τ = 0.001 is a good choice
for the general case.

In the next section, we demonstrate performance of several
JBSS algorithms, including regIVA-G (with a random subset of
datasets) and coreIVA-G (with a WKH subset), applied to sep-
arating simulated data. We demonstrate how each algorithm’s
separation performance depends on the statistics of the under-
lying sources. After that, we demonstrate performance on real
fMRI sources over a large number of datasets.

VII. RESULTS

We use joint inter-symbol-interference (joint-ISI or jISI) to
study separation performance of JBSS when A[k] are known,
such as in the case of simulations. jISI is given by:

ISIJNT (W ,A) � 1

2N(N−1)

[
N∑

n=1

(
N∑

m=1

ḡ[n,m]

maxp ḡ[n,p]
− 1

)

+
N∑

m=1

(
N∑

n=1

ḡ[n,m]

maxp ḡ[p,m]
− 1

)]
(13)

With W as the set of all W[k], A as the set of all A[k],
G[k] =W[k] A[k] is the “mixing-demixing matrix” of the kth
dataset, g[k][m,n] the [m,n] entry in G[k], and ḡ[m,n] =

1
K

∑K
k=1

|g[k][m,n]|. jISI is given in [14] as an extension of the inter-symbol-
interference measure (ISI) for BSS introduced in [27]. jISI
is normalized in [0 1], and collectively measures how close
each G[k] matrix is to a permuted diagonal matrix, with 0 jISI
indicative of perfect separation.

We also use cross joint inter-symbol-interference (cross-
jISI) as an alternative performance measure when A[k] are
not known, such as with real-world data. Cross-jISI is also
normalized in [0 1] and measures “consistency” of a JBSS
algorithm’s estimated sources across different initializations of
the data: if cross-jISI is nearly 0, then essentially the same
sources are estimated regardless of an algorithm’s initialization
[28]. The cross-jISI between two “runs” (initializations) uses
nearly the same formula for jISI except W is the set of all W[k]

estimated for one run and A is the set of inverses of all W[k]

estimated for another run. For our experiments, our reported
cross-jISI values are averaged across all pairs of runs, recording
the average “distance” between any two runs.

As our paper focuses on efficient JBSS, we limit our results
to the source correlation-based JBSS methods. These include
the MCCA-SUMCORR solution (often simply called MCCA,
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which we also call in this paper) [9], [10], a nonorthogonal GJD
algorithm called GNJD which is state of the art among GJD
algorithms [12], IVA-G [14], regIVA-G (random subset) [16],
and coreIVA-G. For numerical algorithms, we implemented
the default stopping criteria of each algorithm and limited to
a maximum of 1000 W[k] updates. We utilize the efficient
“Newton” method [14] when implementing IVA-G.

For all performance evaluations done in Sections VII and
VIII, we use the computational resources provided by the
UMBC High Performance Computing Facility (HPCF), thus
CPU time is reflective of HPCF’s capabilities.

A. Performance With Simulated Data

Our SCV generative model for simulated data is as fol-
lows. We model each SCV sn as a K-dimensional multivariate
Gaussian distributed random vector, with mean 0 ∈ R

K and
some specified covariance Csn ∈ R

K×K . JBSS algorithms that
exploit source correlation have statistical capabilities and non-
identifiability conditions dependent on these Csn , therefore we
provide a comprehensive model for the Csn as follows:

Csn = αBn + β11� + σQ+ ζIK

where the following quantities are defined:
• α, β, σ, and ζ are weights in [0 1] that all sum to 1, such

that Csn is a correlation matrix.
• Bn ∈ R

K×K is block matrix of R2
n total blocks, thus Rn

blocks on the main diagonal. Each diagonal block is of
a random size (uniformly distributed in [1 (K −Rn)]),
constrained such that the diagonal block sizes sum to K.
All elements in the (i, j)th block in Bn equal the (i, j)th
element in a matrix QBn

∈ R
Rn×Rn , which is randomly

generated from the Wishart distribution, normalized such
that QBn

is a normalized similarity matrix, and then
elementwise-squared such that QBn

is strictly nonnega-
tive. We note that Rn can be seen as the “effective rank”
of Bn (number of unique eigenvalues), and an increase in
Rn corresponds to a decrease in the “off-block” values.
In a sense Bn can be understood as the “group structure”
of sn, modeling groups of correlated sources sometimes
seen with medical imaging datasets [1], [3], and Rn can
be understood as the number of groups in that SCV.

