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Abstract

Background and objective. Range uncertainty is a major concern affecting the delivery precision in
proton therapy. The Compton camera (CC)-based prompt-gamma (PG) imaging is a promising
technique to provide 3D in vivo range verification. However, the conventional back-projected PG
images suffer from severe distortions due to the limited view of the CC, significantly limiting its
clinical utility. Deep learning has demonstrated effectiveness in enhancing medical images from
limited-view measurements. But different from other medical images with abundant anatomical
structures, the PGs emitted along the path of a proton pencil beam take up an extremely low portion of
the 3D image space, presenting both the attention and the imbalance challenge for deep learning. To
solve these issues, we proposed a two-tier deep learning-based method with a novel weighted axis-
projection loss to generate precise 3D PG images to achieve accurate proton range verification.
Materials and methods: the proposed method consists of two models: first, a localization model is
trained to define a region-of-interest (ROI) in the distorted back-projected PG image that contains the
proton pencil beam; second, an enhancement model is trained to restore the true PG emissions with
additional attention on the ROL. In this study, we simulated 54 proton pencil beams (energy range:
75-125 MeV, dose level: 1 x 10° protons/beam and 3 x 10® protons/beam) delivered at clinical dose
rates (20 kMU min~ " and 180 kMU min ') in a tissue-equivalent phantom using Monte-Carlo (MC).
PG detection with a CC was simulated using the MC-Plus-Detector-Effects model. Images were
reconstructed using the kernel-weighted-back-projection algorithm, and were then enhanced by the
proposed method. Results. The method effectively restored the 3D shape of the PG images with the
proton pencil beam range clearly visible in all testing cases. Range errors were within 2 pixels (4 mm)
in all directions in most cases at a higher dose level. The proposed method is fully automatic, and the
enhancement takes only ~0.26 s. Significance. Overall, this preliminary study demonstrated the
feasibility of the proposed method to generate accurate 3D PG images using a deep learning
framework, providing a powerful tool for high-precision in vivo range verification of proton

therapy.

1. Introduction

When protons travel through matters, a peak in energy deposition is observed at the end of their range, referred
to as ‘Bragg Peak’. Beyond the peak, energy deposition drops off sharply. This characteristic enables the proton
therapy to achieve high dose concentrations within the targets while significantly sparing the surrounding
healthy tissues. But in turn, the treatment precision highly depends on the proton range accuracy. Patient
positioning errors and anatomy motions/changes can cause proton range uncertainties during delivery,
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resulting in an underdose of targets and/or overdose of healthy tissues (Paganetti 2012). A safety margin can be
added to the target to ensure it receives the prescribed dose. However, this inevitably leads to an increased target
volume and consequently escalates the dose to the surrounding healthy tissues, defeating the purpose of using
proton therapy to spare healthy tissues. Therefore, there is an urgent clinical need to verify the proton beam
range during treatment so that strategies can be designed to correct range delivery errors to minimize their
impact.

Various techniques have been developed to detect the secondary signals emitted during proton beam
irradiation to achieve non-invasive in vivo dose verification (Knopfand Lomax 2013, Parodi and Polf 2018),
such as positron emission tomography (PET) (Nishio et al 2010), magnetic resonance imaging (MRI)
(Gensheimer eral 2010), proton-acoustic imaging (Assmann et al 2015, Jones et al 2015), and prompt gamma
(PG) imaging (Richard et al 2010, Panthi et al 2020, Polf e al 2022). In particular, several studies (Min et al
2006, Kim 2009, Bom et al 2011, Kormoll et al 2011, Moteabbed et al 2011, Roellinghoff et al 2011, Verburg
etal2013) have shown a strong correlation between the origins of PG emissions and the dose deposited by
proton beams using both measurements and the Monte Carlo (MC) simulations, demonstrating the
possibilities of PG imaging for in vivo range verification. With the Compton camera (CC), the origins of PG
emissions can be reconstructed in 3D volumes (Richard et al 2010) using back-projecting algorithms. But the
PG image quality is limited by the false, scattered, and mis-ordered PG events detected by the CC. Recently,
deep learning-based methods have been proposed to pre-process the CC measured PG data (Zoglauer and
Boggs 2007, Munoz etal 2021, Polf er al 2022), substantially reducing the noise and artifacts within the images
by discarding false PG events and correcting mis-ordered PG events. However, due to the limited view of CCs
acquisition, the PG images still suffer from severe distortions, significantly limiting their accuracy in range
verification.

