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Abstract—Accurate cloud property retrieval is vital for un-
derstanding cloud behavior and its impact on climate, includ-
ing applications in weather forecasting, climate modeling, and
estimating Earth’s radiation balance. The Independent Pixel
Approximation (IPA), a widely used physics-based approach,
simplifies radiative transfer calculations by assuming each pixel
is independent of its neighbors. While computationally efficient,
IPA has significant limitations, such as inaccuracies from 3D
radiative effects, errors at cloud edges, and ineffectiveness for
overlapping or heterogeneous cloud fields. Recent AI/ML-based
deep learning models have improved retrieval accuracy by
leveraging spatial relationships across pixels. However, these
models are often memory-intensive, retrieve only a single cloud
property, or struggle with joint property retrievals. To overcome
these challenges, we introduce CloudUNet with Attention Module
(CAM), a compact UNet-based model that employs attention
mechanisms to reduce errors in thick, overlapping cloud regions
and a specialized loss function for joint retrieval of Cloud
Optical Thickness (COT) and Cloud Effective Radius (CER).
Experiments on a Large Eddy Simulation (LES) dataset show
that our CAM model outperforms state-of-the-art deep learning
methods, reducing mean absolute errors (MAE) by 34% for COT
and 42% for CER, and achieving 76% and 86% lower MAE for
COT and CER retrievals compared to the IPA method.

Index Terms—Cloud Property Retrievals, Cloud Optical Thick-
ness, Cloud Effective Radius, Deep Learning, Bi-spectral retrieval

I. INTRODUCTION

Clouds are a key regulator of Earth’s radiation balance,
controlling how much radiation is absorbed or reflected back
into space. Their microphysical properties, such as Cloud
Optical Thickness (COT) and Cloud Effective Radius (CER),
are essential for climate modeling and weather forecasting,
providing critical insights into climate change [1–3]. Re-
trieving cloud properties from satellite radiance observations
is a 3D inverse problem because radiance observations are
collected from 3D clouds and are affected by different cloud
properties. The complex interactions between clouds and solar
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radiation, described by 3D radiative transfer models, require a
3D inversion process to retrieve the underlying cloud proper-
ties. However, since radiance observations are inherently 2D,
they lack complete information about cloud and solar inter-
actions, making the inversion mathematically intractable and
necessitating approximate solutions. The Independent Pixel
Approximation (IPA), proposed by Nakajima and King [1],
offers a 1D inverse method for cloud property retrieval. While
computationally efficient, IPA often leads to overestimations
or underestimations [4–6].

In recent years, machine learning and deep learning-based
techniques have been adopted in many fields, including com-
puter vision [7], medical applications [8], robotics [9], and
edge devices [10], as well as in remote sensing [11, 12].
In particular, their application to cloud property retrieval has
significantly narrowed the gap between true and retrieved
values. [13]. For example, Min et al. [14] explored four ML
algorithms such as K-Nearest-Neighbors (KNN)[15], Support
Vector Machines (SVM) [16], Random Forests (RF) [17],
and Gradient Boosting Decision Trees (GBDT) [18] to re-
trieve Cloud Top Height (CTH) from radiance observations.
Similarly, Yang et al. [19] trained the XGBoost algorithm to
retrieve CTH, cloud masks, and cloud top temperature from
Himawari-8 measurements [20]. However, these approaches
neglect spatial features, limiting their performance [21, 6]. Re-
cent efforts have focused on utilizing spatial regions to retrieve
cloud properties, moving beyond pixel-by-pixel approaches.
These methods fall into two categories: single-property re-
trievals and joint-property retrievals. Single-property methods
often train separate UNet-style architectures [22, 23] for each
cloud property, such as COT, CER, and CTH [21, 24, 25, 6].
However, maintaining separate models for each property incurs
significant computational costs. To address this, Okamura
et al. [26] proposed a single DNN for joint retrieval of
COT and CER. Later, Wang et al. [27] introduced a more
advanced DNN architecture to jointly retrieve cloud masks,
CTH, and ice Cloud Optical Thickness using temperature
brightness and auxiliary information. However, their use of
a large spatial region (32 × 32) to retrieve a single pixel’s
properties makes their approach computationally intensive
during inference. Similarly, Wang et al. [28] trained a UNet-
based model to jointly estimate COT, CER, CTH, and cloud
masks. Despite these advancements, these methods are either
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computationally expensive due to the requirement for high-
dimensional radiance data or produce less accurate retrievals.
In this paper, we address the limitations of existing methods
by proposing an efficient deep learning model with a custom
objective function to effectively learn the joint distribution
of COT and CER from radiance data while mitigating 3D
radiative effects. Our key contribution is the development
of CloudUNet with Attention Module (CAM), a lightweight
UNet-based architecture that uses attention mechanisms to
reduce retrieval errors in dense, overlapping cloud regions and
incorporates a multi-task loss function for joint COT and CER
retrieval. The experimental results show that CAM achieves
at least 34% lower MAE compared to state-of-the-art deep
learning methods and 76% lower MAE compared to the IPA
method. Ablation studies further demonstrate the effectiveness
of the attention mechanism and the custom objective function
in reducing retrieval errors.

