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Abstract

Proton beam therapy is an advanced form of cancer radiotherapy that uses high-energy pro-
ton beams to deliver precise and targeted radiation to tumors, mitigating unnecessary radiation
exposure to surrounding healthy tissues.

Utilizing real-time imaging of prompt gamma rays can enhance the effectiveness of this
therapy. Compton cameras are proposed for this purpose, capturing prompt gamma rays emitted
by proton beams as they traverse a patient’s body. However, the Compton camera’s non-zero
time resolution results in simultaneous recording of interactions, causing reconstructed images
to be noisy and lacking the necessary level of detail to effectively assess proton delivery for the
patient.

In an effort to address the challenges posed by the Compton camera’s resolution and its
impact on image quality, machine learning techniques, such as recurrent neural networks, are
employed to classify and refine the generated data. These advanced algorithms can effectively
distinguish various interaction types and enhance the captured information, leading to more
precise evaluations of proton delivery during the patient’s treatment.

To achieve the objectives of enhancing data captured by the Compton camera, a PyTorch
model was specifically designed. This decision was driven by PyTorch’s flexibility, powerful
capabilities in handling sequential data, and enhanced GPU usage, accelerating the model’s
computations and further optimizing the processing of large-scale data. The model successfully
demonstrated faster training performance compared to previous approaches and achieves an
overall fair accuracy with so far limited hyperparameter tuning, highlighting its effectiveness in
advancing real-time imaging of prompt gamma rays for enhanced evaluation of proton delivery
in cancer therapy.

Key words. Proton beam therapy, Compton camera, Classification, Recurrent neural net-
work, PyTorch, Distributed Data Parallelism.
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1 Introduction

Proton beam therapy is an advanced form of cancer radiotherapy that uses high-energy proton
beams to deliver precise and targeted radiation to tumors mitigating unnecessary radiation expo-
sure. Unlike X-ray therapies, which go through the entire body, proton beams release the majority
of their energy in a more localized area. This localized release of energy is the Bragg peak, which
allows more precise radiation delivery. Since proton beam therapy applies more radiation in a
smaller radius, it is especially important to know where the beam is in relation to tumors. In order
to take full advantage of proton beam therapy and prevent damaging healthy tissue when patients
move, clinicians need an efficient technique to image prompt gamma rays in real time.

Utilizing real-time imaging of prompt gamma rays can enhance the effectiveness of this therapy.
Compton cameras are proposed for this purpose, capturing prompt gamma rays emitted by proton
beams as they traverse a patient’s body. However, the Compton camera’s non-zero time resolution
results in the simultaneous recording of interactions, causing reconstructed images to be noisy and
lacking the necessary level of detail to assess proton delivery for the patient effectively. The noise
in the Compton camera causes uncertainty about the location of the proton beam when radiating
tissues which can cause healthy tissue to be radiated possibly leading to future complications.

To address the challenges posed by the Compton camera’s resolution and its impact on image
quality, machine learning techniques, such as recurrent and deep neural networks, are employed to
classify the prompt gamma event ordering to improve the clarity of the proton beam during treat-
ment. These trained models clean the raw Compton camera data by identifying and removing false
data before image reconstruction. These advanced learning algorithms can effectively distinguish
various interaction types and enhance the captured information while reducing external noise in the
imaging. This type of real-time imaging leads to more precise evaluations of the radiation delivery
during the patient’s treatment. It ensures the whole tumor gets the appropriate radiation levels
for successful treatment.

We design deep and recurrent neural network models in PyTorch to enhance data captured
by the Compton camera. The decision to develop these models with the PyTorch library over
the commonly used Tensorflow library is driven by PyTorch’s flexibility, powerful capabilities in
handling sequential data, enhanced GPU usage, and simple Python-like syntax, accelerating the
model’s computations and further optimizing the processing of large-scale data and allowing for
faster development and training of new model types. The model successfully demonstrates speed-
ier training performance than previous approaches and achieves fair accuracy with so far limited
hyperparameter tuning. This highlights its effectiveness in advancing real-time imaging of prompt
gamma rays for enhanced evaluation of proton delivery in cancer therapy.