Reconstructing images from limited-view acquisition is essentially an ill-conditioned inverse problem. In
recent years, deep learning has emerged as a powerful tool to address such challenges and generate high-
quality volumetric images. Yang et al (2017) proposed a deep de-aliasing generative adversarial network (DA-
GAN) for fast MRI reconstruction and showed superior performance to conventional compressed sensing-
based algorithms in terms of both image quality and reconstruction speed. Previously, convolutional neural
networks (CNNs) were developed to enhance cone-beam computerized tomography (CBCT) images
reconstructed from sparse (Jiang et al 2019) and limited-angle (Jiang et al 2021) projections, generating high-
quality volumes with clear and accurate structures. However, different from other medical images in which
patient anatomy and other structures fill a large percentage of the image space, PG signals emitted alonga
single proton pencil beam path take up an extremely low portion of the total reconstructed 3D image space,
presenting both the attention and the imbalance challenge for deep learning (Johnson and
Khoshgoftaar 2019a, Bria et al 2020, Zhang et al 2020).

To address these issues, in this study, we proposed a deep learning-based two-tier scheme to reconstruct
high-quality PG images usinga Compton camera for proton range verification. First, alocalization model is
trained to define a region of interest (ROI) in the distorted back-projecting PG images that contains the proton
pencil beam. And second, an enhancement model is trained to correct the distortions and restore the true PG
signals with additional attention on the defined ROL. This study demonstrates several contributions to the field
of CC-based PG imaging. (1) For the first time, we demonstrated the feasibility of deep learning to correct the
distortion caused by limited-view acquisition and generate high-quality 3D PG images using a single Compton
camera. (2) We proposed a two-tier deep learning framework using a novel weighted axis-projection loss to
address the attention and the imbalance challenges in PG image enhancement. Ablation tests were performed to
demonstrate its effectiveness in enhancing 3D PG images. (3) Quantitative metrics were used to evaluate the PG
image errors in terms of both ranges and intensities. (4) The proposed method is fully automatic and generates
accurate PG images in nearly real-time, providing a powerful tool for high-precision in vivo range verification in
proton therapy.

2.Methods

2.1. Compton camera-based PG imaging

During the proton beam irradiation, nuclei of atoms in tissues are excited due to the proton-nuclear scatter.
Characteristic PGs are emitted immediately following the interactions by the nuclei decaying to the ground state.
When a PG exits the body and reaches the CC, it can Compton scatter in the different detection stages of the CC.
These scatter interactions are recorded by the CC as an event, which contains information about the deposited
energies and positions for each scatter interaction of the PG. From this event, an origin-cone of the PG emission
can be determined, as shown in figure 1. Specifically, the origin-cone central axis is a vector from the second
interaction location to the first interaction location, the origin-cone apex is the first interaction location, and the
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Figure 1. An illustration of the origin-cone determined by the Compton scattering principles.

origin-cone open-angle is calculated based on the principles of Compton scattering as
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cos(0) =1 — myc (El Eo)) (D

where 6 is the origin-cone open-angle, E; is the residual energy after the first interaction, and Ej is the incident
energy of the PG which is estimated based on all the deposited energies of the event (Kroeger et al 2000, Peterson
etal2010, 2016). The true origin of the PG emission is restricted to the surface of the origin cone.

Therefore, a 3D image of PG emissions can be reconstructed by back-projecting the origin-cones of all
events into the image domain, which is hereafter referred to as ‘back-projected PG’.

2.2. Overall workflow of the proposed PG enhancement

Figure 2(A) shows the overall workflow of the proposed method to enhance CC-based PG image quality. Itisa
two-tier scheme. First, a deep learning model referred to as the ‘localization model is trained to initially enhance
the input back-projected PG image to reduce the distortions in the original large 3D space. Then, in the
localization model output PG image (referred to as the enhanced PG (no attention)), a 3D ROl is automatically
defined in the high-intensity region to direct attention around the path of the proton beam, along which most
PGs emit. The back-projected PG image is automatically masked by the ROIL The masked PG and the back-
projected PG images are concatenated in the channel dimension, and are then fed into the second deep learning
model (referred to as the ‘enhancement model’). The enhancement model is trained to enhance the back-
projected PG image with ROI attention to match with the ground truth, generating the final enhanced PG image
(referred to as the enhanced PG (with attention)).

