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Abstract
Background and objective. Range uncertainty is amajor concern affecting the delivery precision in
proton therapy. TheCompton camera (CC)-based prompt-gamma (PG) imaging is a promising
technique to provide 3D in vivo range verification.However, the conventional back-projected PG
images suffer from severe distortions due to the limited view of the CC, significantly limiting its
clinical utility. Deep learning has demonstrated effectiveness in enhancingmedical images from
limited-viewmeasurements. But different fromothermedical images with abundant anatomical
structures, the PGs emitted along the path of a proton pencil beam take up an extremely lowportion of
the 3D image space, presenting both the attention and the imbalance challenge for deep learning. To
solve these issues, we proposed a two-tier deep learning-basedmethodwith a novel weighted axis-
projection loss to generate precise 3DPG images to achieve accurate proton range verification.
Materials andmethods: the proposedmethod consists of twomodels: first, a localizationmodel is
trained to define a region-of-interest (ROI) in the distorted back-projected PG image that contains the
proton pencil beam; second, an enhancementmodel is trained to restore the true PG emissions with
additional attention on theROI. In this study, we simulated 54 proton pencil beams (energy range:
75–125MeV, dose level: 1× 109 protons/beam and 3× 108 protons/beam) delivered at clinical dose
rates (20 kMUmin−1 and 180 kMUmin−1) in a tissue-equivalent phantomusingMonte-Carlo (MC).
PGdetectionwith aCCwas simulated using theMC-Plus-Detector-Effectsmodel. Images were
reconstructed using the kernel-weighted-back-projection algorithm, andwere then enhanced by the
proposedmethod.Results. Themethod effectively restored the 3D shape of the PG imageswith the
proton pencil beam range clearly visible in all testing cases. Range errors werewithin 2 pixels (4mm)
in all directions inmost cases at a higher dose level. The proposedmethod is fully automatic, and the
enhancement takes only∼0.26 s. Significance. Overall, this preliminary study demonstrated the
feasibility of the proposedmethod to generate accurate 3DPG images using a deep learning
framework, providing a powerful tool for high-precision in vivo range verification of proton
therapy.

1. Introduction

Whenprotons travel throughmatters, a peak in energy deposition is observed at the end of their range, referred
to as ‘Bragg Peak’. Beyond the peak, energy deposition drops off sharply. This characteristic enables the proton
therapy to achieve high dose concentrations within the targets while significantly sparing the surrounding
healthy tissues. But in turn, the treatment precision highly depends on the proton range accuracy. Patient
positioning errors and anatomymotions/changes can cause proton range uncertainties during delivery,
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resulting in an underdose of targets and/or overdose of healthy tissues (Paganetti 2012). A safetymargin can be
added to the target to ensure it receives the prescribed dose.However, this inevitably leads to an increased target
volume and consequently escalates the dose to the surrounding healthy tissues, defeating the purpose of using
proton therapy to spare healthy tissues. Therefore, there is an urgent clinical need to verify the proton beam
range during treatment so that strategies can be designed to correct range delivery errors tominimize their
impact.

Various techniques have been developed to detect the secondary signals emitted during proton beam
irradiation to achieve non-invasive in vivo dose verification (Knopf and Lomax 2013, Parodi and Polf 2018),
such as positron emission tomography (PET) (Nishio et al 2010), magnetic resonance imaging (MRI)
(Gensheimer et al 2010), proton-acoustic imaging (Assmann et al 2015, Jones et al 2015), and prompt gamma
(PG) imaging (Richard et al 2010, Panthi et al 2020, Polf et al 2022). In particular, several studies (Min et al
2006, Kim 2009, Bom et al 2011, Kormoll et al 2011,Moteabbed et al 2011, Roellinghoff et al 2011, Verburg
et al 2013) have shown a strong correlation between the origins of PG emissions and the dose deposited by
proton beams using bothmeasurements and theMonte Carlo (MC) simulations, demonstrating the
possibilities of PG imaging for in vivo range verification.With the Compton camera (CC), the origins of PG
emissions can be reconstructed in 3D volumes (Richard et al 2010) using back-projecting algorithms. But the
PG image quality is limited by the false, scattered, andmis-ordered PG events detected by the CC. Recently,
deep learning-basedmethods have been proposed to pre-process the CCmeasured PG data (Zoglauer and
Boggs 2007,Munoz et al 2021, Polf et al 2022), substantially reducing the noise and artifacts within the images
by discarding false PG events and correctingmis-ordered PG events. However, due to the limited view of CCs
acquisition, the PG images still suffer from severe distortions, significantly limiting their accuracy in range
verification.