• β 11� ∈ R
K×K is a matrix where all elements equal β.

This matrix can be understood as the minimum threshold
of correlation within that SCV (any two sources within sn
must have correlation of at least β).

• Q ∈ R
K×K is a rank K matrix randomly generated from

the Wishart distribution, then normalized and elementwise
squared such that Q is a positive definite, strictly positive
normalized similarity matrix (like QBn

). This matrix can
be understood as adding random variations in correlation
to the otherwise simple structured Csn , effectively ensur-
ing all eigenvalues and eigenvectors of Csn are unique.
This effectively makes the Csn farther from the JBSS
nonidentifiability conditions and results in an improved
JBSS separation performance.

• IK ∈ R
K×K is an identity matrix that models the covari-

ance of additive noise of the nth SCV. We model all addi-
tive noise signals as being uncorrelated to all other noise
signals in the system (as otherwise their correlatedness
defines dependence that helps JBSS).

Furthermore, all SCVs are generated jointly together in a
concatenated form s = [s�1 , . . . , s

�
N ]� ∈ R

NK , which allows
us to not only specify the SCV covariance matrices Csn but
also the cross-covariance between separate SCVs. To this end,
we additionally introduce γ ∈ [0 1] as the cross-covariance
value shared between any two SCVs, thus any two sources
of two different SCVs have correlation γ. Many JBSS meth-
ods assume the SCVs are completely independent and thus
γ = 0, however it is notable that JBSS is still possible with
dependent SCVs so long as they are maximally independent,
which are still identifiabile as JBSS methods merely maxi-
mize independence among SCVs. This is an important as-
pect to include in simulations as real-world SCVs are often
dependent, such as with medical imaging data. Increasing γ
demonstrates a more difficult separation problem for the JBSS
methods.

Our simulated experiments test for varying the values of each
variable individually, in addition to varying the number of SCVs
N and the number of datasets K. Notably, time complexity of
JBSS algorithms primarily depends on the data dimensions N
and K and less on the statistics of the data.

Each experiment varies one variable while fixing all others to
a fixed value specified here. Unless otherwise varied, we resort
to these default values for variables: β = 0, σ = 0, ζ = 0.1,
γ = 0, N = 8, K = 30, and T = 50000. With N = 8, we
default to 4 of the SCVs having Rn = 2 and the other 4 SCVs
having Rn = 3. Due to the challenging nature of the default
variables chosen, the default Csn have a simple block structure
that has a highly non-unique eigendecomposition, which allows
us a better lens to magnify the different estimation capabilities
of the algorithms.

All SCVs are jointly generated from T samples of the mul-
tivariate Gaussian random vector s= [s1, . . . , sN ] ∈ R

NK ac-
cording to specified Csn and the specified γ. Sources are then
distributed to their datasets S[k], then mixed with values in A[k]

drawn from the standard Gaussian distribution.
Each variable’s experiment measures jISI and cross-jISI in

separate sub-experiments. For the jISI sub-experiment, we per-
form 1000 data simulations and report average jISI with ini-
tializations W[k] = I. For the cross-jISI sub-experiment, we
perform 50 data simulations and provide each simulation with
20 random initializations of W[k] (all algorithms share the same
initializations), and report average cross-jISI over these 50 sim-
ulations. The cross-jISI experiments omit MCCA-SUMCORR
as it is an analytic solution invariant to initializations, thus its
cross-jISI can be treated as 0.

We also note that regIVA-G-N and regIVA-G-A perform
nearly the same for all experiments in terms of jISI and
cross-jISI except for when the experiment is varying the SCV
cross-correlation γ. This was also observed for coreIVA-G-N
and coreIVA-G-A. Thus to simplify those experiment’s plots,
we refer to regIVA-G as the performance shared by both
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Fig. 2. CPU time (minutes) w.r.t. varying number of datasets K (fixing
N = 8) and number of sources N (fixing K = 30). MCCA, regIVA-G-A
and coreIVA-G-A overlap in varying K and N . GNJD and coreIVA-G-N
overlap in varying K.

Fig. 3. jISI and cross-jISI w.r.t. varying number of datasets K. regIVA-G
methods overlap (“regIVA-G”), coreIVA-G methods overlap (“coreIVA-G”).
All cross-jISI figures (including this one) omit MCCA, as MCCA’s cross-jISI
is always 0.

regIVA-G-A and regIVA-G-N, and coreIVA-G as the perfor-
mance shared by both coreIVA-G-A and coreIVA-G-N.