Thelocalization model and the enhancement model have the same U-Net architecture, but are trained
separately using different datasets. The network structure is illustrated in figure 2(B). More details can be found
in Jiang et al (2021). This multi-scale architecture with feature concatenation at each scale level has
demonstrated effectiveness in various image-related tasks (Ronneberger et al 2015, Liao et al 2018, Jiang et al
2020, Ernstetal 2021, Jiang et al 2021). Compared to the original U-Net (Ronneberger et al 2015), in this study,
we made several major modifications to adapt to the current task. (1) 3D convolutional layers are used to extract
features in 3D space. (2) Batch normalization layers are used after each convolutional layer to normalize the
extracted features. This technique has been widely used to stabilize and accelerate the training process with a
higher learning rate. (3) Dropout layers with a dropout rate of 0.5 are used in the U-shape bottom, where very
high-dimensional features are extracted. They are used to improve the model’s generalizing capabilities and to
avoid overfitting.

2.3. Experiment design

2.3.1. PG simulation and reconstruction

The proposed method aims to enhance the back-projected PG images to restore the true PG emissions. For this
purpose, a dataset was built to contain image pairs consisting of the back-projected PG images and the
corresponding ground truth PG images. The experiment setup geometry is shown in figure 3. A cuboid
homogeneous tissue-equivalent phantom is placed on a couch, whose y—z plane corresponds to the patient’s
axial plane. The dimensions of the phantom are set to 30 cm x 30 cm x 35 cm and 30 cm x 30 cm X 30 cm, in
the directions of x-, y-, and z-axis, respectively. A single CCis placed under the couch to detect the PG events.
The center of the phantom is right above the detector center.
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Figure 2. A Overall workflow of the proposed two-tier scheme for Compton camera-based PG image enhancement. B. Architecture of
the network used in the localization model and the enhancement model.

In this study, we simulated 54 proton pencil beams along multiple beam paths with energies ranging from
75 to 125 MeV delivered at clinical dose rates (20 kMU min ™" and 180 kMU min ") and levels (1 x 10° and
3 x 10® protons per pencil beam) in a tissue-equivalent phantom. More details about this dataset can be found in
appendix appendix. (table A1).

The PG data were first simulated by a Monte Carlo model using the Geant4 (v10.3) toolkit (Agostinelli et al
2003), and were then transformed by the Monte-Carlo-plus-Detector-Effects (MCDE) model (Maggi et al
2020) based on the response and data acquisition characteristics of the PJ3 CC (H3D, Inc., Ann Arbor, MI).
More design details are discussed in previous works (Maggi et al 2020, Polf et al 2021). PG events received by
the CC were first cleaned by a previously developed neural network (Polf et al 2022) to remove the false events
and to correct the mis-ordered events, and were then used to reconstruct PG images using the kernel weighted
back projection (KWBP) algorithm (Panthi et al 2020) in a 3D space (volume size: 50 cm x 50 cm x 15 cm,
grid size: 250 x 250 x 50, voxel size: 2.0 mm x 2.0 mm X 3.0 mm). Ground truth images of the origins of the
PGs emitted along the proton beam path were also recorded by the MC model. Intensities of the ground truth
PG images are normalized to [0, 100]. They have the same dimensions and resolution as the reconstructed PG

images.
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Figure 3. Prompt gamma simulation setup geometry. The phantom is placed right above the PJ3 detector. The y—z plane of the
phantom corresponds to the patient’s axial plane. Individual proton pencil beam is delivered in the minus-z direction along different
beam paths.

2.3.2. Model training

Thelocalization model and the enhancement model were trained separately, fulfilling individual tasks as
described in section 2.2. The models were trained using the leave-one-energy-out strategy due to the limited size
of the dataset. One energy was left out for testing, and the other energies were used for training and validation.
Besides, the models were trained for a specific delivery dose rate and a specific dose level. For each model, PG
data at the corresponding dose rate and dose level were used for training and testing.

2.3.2.1. Training configuration
In the training process, model weights were optimized by minimizing the loss between the model output and the
corresponding ground truth using the ‘Adam’ optimizer (Kingma and Ba 2014) with a learning rate of 0.001.
Batch size was set to 1 for the localization model and 8 for the enhancement model accounting for the memory
consumption. Epoch number was empirically set to 1000. The best checkpoint was determined by the
validation data.

To address the imbalance challenge for deep learning posed by the PG imaging, we proposed a novel loss of
weighted axis-projection mean absolute error (WAP-MAE) to supervise errors in the axis-projections of
volumes. The loss is calculated as follows.