Reconstructing images from limited-view acquisition is essentially an ill-conditioned inverse problem. In
recent years, deep learning has emerged as a powerful tool to address such challenges and generate high-
quality volumetric images. Yang et al (2017) proposed a deep de-aliasing generative adversarial network (DA-
GAN) for fastMRI reconstruction and showed superior performance to conventional compressed sensing-
based algorithms in terms of both image quality and reconstruction speed. Previously, convolutional neural
networks (CNNs)were developed to enhance cone-beam computerized tomography (CBCT) images
reconstructed from sparse (Jiang et al 2019) and limited-angle (Jiang et al 2021) projections, generating high-
quality volumes with clear and accurate structures. However, different fromothermedical images in which
patient anatomy and other structures fill a large percentage of the image space, PG signals emitted along a
single proton pencil beam path take up an extremely low portion of the total reconstructed 3D image space,
presenting both the attention and the imbalance challenge for deep learning (Johnson and
Khoshgoftaar 2019a, Bria et al 2020, Zhang et al 2020).

To address these issues, in this study, we proposed a deep learning-based two-tier scheme to reconstruct
high-quality PG images using aCompton camera for proton range verification. First, a localizationmodel is
trained to define a region of interest (ROI) in the distorted back-projecting PG images that contains the proton
pencil beam.And second, an enhancementmodel is trained to correct the distortions and restore the true PG
signals with additional attention on the definedROI. This study demonstrates several contributions to the field
of CC-based PG imaging. (1) For thefirst time, we demonstrated the feasibility of deep learning to correct the
distortion caused by limited-view acquisition and generate high-quality 3DPG images using a single Compton
camera. (2)Weproposed a two-tier deep learning framework using a novel weighted axis-projection loss to
address the attention and the imbalance challenges in PG image enhancement. Ablation tests were performed to
demonstrate its effectiveness in enhancing 3DPG images. (3)Quantitativemetrics were used to evaluate the PG
image errors in terms of both ranges and intensities. (4)The proposedmethod is fully automatic and generates
accurate PG images in nearly real-time, providing a powerful tool for high-precision in vivo range verification in
proton therapy.

2.Methods

2.1. Compton camera-based PG imaging
During the proton beam irradiation, nuclei of atoms in tissues are excited due to the proton-nuclear scatter.
Characteristic PGs are emitted immediately following the interactions by the nuclei decaying to the ground state.
When a PG exits the body and reaches theCC, it canCompton scatter in the different detection stages of the CC.
These scatter interactions are recorded by theCC as an event, which contains information about the deposited
energies and positions for each scatter interaction of the PG. From this event, an origin-cone of the PG emission
can be determined, as shown infigure 1. Specifically, the origin-cone central axis is a vector from the second
interaction location to the first interaction location, the origin-cone apex is the first interaction location, and the
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origin-cone open-angle is calculated based on the principles of Compton scattering as
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where is the origin-cone open-angle, E1 is the residual energy after the first interaction, and E0 is the incident
energy of the PGwhich is estimated based on all the deposited energies of the event (Kroeger et al 2000, Peterson
et al 2010, 2016). The true origin of the PG emission is restricted to the surface of the origin cone.

Therefore, a 3D image of PG emissions can be reconstructed by back-projecting the origin-cones of all
events into the image domain, which is hereafter referred to as ‘back-projected PG’.

2.2.Overall workflowof the proposed PG enhancement
Figure 2(A) shows the overall workflowof the proposedmethod to enhanceCC-based PG image quality. It is a
two-tier scheme. First, a deep learningmodel referred to as the ‘localizationmodel’ is trained to initially enhance
the input back-projected PG image to reduce the distortions in the original large 3D space. Then, in the
localizationmodel output PG image (referred to as the enhanced PG (no attention)), a 3DROI is automatically
defined in the high-intensity region to direct attention around the path of the proton beam, alongwhichmost
PGs emit. The back-projected PG image is automaticallymasked by the ROI. Themasked PG and the back-
projected PG images are concatenated in the channel dimension, and are then fed into the second deep learning
model (referred to as the ‘enhancementmodel’). The enhancementmodel is trained to enhance the back-
projected PG imagewith ROI attention tomatchwith the ground truth, generating thefinal enhanced PG image
(referred to as the enhanced PG (with attention)).