Fig. 2 plots the algorithms’ CPU time performances with
varying the number of datasets K and the number of SCVs N .
We first note that MCCA-SUMCORR (MCCA), regIVA-G-A,
and coreIVA-G-A are the most efficient of all tested algorithms
and have nearly overlapping CPU times when varying either K
or N . The MCCA-SUMCORR solution performed here is an
analytic solution where the W[k] are obtained from the N prin-
cipal eigenvectors of Ĉx = 1

T−1 X X� ∈ R
NK×NK , where

we define X = [X[1]�, . . . ,X[K]�]� ∈ R
NK×T as the verti-

cal concatenation of the K datasets [10]. This leads MCCA-
SUMCORR to have a computational complexity of O((NK)3)
which is among the lowest complexities of all JBSS algorithms.
While MCCA-SUMCORR is efficient for large K and N , we
expect regIVA-G-A to outperform in CPU time when K → ∞
due to its asymptotically linear complexity with K. On the other
hand, regIVA-G-N and coreIVA-G-N are significantly slower
algorithms, primarily due to their numerical optimization of
each ith remaining dataset, resulting in CPU times comparable
with GNJD. Finally, IVA-G is the most expensive of all tested
algorithms. These plots were observed using the default values
of all variables, however we note that across all experiments,
each algorithm’s time was observed to essentially only depend
on the dimensions K and N and not depend on the statistics of
the data.

Fig. 3 plots the algorithms’ average jISI and cross-jISI
performances with varying the number of datasets K. Due
to the challenging nature of the default variables chosen,

Fig. 4. jISI and cross-jISI w.r.t. varying number of SCVs N .

Fig. 5. jISI and cross-jISI w.r.t. varying the SCVs’ “effective rank” Rn

(number of blocks in each Csn ).

IVA-G and GNJD have significantly worse estimation capabili-
ties than the other algorithms. We note that when the Csn have
a simple low effective rank structure, performance of IVA-G
suffers when K is very large since IVA-G overparameterizes
SCVs. Conversely, GNJD performs worse when K is small.
On the other hand, MCCA-SUMCORR assumes a generative
model where each SCV is a “common source” shared across the
K datasets, thus modeling each SCV Sn as an effectively rank
1 matrix [9]. Apparently this simpler parameterization allows
MCCA-SUMCORR to outperform with simpler Csn . Finally,
we observed coreIVA-G to be the best jISI performing algo-
rithm with increasing K. As regIVA-G and coreIVA-G use a
smaller number of datasets Kb to model the remaining datasets,
Kb becomes the effective dimensionality of the SCVs (thus
avoiding SCV overparameterization), allowing these methods
to maintain good performance with large K.

Fig. 4 plots the algorithms’ average jISI and cross-jISI per-
formances with varying the number of SCVs N . Like in the pre-
vious experiment with varying K, IVA-G and GNJD perform
the poorest among all tested algorithms, whereas the other algo-
rithms perform significantly better in jISI in order of regIVA-G,
MCCA-SUMCORR, and coreIVA-G (best).

Fig. 5 plots the algorithms’ average jISI and cross-jISI per-
formances with varying the number of blocks in each SCV Rn.
We observe all algorithms perform worse with increasing Rn,
which we believe is the result of less correlation in the Csn due
to the way the Csn are generated, and the Csn possibly being
closer to nonidentifiability conditions. We notably observed that
GNJD performed poorly with Rn = 2, but was among the best
performing algorithms whenRn is large, with performance sim-
ilar to coreIVA-G. Like in the previous experiments, coreIVA-G
is among the best performing of all tested algorithms.

Fig. 6 plots the algorithms’average jISI and cross-jISI perfor-
mances with varying β, the minimum correlation between any
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Fig. 6. jISI and cross-jISI w.r.t. varying β, the minimum correlation
between any two sources in the same SCV.

Fig. 7. jISI and cross-jISI w.r.t. varying σ, the amount of Wishart random
“variability” added to the Csn .

two sources in the same SCV. All algorithms except GNJD per-
form better with increasing β, whereas GNJD performs signifi-
cantly worse with larger β. This may possibly be due to GNJD’s
separation performance being more sensitive to when all SCVs
have Csn with more similar elements (elements become closer
together). Like the previous simulations, coreIVA-G is among
the best performing of all tested algorithms.