Lyap—mae(x )
11:1 | Zle Zl’f:lyi,j,k - zle Zf:l Xijk ‘

=\ - -
Z?:l | Zlezleyz,j,k - zf:lzlexi,j‘k ‘
+A - 7
PO ‘ Zjl':lzx{:lyi,j,k - Z;:lzlexlvj)k ‘
+As - e
25:125:125:1 | Vi — Xijik |
+As4- e ; 2

where x is the model output with dimensions of I x J x K, y is the corresponding ground truth with the same
dimensions as x, \;, Ay, A3, and A4 are the weighting factors of the errors in the different axes and the space. In
this study, A\, Ay, A3, and \; were empirically setto 1, 1, 1, 1 for the localization model, and 1, 1, 1, 1000 for the
enhancement model according to the value dynamic range. Compared to the conventional MAE, which
supervises errors in a voxel-wise way, the proposed wAP-MAE effectively solves the imbalance issue by
significantly improving the portion of aimed data in the 3D space.

2.3.2.2. Training of the localization model

Thelocalization model was trained in the full 3D space (dimension: 250 x 250 x 50) to learn to define an ROIin
the back-projected PG images that contain the PG emissions along the proton pencil beam. In this step, one
energy was left out for testing, and the other energies were used for training and validation.
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In the training process, the full 3D back-projected PG images were fed into the localization model to reduce
distortions. Weights of the model were optimized by minimizing the wAP-MAE loss between the model output
and the corresponding ground truth PG images.

2.3.2.3. Training of the enhancement model

The enhancement model was trained in the full 3D space (dimension: 250 x 250 x 50), with an additional
input channel of the 3D ROl attention (masked region dimension: 96 x 48 x 8), to learn to restore the true
PG emissions. In this step, one energy was left out for testing. The training dataset was augmented by
randomly masking the full PG images using an ROI (dimension: 96 x 48 x 8) around the proton pencil
beams. Among the training dataset, 85% of the samples were used for training, and 15% were used for
validation.

In the training process, a two-channel input, consisting of an ROI-masked back-projected PG image and its
unmasked copy, is fed into the enhancement model to restore the origins of PG emissions. Weights of the model
were optimized by minimizing the wAP-MAE loss between the enhanced PG images and the corresponding
ground truth.

2.3.3. Model testing

2.3.3.1. Experiment setup
The overall workflow is described in section 2.2. In this section, we will discuss more details of the evaluations
performed in this study. PG data from proton beams of 80 MeV, 100 MeV, and 120 MeV were left out of the
training dataset to independently evaluate the performance of the proposed method. The back-projected PG
image was fed into the localization model to reduce distortions. The output PG image of the localization model
was then normalized to its maximum value, and the signal region was determined by an empirically set threshold
0f0.4. An ROI (dimension: 96 x 48 x 8) was then automatically placed with its center aligned to the mass center
of the signal region. The back-projected PG image was masked by the ROI, concatenated with its unmasked
copy, and were then fed into the enhancement model to generate the final enhanced PG images, which were
compared against the ground truth PG images for evaluation.

Note that, although the localization and the enhancement are separate models, the entire workflow is fully
automatic, requiring no manual operations or parameter tuning.

2.3.3.2. Evaluation of the effect of attention

The proposed method features a two-tier architecture, which poses attention to the signal regions for

more accurate enhancement. As described in section 2.2, the localization model enhances the PG images

in the whole large 3D space without any attention, and the second model further enhances the PG

images with an ROI attention. In this evaluation study, we compared the PG images generated by the firstand
second models to evaluate the effect of attention. The models were trained following the instructions in
section 2.3.2.

2.3.3.3. Evaluation of the effect of loss function

A novelloss function of WAP-MAE was proposed in this study to solve the imbalance challenge in the PG images.
In this evaluation study, we trained the proposed method twice using the same datasets and the same training
configurations except for the loss function: training with the classical MAE loss for the first time, and training
with the proposed wAP-MAE loss for the second time. The final enhanced PG images of the models using
different losses were compared to evaluate the effect of the loss functions.

2.3.3.4. Evaluation metrics

The enhanced PG images predicted by the proposed method were evaluated both qualitatively with visual
inspections and quantitatively with the PG range error (AR) and the PG path direction error in the 3D space, and
the registered mean relative absolute errors (RMRAE).