The localizationmodel and the enhancementmodel have the sameU-Net architecture, but are trained
separately using different datasets. The network structure is illustrated in figure 2(B).More details can be found
in Jiang et al (2021). Thismulti-scale architecture with feature concatenation at each scale level has
demonstrated effectiveness in various image-related tasks (Ronneberger et al 2015, Liao et al 2018, Jiang et al
2020, Ernst et al 2021, Jiang et al 2021). Compared to the original U-Net (Ronneberger et al 2015), in this study,
wemade severalmajormodifications to adapt to the current task. (1) 3D convolutional layers are used to extract
features in 3D space. (2)Batch normalization layers are used after each convolutional layer to normalize the
extracted features. This technique has beenwidely used to stabilize and accelerate the training process with a
higher learning rate. (3)Dropout layers with a dropout rate of 0.5 are used in theU-shape bottom,where very
high-dimensional features are extracted. They are used to improve themodel’s generalizing capabilities and to
avoid overfitting.

2.3. Experiment design
2.3.1. PG simulation and reconstruction
The proposedmethod aims to enhance the back-projected PG images to restore the true PG emissions. For this
purpose, a dataset was built to contain image pairs consisting of the back-projected PG images and the
corresponding ground truth PG images. The experiment setup geometry is shown infigure 3. A cuboid
homogeneous tissue-equivalent phantom is placed on a couch, whose y–z plane corresponds to the patient’s
axial plane. The dimensions of the phantom are set to 30 cm× 30 cm× 35 cm and 30 cm× 30 cm× 30 cm, in
the directions of x-, y-, and z-axis, respectively. A single CC is placed under the couch to detect the PG events.
The center of the phantom is right above the detector center.

Figure 1.An illustration of the origin-cone determined by theCompton scattering principles.
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In this study, we simulated 54 proton pencil beams alongmultiple beampathswith energies ranging from
75 to 125MeVdelivered at clinical dose rates (20 kMUmin−1 and 180 kMUmin−1) and levels (1× 109 and
3× 108 protons per pencil beam) in a tissue-equivalent phantom.More details about this dataset can be found in
appendix appendix. (table A1).

The PG data were first simulated by aMonte Carlomodel using the Geant4 (v10.3) toolkit (Agostinelli et al
2003), and were then transformed by theMonte-Carlo-plus-Detector-Effects (MCDE)model (Maggi et al
2020) based on the response and data acquisition characteristics of the PJ3 CC (H3D, Inc., AnnArbor,MI).
More design details are discussed in previous works (Maggi et al 2020, Polf et al 2021). PG events received by
the CCwere first cleaned by a previously developed neural network (Polf et al 2022) to remove the false events
and to correct themis-ordered events, andwere then used to reconstruct PG images using the kernel weighted
back projection (KWBP) algorithm (Panthi et al 2020) in a 3D space (volume size: 50 cm× 50 cm× 15 cm,
grid size: 250× 250× 50, voxel size: 2.0mm× 2.0mm× 3.0mm). Ground truth images of the origins of the
PGs emitted along the proton beampathwere also recorded by theMCmodel. Intensities of the ground truth
PG images are normalized to [0, 100]. They have the same dimensions and resolution as the reconstructed PG
images.

Figure 2.AOverall workflowof the proposed two-tier scheme forCompton camera-based PG image enhancement. B. Architecture of
the network used in the localizationmodel and the enhancementmodel.
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2.3.2.Model training
The localizationmodel and the enhancementmodel were trained separately, fulfilling individual tasks as
described in section 2.2. Themodels were trained using the leave-one-energy-out strategy due to the limited size
of the dataset. One energywas left out for testing, and the other energies were used for training and validation.
Besides, themodels were trained for a specific delivery dose rate and a specific dose level. For eachmodel, PG
data at the corresponding dose rate and dose level were used for training and testing.

2.3.2.1. Training configuration
In the training process,model weights were optimized byminimizing the loss between themodel output and the
corresponding ground truth using the ‘Adam’ optimizer (Kingma andBa 2014)with a learning rate of 0.001.
Batch size was set to 1 for the localizationmodel and 8 for the enhancementmodel accounting for thememory
consumption. Epoch number was empirically set to 1000. The best checkpoint was determined by the
validation data.