Fig. 7 plots the algorithms’ average jISI and cross-jISI per-
formances with varying σ, the amount of Wishart random
“variability” added to the Csn , which deviates the Csn

from having a non-unique eigendecomposition and deviates
from JBSS nonidentifiability. All algorithms except MCCA-
SUMCORR perform better with larger σ, whereas MCCA-
SUMCORR performs slightly worse with larger σ. We
anticipate that this is due to the fact that as MCCA-SUMCORR
effectively models each SCV (and thus each Csn ) as a rank
1 matrix, adding the Wishart variability tends the Csn closer
to a rank K model and thus tends farther from the MCCA-
SUMCORR assumed model. IVA-G in particular performs the
best when σ is high, which we attribute to the K-dimensional
maximum likelihood SCV model providing the best SCV model
in this scenario. Like the previous simulations, coreIVA-G is
among the best performing of all tested algorithms, only beaten
by IVA-G in jISI when σ is high.

Fig. 8 plots the algorithms’average jISI and cross-jISI perfor-
mances with varying ζ, the level of additive noise in the SCVs.
Increasing ζ decreases the total level of correlation in the SCVs
and results in a harder JBSS problem. All algorithms perform
worse with greater noise, with the relationship between ζ and
jISI appearing to be linear. Interestingly, the cross-jISI of all
algorithms is not as affected by greater noise, aside from GNJD
which has a exponential plot very similar to its cross-jISI plot
observed for increasing β. An increase in β or ζ both correspond

Fig. 8. jISI and cross-jISI w.r.t. varying ζ, the level of additive noise in
the SCVs.

Fig. 9. jISI and cross-jISI w.r.t. varying γ, the SCV cross-correlation.
regIVA-G methods overlap in cross-jISI. coreIVA-G methods overlap in jISI
and cross-jISI.

to all off-diagonal values in each Csn becoming closer together,
which may predict performance issues for GNJD. Like the
previous simulations, coreIVA-G is among the best performing
of all tested algorithms.

Fig. 9 plots the algorithms’ average jISI and cross-jISI
performances with varying γ, the cross-correlation between
separate SCVs. γ = 0 corresponds to uncorrelated SCVs,
whereas increasing γ presents a harder JBSS problem. We
first note that this is the only case of changing the generative
model’s variables where we observed a difference in jISI
between the analytic and numerical methods of regIVA-G and
coreIVA-G: when γ > 0, regIVA-G-N outperformed regIVA-
G-A in jISI, and coreIVA-G-N (slightly) outperformed
coreIVA-G-A in jISI. We anticipate that this is because the
numerical methods’ cost functions per each ith remaining
dataset are a function of all demixing vectors w

[i]
n , whereas

the analytic methods’ objective functions are a function
of a single demixing vector at a time. In particular, the
log|det

(
W[k]

)
| term in the numerical methods may lead

to better performance with correlated SCVs (otherwise
log | det

(
W[k]

)
| = 0 when SCVs are uncorrelated and

the datasets are prewhitened). However we note that with
coreIVA-G, the difference in jISI between coreIVA-G-N and
coreIVA-G-A is observed to be very small, which justifies
coreIVA-G-A as practical method not just in time complexity
but also in separation performance.

Next, we study the performance of the JBSS algorithms in
the context of a resting-state fMRI data experiment.

B. fMRI Data Experiment

One common application of JBSS is for analyzing medical
imaging datasets, particularly with fMRI data [1], [2], [3].
For many fMRI datasets, most SCVs estimated by JBSS are
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Fig. 10. Plots of JBSS estimated sources for coreIVA-G and MCCA-SUMCORR (MCCA) obtained from the fMRI data. (a) Distribution of power spectral
ratio (PSR) values over the N = 80 SCVs, for both coreIVA-G and MCCA-SUMCORR. (b)–(e) Plot the principal right singular vector of four different
SCVs (a way of summarizing the K sources in the corresponding SCV Yn∈ R

K×T , accounting for possible sign ambiguities of the sources). (b) and (c)
correspond to two SCVs representing the default mode network (DMN), (d) and (e) correspond to two SCVs representing the visual (VIS) networks.

typically both low-rank and correlated to each other, with statis-
tics like those modeled in Section VII-A. Thus, fMRI datasets
typically have SCVs that are challenging to estimate for algo-
rithms that only exploit source correlation. At the same time,
fMRI datasets are also typically very large and thus also ne-
cessitate efficient JBSS algorithms, like those algorithms only
exploiting source correlation.