II. METHODOLOGY

A. Problem Formulation

We formulate the joint retrieval of cloud properties (such
as COT and CER) from radiance observations as a multi-
task regression problem. Mathematically, the joint retrieval
formulation for a cloud profile (C) is shown in Eq. 1

τC , rCe = fθ(R
C
0.66, R

C
2.13) (1)

where τC is the COT, rCe is the CER, fθ is the model
parameters, and RC

0.66, R
C
2.13 are the radiance observations at

wavelengths 0.66µm and 2.13µm.

B. Cloud Property Retrieval framework

We employ a window-based retrieval approach to estimate
the cloud properties from the radiance observations. In this
approach, a small spatial segment of the radiance measure-
ments is extracted for each cloud profile and input into the
deep learning algorithm to estimate cloud properties for that
specific segment. A hash map is used to traverse the radiance
observations, extract patches, and generate the corresponding
cloud property estimates. Subsequently, this hash map is then
used to aggregate the properties from all segments to obtain
the full cloud profile properties.

Window-based retrievals offer several advantages, such as
enabling the reuse of deep learning models for larger radiance
observations and reducing the need for extensive training data
due to the small spatial resolution of the extracted patches.
This approach also enhances the model’s generalization to
unseen test data. Researchers have explored various window
sizes for retrieving cloud properties from satellite radiance
observations. In this work, we adopt the most commonly used
window size of 64× 64 [21, 26, 24].

C. CAM: CloudUNet with Attention Module

In our previous work [6] presented at IGARSS’24, we
introduced CloudUNet, a state-of-the-art deep learning model
for COT retrieval. CloudUNet employs a compact U-Net-style
architecture with skip connections to learn multi-scale features,

Fig. 1. CAM: CloudUNet with Attention Module

significantly reducing errors in cloud property retrieval. How-
ever, despite its superior performance, CloudUNet has limi-
tations: its accuracy decreases when handling heterogeneous
clouds, and it is designed to retrieve only one cloud property
at a time. To address these challenges, this paper introduces
CAM: CloudUNet with Attention Module, which incorporates
channel attention modules [29] into the skip connections.
These modules enhance the model’s ability to focus on the
most relevant cloud patterns in radiance observations, improv-
ing the accuracy of cloud property predictions. Additionally,
CAM is designed to jointly predict both COT and CER using
two separate branches with convolutional layers, as illustrated
in Figure 1.

Intuitively, CAM works as follow: It extracts features from
the radiance data at multiple scales using two downsam-
pling blocks and several convolutional layers. These features
are then mapped back to the target COT and CER data
through two upsampling blocks and additional convolutional
layers. The Channel Attention Module refines the features by
re-weighting them along the channel dimensions, assigning
greater weight to important features while reducing the weight
of less significant ones. Additional branches for each cloud
property leverage features from earlier layers to map to the
corresponding target cloud property.

D. Training Objective Function

In regression-based problems, it is common practice to
use L2 loss for training deep learning models. However,
different cloud properties have distinct value ranges, and L2
loss imposes disproportionately larger penalties for higher
values while assigning smaller penalties to lower values.
This approach fails to account for disparities between cloud
properties with narrow value ranges (e.g., scaled CER) and
those with broader value ranges (e.g., COT). As a result,
balancing the loss contributions from different properties is
essential. To address this, we introduce a multi-task objective
(MTO) loss that incorporates two weighting coefficients, λ1

and λ2, which are applied to the L2 losses for COT and CER,
respectively. The L2 loss formula is provided in Eq.2, and the
MTO loss formulation (LMTO) used in our training is detailed
in Eq.3.

l(t, y) =
1

N

N∑
i=1

(ti − yi)
2 (2)



LMTO = λ1 · lCOT + λ2 · lCER (3)

Here, t and y are the true and the retrieved cloud property
respectively. i denotes ith pixel, and N denotes the total pixels
in a cloud profile. lCOT and lCER denote L2 losses for COT
and CER respectively.

TABLE I
COMPARISON OF COT AND CER RETRIEVALS METHODS. COT SCORES.