To address the imbalance challenge for deep learning posed by the PG imaging, we proposed a novel loss of
weighted axis-projectionmean absolute error (wAP-MAE) to supervise errors in the axis-projections of
volumes. The loss is calculated as follows.
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where x is themodel output with dimensions of I J K , y is the corresponding ground truthwith the same
dimensions as x, ,1 ,2 ,3 and 4 are theweighting factors of the errors in the different axes and the space. In
this study, ,1 ,2 ,3 and 4 were empirically set to 1, 1, 1, 1 for the localizationmodel, and 1, 1, 1, 1000 for the
enhancementmodel according to the value dynamic range. Compared to the conventionalMAE,which
supervises errors in a voxel-wise way, the proposedwAP-MAE effectively solves the imbalance issue by
significantly improving the portion of aimed data in the 3D space.

2.3.2.2. Training of the localizationmodel
The localizationmodel was trained in the full 3D space (dimension: 250× 250× 50) to learn to define anROI in
the back-projected PG images that contain the PG emissions along the proton pencil beam. In this step, one
energywas left out for testing, and the other energies were used for training and validation.

Figure 3.Prompt gamma simulation setup geometry. The phantom is placed right above the PJ3 detector. The y–z plane of the
phantom corresponds to the patient’s axial plane. Individual proton pencil beam is delivered in theminus-z direction along different
beampaths.
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In the training process, the full 3Dback-projected PG imageswere fed into the localizationmodel to reduce
distortions.Weights of themodel were optimized byminimizing thewAP-MAE loss between themodel output
and the corresponding ground truth PG images.

2.3.2.3. Training of the enhancementmodel
The enhancementmodel was trained in the full 3D space (dimension: 250× 250× 50), with an additional
input channel of the 3DROI attention (masked region dimension: 96× 48× 8), to learn to restore the true
PG emissions. In this step, one energywas left out for testing. The training dataset was augmented by
randomlymasking the full PG images using anROI (dimension: 96× 48× 8) around the proton pencil
beams. Among the training dataset, 85%of the sampleswere used for training, and 15%were used for
validation.

In the training process, a two-channel input, consisting of anROI-masked back-projected PG image and its
unmasked copy, is fed into the enhancementmodel to restore the origins of PG emissions.Weights of themodel
were optimized byminimizing thewAP-MAE loss between the enhanced PG images and the corresponding
ground truth.

2.3.3.Model testing

2.3.3.1. Experiment setup
The overall workflow is described in section 2.2. In this section, wewill discussmore details of the evaluations
performed in this study. PGdata fromproton beams of 80MeV, 100MeV, and 120MeVwere left out of the
training dataset to independently evaluate the performance of the proposedmethod. The back-projected PG
imagewas fed into the localizationmodel to reduce distortions. The output PG image of the localizationmodel
was then normalized to itsmaximumvalue, and the signal regionwas determined by an empirically set threshold
of 0.4. AnROI (dimension: 96× 48× 8)was then automatically placedwith its center aligned to themass center
of the signal region. The back-projected PG imagewasmasked by the ROI, concatenatedwith its unmasked
copy, andwere then fed into the enhancementmodel to generate thefinal enhanced PG images, whichwere
compared against the ground truth PG images for evaluation.

Note that, although the localization and the enhancement are separatemodels, the entire workflow is fully
automatic, requiring nomanual operations or parameter tuning.

2.3.3.2. Evaluation of the effect of attention
The proposedmethod features a two-tier architecture, which poses attention to the signal regions for
more accurate enhancement. As described in section 2.2, the localizationmodel enhances the PG images
in thewhole large 3D spacewithout any attention, and the secondmodel further enhances the PG
imageswith anROI attention. In this evaluation study, we compared the PG images generated by the first and
secondmodels to evaluate the effect of attention. Themodels were trained following the instructions in
section 2.3.2.

2.3.3.3. Evaluation of the effect of loss function
Anovel loss function of wAP-MAEwas proposed in this study to solve the imbalance challenge in the PG images.
In this evaluation study, we trained the proposedmethod twice using the same datasets and the same training
configurations except for the loss function: trainingwith the classicalMAE loss for thefirst time, and training
with the proposedwAP-MAE loss for the second time. The final enhanced PG images of themodels using
different losses were compared to evaluate the effect of the loss functions.