The PG range is determined by the starting point and the ending point along the PG emission path in the 3D
space. Both points are detected by a falloff of 50% regarding the maximum global intensity. The ending point is
more important as it corresponds to the Bragg Peak of the proton pencil beam. AR is the difference between the
predicted PG range and the ground truth PG range.

To calculate the RMRAE, the predicted PG image is first rigidly registered to the ground truth PG image by
aligning the PG range starting points. And then, relative MAE is calculated within the union region of the
predicted signals and the ground truth signals. The signal regions are determined by a threshold of 0. The
RMRAE is used to evaluate the intensity errors of the predicted PG signals. With registration, the RMRAE serves
as an indicator of intensity accuracy, which is independent of the range errors.
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Figure 4. (A) PG images of a testing energy (100 MeV) delivered at dose rate of 20 kMU min ™" with a dose level of 1 x 10° protons/
beam in different views and their profiles. The corresponding proton beams are delivered along the minus-z direction in different
beam paths. The first column if the back-projected PG images, the second column is the enhanced PG (no attention), the third column
is the enhanced PG (with attention), and the fourth column is the corresponding ground truth PG. Coordinate system is indicated in
the ground truth images. Images within ROIs (indicated by yellow solid box) are zoomed in for inspections. Enlarged figures of all the
testin% energies can be found in the appendix appendix. (B). PG images of a testing energy (100 MeV) delivered at dose rate of 20 kMU
min~" with a dose level of 3 x 10° protons/beam in different views and their profiles. The corresponding proton beams are delivered
along the minus-z direction in different beam paths. The first column if the back-projected PG images, the second column is the
enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth column is the corresponding
ground truth PG. Coordinate system is indicated in the ground truth images. Images within ROIs (indicated by yellow solid box) are
zoomed in for inspections. Enlarged figures of all the testing energies can be found in the appendix appendix. (C). PG images of a
testing energy (100 MeV) delivered at dose rate of 180 kMU min ™' with a dose level of 1 x 10° protons/beam in different views and
their profiles. The corresponding proton beams are delivered along the minus-z direction. The first column if the back-projected PG
images, the second column is the enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth
column is the corresponding ground truth PG. Coordinate system is indicated in the ground truth images. Images within ROIs
(indicated by yellow solid box) are zoomed in for inspections. Enlarged figures of all the testing energies can be found in the

appendix appendix.
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3. Results

3.1. Effect of attention on PG image enhancement

Figure 4 shows the PG images of a representative testing energy (100 MeV) in different views and their profiles
along the mass center of the ground truth PG signals. No value normalization was performed in the enhanced
PG images. Enlarged figures of all the testing energies can be found in appendix appendix.

The back-projected PG images showed severe distortions towards the CC due to the limited view, and the
image quality further degraded as the dose level decreased from 1 x 10° protons per beam (figures 4(A)) to 3 X
108 protons per beam (figure 4(B)), and as the delivery dose rate increased from 20 kMU min~" (figure 4(A)) to
180 kMU min " (figure 4(C)). The enhanced PG (no attention) were much less noisy compared to the back-
projected PG images. However, their ranges and intensities showed obvious deviations from the ground truth.
For the high dose rate of 180 kMU min ™' shown in figure 4(C), the range in the enhanced PG (no attention) can
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Figure 5. PG images of an example testing case with energy of 100 MeV delivered at dose rate of 180 kMU min ™ in different views.
The first column if the back-projected PG images, the second column is the initially enhanced PG by the localization model using the
conventional mean absolute error (MAE) loss, the third column is the initially enhanced PG by the localization model using the
proposed wAP-MAE loss, the forth column is the final enhanced PG by the proposed method using wAP-MAE loss, and the fifth
column is the corresponding ground truth PG. ROI defined based on the initially enhanced PG is indicated using yellow solid
rectangle. Coordinate system is indicated in the ground truth images. Proton beams are delivered along the minus-z direction.

hardly be determined. In contrast, the enhanced PG (with attention) demonstrated a highly clear range of the PG
emissions, most of which agreed well with the corresponding ground truth.

As demonstrated by the profiles, PG emissions from the proton beams with a dose level of 1 x 10 protons/
beam were precisely restored with accurate ranges and intensities with respect to the ground truth. As the dose
level decreased, larger range errors and intensity errors can be observed.