Retrieval
Methods

COT
MAE(↓)

COT
MSE (↓)

COT
Corr. Coeff. (↑)

% Impv. Over
IPA MAE

IPA Retrievals [1] 0.176± 0.003 0.199± 0.005 0.918± 0.002 –
Okamura [26] 0.093± 0.001 0.030± 0.001 0.985± 0.001 47%
UNet [21, 30] 0.065± 0.008 0.019± 0.001 0.991± 0.001 63%

CloudUNet [6] 0.070± 0.007 0.019± 0.002 0.991± 0.001 60%
CAM (ours) 0.043± 0.001 0.014± 0.001 0.993± 0.0003 76%

TABLE II
COMPARISON OF COT AND CER RETRIEVALS METHODS. CER SCORES.

Retrieval
Methods

CER
MAE(↓)

CER
MSE (↓)

CER
Corr. Coeff.(↑)

% Impv. Over
IPA MAE

IPA Retrievals [1] 2.024± 0.045 34.536± 1.291 0.598± 0.003 –
Okamura [26] 0.814± 0.029 2.042± 0.084 0.876± 0.006 60%
UNet [21, 30] 0.435± 0.092 0.895± 0.079 0.947± 0.003 78%

CloudUNet [6] 0.407± 0.049 0.919± 0.117 0.946± 0.002 80%
CAM (ours) 0.252± 0.010 0.642± 0.033 0.961± 0.004 86%

III. EXPERIMENTAL SETUP

A. Data

In this study, 902 Large-Eddy Simulation (LES) cloud fields
(denoted as cloud profile) have been modeled using three-
dimensional (3D) cloud Liquid Water Content (LWC) obtained
from the LES Atmospheric Radiation Measurement (ARM)
Symbiotic Simulation and Observation (LASSO)[31]. The
cloud droplet effective radius associated with the correspond-
ing LWC distribution was calculated using a two-moment bulk
microphysics scheme [32] [see their equation 5 in Section
2]. The radiative transfer calculation was conducted using a
solar zenith angle (SZA) of 60◦, a solar azimuth angle (SAA)
of 0◦, and a view zenith angle (VZA) of 0◦, with double
periodic horizontal boundary conditions applied. The surface
was modeled as a Lambertian reflector with an albedo of 0.05.
Radiance computations (3D) at the two wavelengths (0.66
and 2.13µm), which are required for the [1] IPA bi-spectral
retrievals, have been simulated using the spherical harmonics
discrete ordinate method (SHDOM) developed by Evans et
al.[33].

The LES cloud fields from LASSO were selected because
they provide a realistic representation of the atmosphere and
cloud, consistent with observations from the ARM program.
These cloud fields have a large domain size of 14km× 14km
with a horizontal resolution of 100m. The vertical domain
height extends up to 15km, featuring a vertical resolution of
30m below 5km and 300m above 5km. The large domain size
and high resolution of the LASSO LES cloud fields make them
suitable to study 3D radiative transfer effects in cloud proper-
ties retrievals from radiance observations. Each cloud profile

has COT[Dim : 144×144×1], CER[Dim : 144×144×1] and
Radiance observations at two wavelengths (0.66µm, 2.13µm)
[Dim : 144 × 144 × 2]. Our goal is to retrieve the COT and
CER from the radiance observations.

Data Preparation: The COT data are transformed using
a shifted logarithmic transformation [Transformed COT =
log(COT +1)] to handle its sparse tail distribution[6]. Addi-
tionally, CER data are scaled by 30.0 to be within a small
range of [0, 2]. This scaling is beneficial since it provides
numerical stability for deep learning training[7].

B. Model Comparison

We compared the following retrieval methods: (a) IPA
retrievals by [1], a physics-based method used by NOAA; (b)
DNN [26]; (c) UNet [21, 30]; (d) CloudUNet [6]; and (e) our
CAM model. To evaluate performance, we employed three
metrics: mean squared error (MSE)[34], mean absolute error
(MAE)[35], and the Pearson correlation coefficient [36]. These
metrics offer insights into the magnitude of errors, the presence
of bias in retrievals, and the linear correlation between true and
retrieved properties.

C. Implementation

All methods are implemented in python using Pytorch
library package and trained with various hyperparameters
such as learning rate, batch size, schedulers, and optimizers.
Our CAM model achieved the best performance with 0.001
learning rate, 128 batch size, and an early stopping criterion
and patience of 50 epochs. The model parameters were opti-
mized using the ADAM optimizer, with weighting coefficients
λ1 = 1 & λ2 = 15.

1

IV. RESULTS AND DISCUSSION

A. Quantitative Results

Tables I and II summarize the performance of all models.
Our CAM outperformed all other methods by a significant
margin, achieving at least 34% lower MAE for COT and 28%
lower MAE for CER compared to state-of-the-art models. Ad-
ditionally, Pearson correlation coefficient analysis reveals that
the CAM model achieves the highest correlation. These im-
provements can be attributed to the use of multiscale features
with the channel attention mechanism and further enhanced by
a customized objective function, which is effectively utilized
through separate cloud property branches [see section V].