2.3.3.4. Evaluationmetrics
The enhanced PG images predicted by the proposedmethodwere evaluated both qualitatively with visual
inspections and quantitatively with the PG range error (ΔR) and the PGpath direction error in the 3D space, and
the registeredmean relative absolute errors (RMRAE).

The PG range is determined by the starting point and the ending point along the PG emission path in the 3D
space. Both points are detected by a falloff of 50% regarding themaximumglobal intensity. The ending point is
more important as it corresponds to the Bragg Peak of the proton pencil beam.ΔR is the difference between the
predicted PG range and the ground truth PG range.

To calculate the RMRAE, the predicted PG image isfirst rigidly registered to the ground truth PG image by
aligning the PG range starting points. And then, relativeMAE is calculatedwithin the union region of the
predicted signals and the ground truth signals. The signal regions are determined by a threshold of 0. The
RMRAE is used to evaluate the intensity errors of the predicted PG signals.With registration, the RMRAE serves
as an indicator of intensity accuracy, which is independent of the range errors.
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(a)

Figure 4. (A)PG images of a testing energy (100MeV) delivered at dose rate of 20 kMUmin−1 with a dose level of 1× 109 protons/
beam in different views and their profiles. The corresponding proton beams are delivered along theminus-z direction in different
beampaths. The first column if the back-projected PG images, the second column is the enhanced PG (no attention), the third column
is the enhanced PG (with attention), and the fourth column is the corresponding ground truth PG. Coordinate system is indicated in
the ground truth images. Images within ROIs (indicated by yellow solid box) are zoomed in for inspections. Enlargedfigures of all the
testing energies can be found in the appendix appendix. (B). PG images of a testing energy (100MeV) delivered at dose rate of 20 kMU
min−1 with a dose level of 3× 108 protons/beam in different views and their profiles. The corresponding proton beams are delivered
along theminus-z direction in different beampaths. The first column if the back-projected PG images, the second column is the
enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth column is the corresponding
ground truth PG. Coordinate system is indicated in the ground truth images. Imageswithin ROIs (indicated by yellow solid box) are
zoomed in for inspections. Enlargedfigures of all the testing energies can be found in the appendix appendix. (C). PG images of a
testing energy (100MeV) delivered at dose rate of 180 kMUmin−1 with a dose level of 1× 109 protons/beam in different views and
their profiles. The corresponding proton beams are delivered along theminus-z direction. The first column if the back-projected PG
images, the second column is the enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth
column is the corresponding ground truth PG. Coordinate system is indicated in the ground truth images. Imageswithin ROIs
(indicated by yellow solid box) are zoomed in for inspections. Enlarged figures of all the testing energies can be found in the
appendix appendix.
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3. Results

3.1. Effect of attention onPG image enhancement
Figure 4 shows the PG images of a representative testing energy (100MeV) in different views and their profiles
along themass center of the ground truth PG signals. No value normalizationwas performed in the enhanced
PG images. Enlarged figures of all the testing energies can be found in appendix appendix.

The back-projected PG images showed severe distortions towards theCCdue to the limited view, and the
image quality further degraded as the dose level decreased from1× 109 protons per beam (figures 4(A)) to 3×
108 protons per beam (figure 4(B)), and as the delivery dose rate increased from20 kMUmin−1 (figure 4(A)) to
180 kMUmin−1 (figure 4(C)). The enhanced PG (no attention)weremuch less noisy compared to the back-
projected PG images. However, their ranges and intensities showed obvious deviations from the ground truth.
For the high dose rate of 180 kMUmin−1 shown infigure 4(C), the range in the enhanced PG (no attention) can

(b)

Figure 4. (Continued.)
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hardly be determined. In contrast, the enhanced PG (with attention) demonstrated a highly clear range of the PG
emissions,most of which agreedwell with the corresponding ground truth.

As demonstrated by the profiles, PG emissions from the proton beamswith a dose level of 1× 109 protons/
beamwere precisely restoredwith accurate ranges and intensities with respect to the ground truth. As the dose
level decreased, larger range errors and intensity errors can be observed.

3.2. Effect of loss function onPG image enhancement
Using conventionalMAE loss, the two-tier scheme failed in thefirst localization step. Figure 5 shows an example
of the testing PGdata (energy: 100MeV, dose rate: 180 kMUmin−1). The localizationmodel was unable to
generate any signals in the 3D space usingMAE loss, yielding only background signals due to the imbalance
issue. As a result, noROI can be defined in the initially enhanced PG in thefirst step. In contrast, the localization
model using the proposedwAP-MAE loss successfully generated an initially enhanced PG image, based on
which anROIwas automatically defined following the instructions described in section 2.3.3.1 (indicated by the

(c)

Figure 4. (Continued.)