3.2. Effect of loss function on PG image enhancement

Using conventional MAE loss, the two-tier scheme failed in the first localization step. Figure 5 shows an example
of the testing PG data (energy: 100 MeV, dose rate: 180 kMU min ). The localization model was unable to
generate any signals in the 3D space using MAE loss, yielding only background signals due to the imbalance
issue. As a result, no ROI can be defined in the initially enhanced PG in the first step. In contrast, the localization
model using the proposed wAP-MAE loss successfully generated an initially enhanced PG image, based on
which an ROI was automatically defined following the instructions described in section 2.3.3.1 (indicated by the
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Table 1. Quantitative analysis of the PG emissions restored by the proposed method.

Range error
Intensity error

Ending error Starting error
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=
N
=

1.1%
1.3%
2.1%
2.3%
0.9%
1.3%
1.5%
1.1%
0.7%
1.1%
1.1%
1.0%
1.5%
1.5%
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* Pixel size: 3.0 mm, 2.0 mm, and 2.0 mm for x, y, and z directions, respectively. The z-axis is along the horizontal beam path direction, the y-
axis is vertical to the CC, and the x-axis is orthogonal to the y-axis and the z-axis. The coordinate system can be referred to in figure 3.

" Registered mean relative absolute error (RMRAE). This metric is independent of the range accuracy. It evaluates the intensity accuracy
ignoring the range errors via registration. More details are referred to in section 2.3.3.2.

solid yellow rectangle in figure 5). Results showed that the ROI was correctly defined covering the PG emission
regions, which helped further improve the quality and accuracy of PG image enhancement.

3.3. Quantitative analysis of PG image enhancement

Table 1 shows the quantitative analysis of the PG images of testing energies enhanced by the proposed method.
For the PG data from high dose level beams (1 x 10° protons/beam), the range errors were within 2 pixels
except for only one case from the 120 MeV proton beam delivered at 180 kMU min ' (hereafter referred to as
the 120 MeV@180 kMU min ™' PG). As the dose level decreased to 3 x 10° protons/beam, larger range errors
could be observed in the enhanced PG. But all the testing cases demonstrated accurate intensities regarding the
ground truth, and the RMRAE is within 3%. The quantitative analysis agreed with the qualitative inspections.

3.4. Runtime

The deep learning models in the proposed method were implemented using the Keras framework with the
TensorFlow backend (v2.3.0). Training and testing of the models were conducted on a computer equipped with
a GPU of NVIDIA Titan RTX with 24 GB memory and a CPU of Intel Xeon with 32 GB memory. The proposed
PG image enhancement was fully automatic, which takes about 0.26 s.

4, Discussion

Range uncertainty is a major concern in proton therapy, significantly limiting its delivery precision. The CC-
based PG imaging has been developed as a promising tool to provide in vivo 3D range verification. But
conventional back-projected PG images suffer from severe distortions due to the limited acquisition view of the
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CC. Proton ranges can hardly be distinguished in the distorted PG images, severely limiting its clinical utility. To
address this problem, in this study, we proposed a novel two-tier deep learning-based method to restore the 3D
PG emissions images acquired with a single CC.

The limited-view measurement of CC poses severe illness in the PG image reconstruction. A common way to
address the ill-conditioning is to assume prior knowledge of the underlying reconstruction for additional
constraints. One category of the algorithms is based on the compressed sensing theory (Donoho 2006). These
methods are effective in reducing image noises and artifacts by assuming the underlying images to have certain
features, such as sparsity (Lustig et al 2008, Sidky and Pan 2008). But their capabilities in correcting limited-view
distortions are limited. Another category is based on deep learning. They assume that there is a common
restoring pattern from corrupted images to their high-quality counterparts, and this pattern can be learned from
asample group in a data-driven approach. Previous study Jiang ef al (2021) demonstrated the effectiveness of
deep learning in correcting distortions and restoring volumetric structures from limited-angle CBCT
projections. Therefore, we employed deep learning models in the proposed method to restore 3D PG emissions
from distorted back-projected images.