Our experiments use the resting-state fMRI data from
the bipolar-schizophrenia network on intermediate phenotypes
(B-SNIP) [29], [30]. We used subject datasets available at
multiple sites for a total of K = 1175 subjects. A single
5-minute resting fMRI scan was captured for each subject, who
were instructed to maintain an open-eyed state, concentrate
on a crosshair presented on a display screen, and remain still
throughout the scanning process. At least R ≥ 97 time points
were obtained for each subject. We removed the first 3 time
points to address the T1 effect and each subject’s data was
preprocessed including motion correction and slicetime correc-
tion. Each subject image was masked, yielding a matrix X̃[k]

∈ R
R×T where each of the R time point rows was a flattened

observation vector of T = 57878 voxels. We then standardized
and whitened these X̃[k] using PCA, and the first N principal
components were retained for the subsequent JBSS perfor-
mance evaluations. The order N = 80 was chosen by selecting
an adequate order analyzing post-analysis results, however, we
also note that N = 80 was the largest possible order we could
use given the HPCF maximum available memory (350 GB).
We thus preprocessed K = 1175 subjects’ fMRI datasets X[k]

∈ R
80×57878, k = 1, . . . ,K, which were then used to perform

JBSS.
Given the massive size of this fMRI data, which would be in-

feasible for most JBSS methods (including IVA-G, GJD meth-
ods, etc.), we perform JBSS on the data using only two methods:
coreIVA-G-A and MCCA-SUMCORR. With NK >> T , we
performed the MCCA-SUMCORR solution from a singular

value decomposition (SVD) of X = [X[1]�, . . . ,X[K]�]� ∈
R

NK×T , as estimating the MCCA-SUMCORR W[k] from the
N left singular vectors of X provides a significantly more CPU
and memory efficient alternative to calculating these from the
eigendecomposition of of Ĉx = 1

T−1 XX� ∈ R
NK×NK . This

method of performing MCCA-SUMCORR is mathematically
equivalent to group-PCA [31], and thus can be seen as perform-
ing a group-level PCA on the K datasets to select N group level
components whose corresponding weights in the PCA form the
demixing matrices W[k] [10]. We used Kb = 40 for coreIVA-G
based on higher quality post-analysis results with this Kb.

As we do not have ground-truth sources with real data (and
thus can’t directly measure source separation with jISI), we use
other performance measures on the results:

• total CPU-time to estimate all W[k]

• cross-jISI between W[k] of runs with different initializa-
tions (measuring consistency in estimated sources)

• “mean PSR”: average of the SCV’s power spectral ratios
(PSR). PSR is defined as the power ratio between low-
frequency ( < 0.1 Hz) and high-frequency ( > 0.15 Hz)
bands within estimated sources. Considering the frequen-
cies of neural-activity related BOLD signals are generally
below 0.15 Hz, high power ratio values typically indicate
BOLD activity and low power ratio values typically asso-
ciate with noisier estimates and artifacts [32].

To measure cross-jISI, we ran coreIVA-G 10 different times
with 10 random initializations for the estimated W[k]. When
plotting estimated fMRI sources, we retained the run that had
the minimum cross-jISI between all other runs (the run “most
similar” to all runs). As MCCA-SUMCORR is performed with
SVD, which has an analytic solution (invariant to initialization),
we report MCCA-SUMCORR’s cross-jISI as 0 and use results
from a single run.

Table II presents the performance measures of coreIVA-
G and MCCA-SUMCORR (MCCA) on the fMRI data. We
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TABLE II
PERFORMANCE MEASURES OF COREIVA-G AND

MCCA-SUMCORR (MCCA) ON THE K=1175 FMRI
DATASETS. THE BEST PERFORMING ALGORITHM PER

MEASURE HAS ITS VALUE IN BOLD. COREIVA-G’S
CPU-TIME IS AVERAGED OVER 10 RUNS. MEAN PSR

IS THE AVERAGE OF ALL N = 80 SCV’S POWER

SPECTRAL RATIOS. WE INCLUDED ONLY COREIVA-G
AND MCCA-SUMCORR AS OTHER METHODS (SUCH

AS IVA-G, GJD, ETC.) WERE COMPUTATIONALLY

INFEASIBLE FOR THIS LARGE DATASET

CPU-time
(hours)