Figure 5.PG images of an example testing casewith energy of 100MeVdelivered at dose rate of 180 kMUmin−1 in different views.
The first column if the back-projected PG images, the second column is the initially enhanced PGby the localizationmodel using the
conventionalmean absolute error (MAE) loss, the third column is the initially enhanced PGby the localizationmodel using the
proposedwAP-MAE loss, the forth column is thefinal enhanced PGby the proposedmethod usingwAP-MAE loss, and thefifth
column is the corresponding ground truth PG. ROI defined based on the initially enhanced PG is indicated using yellow solid
rectangle. Coordinate system is indicated in the ground truth images. Proton beams are delivered along theminus-zdirection.
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solid yellow rectangle infigure 5). Results showed that the ROIwas correctly defined covering the PG emission
regions, which helped further improve the quality and accuracy of PG image enhancement.

3.3.Quantitative analysis of PG image enhancement
Table 1 shows the quantitative analysis of the PG images of testing energies enhanced by the proposedmethod.
For the PGdata fromhigh dose level beams (1× 109 protons/beam), the range errors were within 2 pixels
except for only one case from the 120MeVproton beamdelivered at 180 kMUmin−1 (hereafter referred to as
the 120MeV@180 kMUmin−1 PG). As the dose level decreased to 3× 108 protons/beam, larger range errors
could be observed in the enhanced PG. But all the testing cases demonstrated accurate intensities regarding the
ground truth, and the RMRAE iswithin 3%. The quantitative analysis agreedwith the qualitative inspections.

3.4. Runtime
The deep learningmodels in the proposedmethodwere implemented using theKeras frameworkwith the
TensorFlow backend (v2.3.0). Training and testing of themodels were conducted on a computer equippedwith
aGPUofNVIDIATitan RTXwith 24GBmemory and aCPUof Intel Xeonwith 32GBmemory. The proposed
PG image enhancement was fully automatic, which takes about 0.26 s.

4.Discussion

Range uncertainty is amajor concern in proton therapy, significantly limiting its delivery precision. TheCC-
based PG imaging has been developed as a promising tool to provide in vivo 3D range verification. But
conventional back-projected PG images suffer from severe distortions due to the limited acquisition view of the

Table 1.Quantitative analysis of the PG emissions restored by the proposedmethod.

Range error
Intensity error

Ending error

(pixela)
Starting error

(pixela)

Dose rate and dose level Beam energy (MeV) x y z x y z RMRAE b

20 kMUmin−1 1× 109 protons/beam 80 0 0 0 0 0 0 1.1%

1 0 1 1 0 0 1.3%

1 0 1 1 0 0 2.1%

0 0 2 0 0 0 2.3%

100 0 0 0 0 0 0 0.9%

0 0 1 0 0 0 1.3%

0 0 0 0 0 0 1.5%

0 0 0 0 0 0 1.1%

120 1 0 0 1 0 0 0.7%

0 0 2 0 0 0 1.1%

0 2 0 0 0 0 1.1%

0 1 0 0 0 0 1.0%

20 kMUmin−1 3× 108 protons/beam 80 0 0 1 0 0 0 1.5%

0 1 1 0 1 0 1.5%

1 0 0 1 0 0 1.4%

1 5 2 1 5 0 1.7%

100 1 0 3 1 0 0 1.4%

0 0 3 0 1 0 2.2%

1 0 5 1 0 0 2.1%

1 0 1 1 0 0 1.2%

120 0 0 3 0 0 0 1.3%

0 0 2 0 0 0 1.1%

0 0 4 0 0 0 1.6%

0 5 1 0 5 0 1.0%

180 kMUmin−1 1× 109 protons/beam 80 0 0 1 0 0 0 1.3%

100 0 0 1 0 0 0 1.2%

120 0 0 3 0 0 0 1.4%

a Pixel size: 3.0mm, 2.0mm, and 2.0mm for x, y, and z directions, respectively. The z-axis is along the horizontal beampath direction, the y-

axis is vertical to the CC, and the x-axis is orthogonal to the y-axis and the z-axis. The coordinate system can be referred to infigure 3.
b Registeredmean relative absolute error (RMRAE). Thismetric is independent of the range accuracy. It evaluates the intensity accuracy

ignoring the range errors via registration.More details are referred to in section 2.3.3.2.
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CC. Proton ranges can hardly be distinguished in the distorted PG images, severely limiting its clinical utility. To
address this problem, in this study, we proposed a novel two-tier deep learning-basedmethod to restore the 3D
PG emissions images acquiredwith a single CC.