As mentioned in the introduction, the PG emissions along a proton pencil beam take up an extremely low
portion of the large 3D space, presenting an attention challenge to the deep learning-based method. Generally,
attention in deep learning is a technique aiming to mimic cognitive attention. It directs the model to devote
more focus to some parts of the inputs, which are believed to be more relevant to the aimed results. Weighting
factors of attention can be learned in a data-driven method. Based on this idea, we proposed a two-tier scheme in
this study to address this attention challenge. First, alocalization model was trained to define a small ROI
containing the true PG emissions in the large 3D space. Then, the ROI was used as the attention region, focusing
on which, the following enhancement model was trained to restore the PG signals. This scheme enables the
enhancement model to have additional attention on the PG signal regions, thus generating more accurate PG
images, as demonstrated in our results. Note that the first localization step aims to roughly estimate the PG
emissions and define an ROI containing the signals; thus, it does not require a very clean and precise restoration
of the PG images. As a result, a relatively small training dataset can serve the training purpose. In the
enhancement model training process, random cropping was used to considerably boost the training samples,
which accounts for various signal positions within ROIs. This technique enables the enhancement model to deal
with the signals deviated from the ROI centers due to the initial restoration errors in the first step, further
improving the robustness of the entire workflow. The effectiveness of the proposed two-tier scheme has been
demonstrated by the results in section 3.1.

Besides the attention challenge, the severe imbalance between the true PG signals and the background poses
additional difficulties for the training of the deep learning models. It has long been a challenge for deep learning
to deal with small objects (Wang et al 2019). The key is to reduce both the misses (in this case, predicting PG
signal as background) and the false alarms (predicting background as PG signals). Commonly, data-driven
learners tend to exhibit bias towards the majority group, and in some extreme cases, ignore the minority group
altogether (Johnson and Khoshgoftaar 2019b). In this study, the minority group, the true PG signals, takes up a
significantly lower portion than the majority group, the background. Using conventional pixel-wise error (such
as MAE) as aloss function, the models ignored the PG signals altogether and predicted the background values for
the entire 3D space. Such results agree with the analysis. The training process of the deep learning models is to
minimize the loss between the model prediction and the ground truth. Predicting PG signals in the background
region can contribute to the false alarms, while predicting background in the signal region will contribute to the
misses. Given the dominant majority of the background, predicting the background altogether is a much easier
point for the models to converge to than finding a complicated distortion correction pattern to predict correct
PG signals. To address this imbalance challenge, we proposed a novel loss of WAP-MAE. The imbalance between
the PG signals and the background is largely solved by projecting volumes onto different axes. A weighted sum of
the axis-projection losses and the volume loss can further help improve the spatial precision and the pixel-wise
intensity accuracy of the PG signals. The effectiveness of the proposed wAP-MAE loss has been demonstrated by
the results in section 3.2.

Overall, the proposed two-tier deep learning scheme with the wAP-MAE loss is effective in restoring PG
signals in alarge 3D space. The proposed method significantly improved the PG image quality compared to the
original images reconstructed by the widely used back-projection algorithm. The signal ranges were very clearly
demonstrated in the enhanced PG images, which agreed well with the ground truth PG images. In terms of
intensity accuracy, the proposed method yielded a relative MAE within the signal regions of < 3.0% for all the
testing cases. And for the PG ranges, all the testing cases with high dose level (1 x 10 protons per beam), except
for the 120 MeV@180 kMU min ' PG case, showed offsets of within 2 pixels in all directions (majority within 1
pixel). When it came to the lower dose level (3 x 10® protons per beam), the testing cases showed an overall
poorer range accuracy than the high dose-level cases.
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The main reason for the range offset in the 120 MeV@180 kMU min ™' PG case is the increased noises in the
input back-projected PG images, which is caused by the decreasing portion of the primary PGs and the
increasing mis-ordered and false PG events as the dose rate considerably increases (Panthi et al 2020). Although
the PG events were preprocessed by a neural network (Polf et al 2022) for event cleaning, the back-projected PG
image is still noisy due to the residual errors of the preprocessing. As for the cases of lower dose levels, fewer PG
events can be detected for reconstruction. Using the back-projected reconstruction, the residual bad events and
the scattered PG events are more likely to generate various background artifacts in the PG images without
sufficient averaging. As a result, the input back-projected PG images have poorer quality. Itis an inherent
limitation of the image-enhancing methods that their performance can be compromised by the degradation of
the input image quality. Such a phenomenon has also been demonstrated in our previous studies (Jiang et al
2019,2021,2022).