The remainder of this report is organized as follows: Section 2 covers proton beam radiation and
the background information on imaging, prompt-gamma interactions, and machine learning models.
Section 3 covers our translation of the existing models to PyTorch, configuration of distributed data
parallel (DDP) training, and hardware and software used for model training. Section 4 covers the
results of our hyperparameter study on our deep and recurrent neural networks. Section 5 wraps
up our research, concluding our findings, successes, and struggles during our study.
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2 Application Background

2.1 Proton Beam Therapy

Radiation therapy is an effective approach for treating cancer by utilizing powerful radiation to
eradicate cancer cells. X-ray therapy is frequently utilized in cancer treatment. However, a large
portion of the radiation is delivered as it enters the body. Unfortunately, radiation therapy often
fails to provide a sufficiently concentrated dose to the tumor while providing a similar dose to healthy
tissue. Moreover, X-rays pass through the entire body, causing unavoidable radiation exposure.
In contrast, proton therapy; another type of radiation treatment; offers enhanced efficiency in
addressing these issues [14].

In contrast to X-ray therapy, proton therapy concentrates most of the radiation dosage at
the tumor site instead of the point of entry. This precise of targeting significantly improves the
treatment’s effectiveness. Moreover, proton therapy outperforms X-ray therapy by limiting the
penetration of the proton beam to the tumor area, thereby reducing the exposure of surrounding
tissues.

The tumor size determines whether a step-by-step elimination of tumor cells using the radiation
beam is required. To guarantee that every part of the tumor receives the necessary radiation
dosage, healthcare professionals create a safety margin. This margin expands the treatment area
and accounts for the patient’s slight movements or positional variations during several weeks of
treatment, to guarantee that all of the tumor is treated. But this safety margin may encroach on
healthy tissue that should not receive treatment. Figure 2.1 visualizes the issue. Figure 2.1a shows
the desired outcome of the treatment by a proton beam from the bottom of the scan. Figure 2.1b
illustrates the situation of the patient moving slightly upward during the treatment, cause an
undershoot of the proton beam from the bottom of the scan. While Figure 2.1c illustrates an
overshoot because of the patient moving upward during the treatment.

Having real-time information about the path of the proton beam inside the patient’s body
during treatment could reduce the safety margin’s size and protect healthy tissue better. One
proposed solution for obtaining such information is using a Compton camera, which can capture
immediate images of prompt gamma rays emitted by the proton beams as they pass through the
body. These cameras offer valuable insights into the beam’s location, facilitating more precise and
efficient treatment.

(a) normal (b) undershoot (c) overshoot

Figure 2.1: Distal range uncertainties of beam therapy.
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2.2 Compton Camera and Image Reconstruction

Compton cameras are advanced multistage detectors used to image proton beams used in proton
beam therapy. When protons pass through the human body, they interact with atoms, resulting
in the emission of prompt gamma rays. As these gamma rays exit the body, some of them collide
with the modules in the Compton camera. In Figure 2.2 (a), the gamma ray is shown coming
from the bottom and bouncing through three modules of the Compton camera. The camera’s
modules then measure the energy and position of the prompt gamma rays as they traverse different
detection stages. Each recorded Compton scatter includes x-, y-, and z-coordinates, as well as the
corresponding energy level. These recorded interactions, known as events, provide raw output data
in the form (ei, xi, yi, zi), where i = 1, 2, 3, and ei represents the energy level.

Sophisticated algorithms exist for reconstructing the path of the proton beam, as in Fig-
ure 2.2 (b), based on the data obtained from the Compton camera. By utilizing the camera’s
ability to generate complete 3D images of the proton beam’s range, it becomes possible to compare
the planned treatment dose with the patient’s CT scan and make any necessary adjustments. In
radiotherapy, it is crucial to ensure conformity between the treatment plan and its execution, en-
suring that the patient’s bone and soft tissue landmarks are aligned as intended during treatment
planning. Even minor movements such as changes in position, fidgeting, scratching, or looking away
can disrupt the treatment plan. By obtaining reliable information about the patient’s condition
from the reconstructed images, clinicians have a better chance of ensuring that the entire tumor
receives the precise dose planned while ensuring the safety of surrounding healthy tissues.

(Phys. Med. Biol., 2010.)