The limited-viewmeasurement of CCposes severe illness in the PG image reconstruction. A commonway to
address the ill-conditioning is to assume prior knowledge of the underlying reconstruction for additional
constraints. One category of the algorithms is based on the compressed sensing theory (Donoho 2006). These
methods are effective in reducing image noises and artifacts by assuming the underlying images to have certain
features, such as sparsity (Lustig et al 2008, Sidky and Pan 2008). But their capabilities in correcting limited-view
distortions are limited. Another category is based on deep learning. They assume that there is a common
restoring pattern from corrupted images to their high-quality counterparts, and this pattern can be learned from
a sample group in a data-driven approach. Previous study Jiang et al (2021) demonstrated the effectiveness of
deep learning in correcting distortions and restoring volumetric structures from limited-angle CBCT
projections. Therefore, we employed deep learningmodels in the proposedmethod to restore 3DPGemissions
fromdistorted back-projected images.

Asmentioned in the introduction, the PG emissions along a proton pencil beam take up an extremely low
portion of the large 3D space, presenting an attention challenge to the deep learning-basedmethod. Generally,
attention in deep learning is a technique aiming tomimic cognitive attention. It directs themodel to devote
more focus to some parts of the inputs, which are believed to bemore relevant to the aimed results.Weighting
factors of attention can be learned in a data-drivenmethod. Based on this idea, we proposed a two-tier scheme in
this study to address this attention challenge. First, a localizationmodel was trained to define a small ROI
containing the true PG emissions in the large 3D space. Then, the ROIwas used as the attention region, focusing
onwhich, the following enhancementmodel was trained to restore the PG signals. This scheme enables the
enhancementmodel to have additional attention on the PG signal regions, thus generatingmore accurate PG
images, as demonstrated in our results. Note that the first localization step aims to roughly estimate the PG
emissions and define anROI containing the signals; thus, it does not require a very clean and precise restoration
of the PG images. As a result, a relatively small training dataset can serve the training purpose. In the
enhancementmodel training process, random croppingwas used to considerably boost the training samples,
which accounts for various signal positionswithin ROIs. This technique enables the enhancementmodel to deal
with the signals deviated from the ROI centers due to the initial restoration errors in thefirst step, further
improving the robustness of the entire workflow. The effectiveness of the proposed two-tier schemehas been
demonstrated by the results in section 3.1.

Besides the attention challenge, the severe imbalance between the true PG signals and the background poses
additional difficulties for the training of the deep learningmodels. It has long been a challenge for deep learning
to deal with small objects (Wang et al 2019). The key is to reduce both themisses (in this case, predicting PG
signal as background) and the false alarms (predicting background as PG signals). Commonly, data-driven
learners tend to exhibit bias towards themajority group, and in some extreme cases, ignore theminority group
altogether (Johnson andKhoshgoftaar 2019b). In this study, theminority group, the true PG signals, takes up a
significantly lower portion than themajority group, the background. Using conventional pixel-wise error (such
asMAE) as a loss function, themodels ignored the PG signals altogether and predicted the background values for
the entire 3D space. Such results agreewith the analysis. The training process of the deep learningmodels is to
minimize the loss between themodel prediction and the ground truth. Predicting PG signals in the background
region can contribute to the false alarms, while predicting background in the signal regionwill contribute to the
misses. Given the dominantmajority of the background, predicting the background altogether is amuch easier
point for themodels to converge to than finding a complicated distortion correction pattern to predict correct
PG signals. To address this imbalance challenge, we proposed a novel loss of wAP-MAE. The imbalance between
the PG signals and the background is largely solved by projecting volumes onto different axes. Aweighted sumof
the axis-projection losses and the volume loss can further help improve the spatial precision and the pixel-wise
intensity accuracy of the PG signals. The effectiveness of the proposedwAP-MAE loss has been demonstrated by
the results in section 3.2.