In this preliminary study, we demonstrated the power of deep learning-based image enhancement to restore
the 3D PG images from a single view CC acquisition. Compared to previous studies, the PG images were
significantly improved after enhancement in our study, providing valuable information for range verification in
proton therapy. Therefore, this pilot study demonstrated the feasibility and potential of PG imaging for 3D
in vivo proton dose verification, which is urgently needed in proton therapy. However, there are some
limitations in this study. Firstly, a relatively small dataset was used in this preliminary study. More PG data from
proton pencil beams with more energies and various beam paths are warranted in future studies. Secondly, in the
current stage, the proposed method is prone to errors when the input PG image is highly contaminated by
noises, such as cases at low dose levels or high-energy cases at high dose rates. We would like to point out that, it
is not a fundamental limitation of the proposed method. As a postprocessing model, it mainly aims to correct the
severe distortion artifacts due to the limited view of a single CC, which can hardly be addressed in the
preprocessing or reconstruction steps. In future studies, more advanced preprocessing techniques can be used to
clean the detected PG events by removing the false events, correcting the mis-ordered events, and reducing the
scattered events. Besides, deep learning algorithms can be developed to reconstruct PG images directly from PG
events to reduce noise. In addition, developments in the hardware, e.g., new detectors with higher detection
efficiency, can also help to improve the quality and the amount of the detected PG events, and thus resulting in
higher-quality PG images. Thirdly, only simulation studies were performed in this work. Experiments on patient
data are warranted in the future to further evaluate the clinical utility of the proposed method. Fourthly, the
proposed method only generates PG signals without dose deposition information. Conversions from PG to dose
can be studied in future works.

5. Conclusion

A preliminary study presented in this work demonstrated the feasibility of the proposed deep learning-based
method to generate high-quality 3D PG images acquired from a single CC in nearly real-time, which
substantially improves the clinical utility of PG imaging for range verification in proton therapy. Evaluations on
more PG cases from proton beams with higher energies, lower dose levels, and different beam directions, as well
as in-patient studies, are warranted in future studies.
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Appendix

Al. Proton pencil beams simulated in this study

A2. Figures of all the testing PG cases
The following figures show the PG images of all the testing energy delivered at various dose rates and dose levels
in different slice views and their profiles. The corresponding proton beams are delivered along the minus-z
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direction in multiple beam paths. The first column if the back-projected PG images, the second column is the
enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth column is the
corresponding ground truth PG. Coordinate system is indicated in the ground truth images. Images within ROIs
(indicated by yellow solid box) are zoomed in for inspections.
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(15) 80MeV, 20kMU/min, 3x108 protons/beam, starting at the position of [0, 10, 150] mm.
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(19) 100MeV, 20kMU/min, 3x10® protons/beam, starting at the position of [0, 10, 150] mm.
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(20) 100MeV, 20kMU/min, 3x108 protons/beam, starting at the position of [0, -10, 150] mm.
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(21) 120MeV, 20kMU/min, 3x10® protons/beam, starting at the position of [0, 0, 175] mm.
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(22) 120MeV, 20kMU/min, 3x10® protons/beam, starting at the position of [0, 0, 150] mm.
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(23) 120MeV, 20kMU/min, 3x10® protons/beam, starting at the position of [0, 10, 150] mm.
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(25) 80MeV, 180kMU/min, 1x10° protons/beam, starting at the position of [0, 0, 175] mm.
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(26) 100MeV, 180kMU/min, 1x10° protons/beam, starting at the position of [0, 0, 175] mm.
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(27) 120MeV, 180kMU/min, 1x10° protons/beam, starting at the position of [0, 0, 175] mm
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Table Al. Proton pencil beams simulated in this study.

Beam starting
Dose rate Dose level point [x, y, z] in Beam Total
(kMU min ) Beam energy (MeV) (protons/beam) mm’” direction” numbers
20 75, 85,95,105,115,125 1% 10° [0,0,175] —z 54
[0,0,150]
[0,20,150]
[0, —20,150]
80,90, 100, 110, 120 1x10° [0,0,175] —z
[0,0,150]
[0,10,150]
[0, —10, 150]
77.5,82.5,87.5,92.5,97.5,102.5, 1x10° [0,0,175] —z
107.5,112.5,117.5,122.5
20 75,85,95,105, 115,125 3 x10® [0,0,175] -z 54
[0,0, 150]
[0, 20, 150]
[0, —20, 150]
80,90, 100, 110, 120 3 x10® [0,0,175] -z
[0,0, 150]
[0, 10, 150]
[0, —10, 150]
77.5,82.5,87.5,92.5,97.5,102.5, 3% 10° [0,0,175] —z
107.5,112.5,117.5,122.5
180 75,77.5, 80, 82.5, 85, 87.5, 90, 92.5, 95, 1x10° [0,0,175] —z 21

97.5,100, 102.5,105,107.5,110, 112.5,
115,117.5,120, 122.5,125
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