.
cross-jISI

.
mean PSR

.
coreIVA-G

.
40.88 9.42e-9 3.16

.
MCCA

.
48.78 0 2.02

first note that MCCA-SUMCORR takes about 20% more
CPU-time. We anticipate the relative time difference between
the algorithms would increase significantly with larger K due to
the O(K) complexity of the coreIVA-G regression step, whereas
MCCA-SUMCORR has a complexity with K of O(K3). We
then note that MCCA-SUMCORR has the advantage of an
analytic solution and thus the estimated solution is invari-
ant to the initialization (cross-jISI of 0), however, coreIVA-
G’s observed cross-jISI value of 9.42e-9 is low enough such
that the difference between sources of any two runs is es-
sentially negligable. We also note that coreIVA-G has higher
mean PSR values averaged across the N = 80 SCVs, indi-
cating that coreIVA-G generally estimates less noisy sources
compared to MCCA-SUMCORR. Fig. 10(a) presents violin
plots visualizing the distribution of the N = 80 SCVs’ PSR
values, further demonstrating that on a whole the PSR values
were significantly higher per SCV with coreIVA-G compared to
MCCA-SUMCORR.

Fig. 10 also plots spatial maps for the algorithms’ estimated
SCVs (referred to as networks), two networks corresponding to
default mode network (DMN) domains in (b) and (c), and two
corresponding to visual domains (VIS) in (d) and (e). Each plot
is of the principal right singular vector of that corresponding
SCV Yn ∈ R

K×T , providing a way of summarizing the K

sources y
[k]
n in Yn, accounting for possible sign ambiguities.

When analyzing plots of estimated sources, we found these
differences in coreIVA-G vs. MCCA-SUMCORR:

• “focal” activations correspond to activation peaks at the
center of an activated region and a gradual decrease in
magnitude away from the region, which is a desired qual-
ity in fMRI spatial maps. Sources estimated by MCCA-
SUMCORR generally display more noise, particularly the
blue plotted areas, and are generally less “focal” than the
corresponding sources estimated by coreIVA-G.

• higher activation magnitude within a source may cor-
respond to a better isolation of that source’s functional
network (FN), which may indicate a better demixing of
sources. We observed overall higher activation magnitudes
with coreIVA-G than with MCCA-SUMCORR.

We anticipate that these differences are largely due to
coreIVA-G being an IVA-based method, which can generally
perform better for preserving per-subject variability in SCVs
[33]. This is opposed to MCCA-SUMCORR, which was shown
in [9] to model SCVs as an effectively rank-1 matrix (a source
shared across the datasets). This rank-1 model is expected to
perform well when SCVs are highly homogeneous, but may
otherwise be outperformed by IVA-based methods when more
heterogeneity exists within SCVs.

VIII. CONCLUSION

This paper presents an efficient methodology for scaling IVA-
G on a subset of datasets to a much larger set of datasets, called
“regIVA-G”. We proposed two such methods for regressing an
additional dataset: a numerical solution minimizing the IVA-
G cost, and a previously proposed analytic solution [16] with
an objective function comparable with those of GJD-based
methods. We then derived the regIVA-G methods’ nonidentifi-
ability conditions: conditions for which the regIVA-G methods
are unable to uniquely identify the true sources. These condi-
tions are highly general (assuming the subset’s sources have
been identified), highlighting the powerful estimation capabil-
ities of both regIVA-G methods. Following this, we derived a
novel tractable cost function for measuring the representative-
ness of a subset of datasets, comparable to discrepancy-based
costs for coreset (representative subset) selection. We thus pro-
pose using this discrepancy, in conjunction with weighting the
datasets to best minimize the discrepancy, as the “coreIVA-G”
method building onto the regIVA-G method. Finally, we exper-
imentally demonstrate that regIVA-G and coreIVA-G methods
can significantly outperform other JBSS methods in terms of
CPU-time, jISI, and cross-jISI, making these methods highly
practical and highly generalizable to many different types
of data.

The main limitation of the regIVA-G and coreIVA-G meth-
ods is that they only assume a multivariate Gaussian model,
and thus only exploit source correlation to perform JBSS.
Algorithms that exploit higher-order statistics are generally
known for strong performance, and provide superior identi-
fiability conditions when the data’s SCVs are non-Gaussian.
Thus, future work may generalize these methods to a general
“regIVA” or “coreIVA” methodology modeling non-Gaussian
distributions as well, in addition to other statistical prop-
erties of the data (such as sample dependence within the
sources).
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