Overall, the proposed two-tier deep learning schemewith thewAP-MAE loss is effective in restoring PG
signals in a large 3D space. The proposedmethod significantly improved the PG image quality compared to the
original images reconstructed by thewidely used back-projection algorithm. The signal ranges were very clearly
demonstrated in the enhanced PG images, which agreedwell with the ground truth PG images. In terms of
intensity accuracy, the proposedmethod yielded a relativeMAEwithin the signal regions of< 3.0% for all the
testing cases. And for the PG ranges, all the testing cases with high dose level (1× 109 protons per beam), except
for the 120MeV@180 kMUmin−1 PG case, showed offsets of within 2 pixels in all directions (majority within 1
pixel).When it came to the lower dose level (3× 108 protons per beam), the testing cases showed an overall
poorer range accuracy than the high dose-level cases.
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Themain reason for the range offset in the 120MeV@180 kMUmin−1 PG case is the increased noises in the
input back-projected PG images, which is caused by the decreasing portion of the primary PGs and the
increasingmis-ordered and false PG events as the dose rate considerably increases (Panthi et al 2020). Although
the PG events were preprocessed by a neural network (Polf et al 2022) for event cleaning, the back-projected PG
image is still noisy due to the residual errors of the preprocessing. As for the cases of lower dose levels, fewer PG
events can be detected for reconstruction. Using the back-projected reconstruction, the residual bad events and
the scattered PG events aremore likely to generate various background artifacts in the PG images without
sufficient averaging. As a result, the input back-projected PG images have poorer quality. It is an inherent
limitation of the image-enhancingmethods that their performance can be compromised by the degradation of
the input image quality. Such a phenomenon has also been demonstrated in our previous studies (Jiang et al
2019, 2021, 2022).

In this preliminary study, we demonstrated the power of deep learning-based image enhancement to restore
the 3DPG images from a single viewCC acquisition. Compared to previous studies, the PG images were
significantly improved after enhancement in our study, providing valuable information for range verification in
proton therapy. Therefore, this pilot study demonstrated the feasibility and potential of PG imaging for 3D
in vivo proton dose verification, which is urgently needed in proton therapy.However, there are some
limitations in this study. Firstly, a relatively small dataset was used in this preliminary study.More PGdata from
proton pencil beamswithmore energies and various beampaths arewarranted in future studies. Secondly, in the
current stage, the proposedmethod is prone to errors when the input PG image is highly contaminated by
noises, such as cases at low dose levels or high-energy cases at high dose rates.Wewould like to point out that, it
is not a fundamental limitation of the proposedmethod. As a postprocessingmodel, itmainly aims to correct the
severe distortion artifacts due to the limited view of a single CC,which can hardly be addressed in the
preprocessing or reconstruction steps. In future studies,more advanced preprocessing techniques can be used to
clean the detected PG events by removing the false events, correcting themis-ordered events, and reducing the
scattered events. Besides, deep learning algorithms can be developed to reconstruct PG images directly fromPG
events to reduce noise. In addition, developments in the hardware, e.g., new detectors with higher detection
efficiency, can also help to improve the quality and the amount of the detected PG events, and thus resulting in
higher-quality PG images. Thirdly, only simulation studies were performed in this work. Experiments on patient
data arewarranted in the future to further evaluate the clinical utility of the proposedmethod. Fourthly, the
proposedmethod only generates PG signals without dose deposition information. Conversions fromPG to dose
can be studied in future works.

5. Conclusion

Apreliminary study presented in this work demonstrated the feasibility of the proposed deep learning-based
method to generate high-quality 3DPG images acquired from a single CC in nearly real-time, which
substantially improves the clinical utility of PG imaging for range verification in proton therapy. Evaluations on
more PG cases fromproton beamswith higher energies, lower dose levels, and different beamdirections, as well
as in-patient studies, arewarranted in future studies.
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Appendix

A1. Proton pencil beams simulated in this study

A2. Figures of all the testing PG cases
The following figures show the PG images of all the testing energy delivered at various dose rates and dose levels
in different slice views and their profiles. The corresponding proton beams are delivered along theminus-z
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direction inmultiple beampaths. Thefirst column if the back-projected PG images, the second column is the
enhanced PG (no attention), the third column is the enhanced PG (with attention), and the fourth column is the
corresponding ground truth PG. Coordinate system is indicated in the ground truth images. Imageswithin ROIs
(indicated by yellow solid box) are zoomed in for inspections.
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