B. Qualitative Results

We present a visual comparison of various retrieval methods
in Fig. 2 and Fig. 3 for COT and CER, respectively. When
the sun is at an oblique angle, illuminating and shadow effects
arise due to 3D radiative transfer [37]. The highlighted regions
show that IPA overestimates COT for regions with illuminating
effects and underestimates for regions with shadowing effects.
For CER, IPA shows the opposite trend, overestimating in

1Our code is available at: https://github.com/
AI-4-atmosphere-remote-sensing/DL 3d cloud retrieval/releases.

https://github.com/AI-4-atmosphere-remote-sensing/DL_3d_cloud_retrieval/releases
https://github.com/AI-4-atmosphere-remote-sensing/DL_3d_cloud_retrieval/releases


Fig. 2. Comparison of COT Retrieval methods. COT values are plotted in
shifted log scale. (a) True COT; (b) IPA retrieved COT; (c) UNet retrieved
COT; (d) CAM retrieved COT. Highlighted regions are shown in bottom row.

Fig. 3. Comparison of CER Retrieval methods. CER values are in regular
scale. (a) True CER; (b) IPA retrieved CER; (c) UNet retrieved CER; (d)
CAM retrieved CER. Highlighted regions are shown in bottom row.

shadowed regions and underestimating in illuminated areas.
For COT retrievals, UNet struggles with thick cloudy regions
(high COT areas). In contrast, our CAM model outperforms
all other methods by effectively mitigating the impact of
3D radiative effects and accurately identifying COT in thick
cloudy regions.

V. ABLATION STUDIES

We conducted ablation studies to study the impacts of
two key factors: the incorporation of attention mechanisms
in UNet-style architectures and the choice of training loss
function. Specifically, we systematically modified each fac-
tor independently while keeping the model architecture and
training procedures otherwise identical. This approach allowed
us to isolate their unique contributions and quantify their
individual effects on model performance. The results are
presented in Table III.

A. Impact of Attention Mechanisms

To assess the impact of attention mechanisms, we compare
variants of UNet and our CAM model, with and without
attention mechanisms. We notice that there is a considerable
reduction in MAE when attention mechanism is used. This
shows the generalizability of our proposed modification for
UNet style architectures used in cloud property retrievals. The
benefits of the attention mechanism are further illustrated in

TABLE III
ABLATION STUDIES: COMPARATIVE ANALYSIS ON ATTENTION

MECHANISM AND OBJECTIVE FUNCTION.

Retrieval Methods Objective Function COT MAE (↓) CER MAE (↓)

UNet [w/o Attention] L2 Loss 0.065± 0.008 0.435± 0.092
CloudUNet L2 Loss 0.070± 0.007 0.407± 0.049

UNet [w/ Attention] L2 Loss 0.056± 0.002 0.425± 0.097
CAM [w/ Attention] L2 Loss 0.044± 0.001 0.291± 0.011

CAM [w/ Attention] MTO Loss 0.043± 0.001 0.252± 0.010

Fig. 4, which shows CAM COT retrievals with and without
attention mechanism.

Without attention, COT retrievals in heterogeneous, thick
cloud regions (high COT areas) were inaccurate due to the
inherent tail distribution of COT values, which L2 loss fails
to emphasize [6]. However, with attention, the CAM model
retrieved COTs in these regions more accurately. However,
with the attention mechanism, our CAM model retrieved COTs
in these regions more accurately. This shows that the attention
mechanism effectively captured rare but important features in
the data, leading to more precise COT retrievals and reduced
errors.

Fig. 4. CAM COT retrieval with and without attention mechanism. Top row
shows the COT profile while bottom row shows the highlighted regions. COT
is shown in log scale.

B. Impact of Training Objective Function

Different cloud properties have varying value ranges; for ex-
ample, COT spans a much broader range than CER in typical
atmospheric conditions. As a result, directly applying L2 loss
during training may inadequately optimize CER retrieval. To
address this imbalance, our multi-task objective (MTO) loss
balances the L2 loss contributions for COT and CER, leading
to a significant 13% reduction in MAE for CER prediction.
These results highlight the importance of normalizing training
objectives to ensure effective estimation of cloud properties
with differing dynamic ranges.

VI. CONCLUSIONS

Retrieving cloud properties from radiance observations is
a challenging problem due to 3D radiative transfer effects.
In this paper, we proposed CAM model for jointly retrieving
cloud optical thickness and cloud effective radius properties.



Through quantitative and qualitative assessment using several
evaluation metrics we demonstrated that multi-task objective
function and attention mechanism are well suited for joint
retrievals while minimizing the 3D radiative effects. In future,
we plan to retrieve cloud properties from multi-angle radiance
data where both solar zenith and view zenith angles vary.
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