(a) (b)

Figure 2.2: Proton beam scatters.
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2.3 Scatter Types

When imaging the proton beam, prompt gammas are emitted at speeds close to the speed of light.
Since all of the interactions in an event happen almost simultaneously, the Compton camera cannot
decode the proper ordering of the interaction in an event. This is where scatter types help to identify
false events causing noise in the image. There are 13 classes of scatterings, in three groups by type:

True Triple: The true triples events happen when the camera captures the path of the prompt
gamma with a triple interaction in the event. Notice that the ordering of the interactions
can be one of six combinations of true triple scattering: 123, 132, 213, 231, 312, 321. As the
data is currently implemented, only the 123 ordering of the triple event is usable for image
reconstruction. Figure 2.3 (a) and Figure 2.3 (b) are both True Triple events, but only (a)
matches the usable ordering subclass.

Double-to-Triples (DtoT): The DtoT events happen when the Compton camera detects an
event composed of double and single interaction that are independent of each other, as shown
in Figure 2.3 (c). There are six possible ordering of DtoT events: 124, 134, 214, 234, 324,
314. Interaction “4” in the ordering refers to the second prompt gamma interaction in the
misdetection events.

False Triple: The false triple events happen when the Compton camera detects a true triple
Figure 2.3 (a) when in reality, the event is composed of three single independent interactions
as seen in Figure 2.3 (d).

2.4 Machine Learning in Image Reconstruction

In our case — and as it often is in medical imaging — our data is extremely noisy, and getting
significantly more raw data is not cheap or efficient. This is where machine learning comes in.
Machine learning has a rich history in image processing and reconstruction. Since 2006, deep
learning has been known to have the capability to recognize target objects in images, and since has
been used and improved upon. The data obtained from the Compton cameras are extremely noisy,
as there are limitations in the imaging provided, primarily due to their inability to gauge the timing
of interactions of gamma particles. Because of the noise, the raw images from the cameras are far
from the required accuracy for use in proton beam therapy. They must be thoroughly cleaned to
be precise enough to be used and trusted when using proton beams. This cleaning process uses
machine learning to predict the initial proton beams based on the messy result returned by the
Compton cameras.
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Figure 2.3: Scatter events.
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3 Methodology

3.1 Background on Artificial Intelligence/Machine Learning/Neural Networks

The field of artificial intelligence was born in the 1950s with a generation of scientists, mathemati-
cians, and philosophers aiming to answer fundamental questions about intelligence. Turing’s work
on computation led him to ponder the ability of machines to have intelligence in his 1950 paper,
Computing Machinery and Intelligence. The first implementation of artificial intelligence (AI) was
presented in 1956 by Allen Newell, Cliff Shaw, and Herbert Simon at the Dartmouth Summer
Research Project on Artificial Intelligence (DSRPAI) [3]. This conference spurred the scientific
communities interest in intelligence and spread the sentiment that AI was achievable.

In recent decades, with the explosion of big data, AI has caught the attention of the media
and general public with some of the advances in machine learning (ML), artificial neural networks
(ANN), and deep learning (DL). Even with significant advancements in all these studies, more
clarity is needed around the distinction between AI, ML, ANN, and DL, which are different even
though they are highly associated.

Figure 3.1: Venn diagram of artificial intelligence concepts [9].

Figure 3.1 shows a Venn diagram that shows the interconnectivity between several levels of
these concepts. Broadly defined, AI is the field of techniques to allow machines to mimic the
behavior and decision-making of humans to automate and solve complex tasks with little to no
human interaction. The diagram shows that ML is a sub-field of AI, ANN is a method of ML, and
DL is a type of ANN.

Unlike conventional algorithmic approaches, where an algorithm is explicitly developed with
specific features in mind, ML is a field that focuses on learning through the development of algo-
rithms to best represent a set of data. Within ML, there are four standard methods for tackling a
problem: supervised, unsupervised, semi-supervised, and reinforcement learning [15].

Depending on the learning task, ML has various algorithms to address the different categories of
problems. A few of these algorithms include regression models, decision trees, Bayesian methods,
and artificial neural networks. ANNs are a network of artificial neurons, loosely modeling the
neurons and connections in biological brains, allowing the ML method to have a flexible structure
for modeling a wide range of data distributions. Figure 3.2 shows the schematic of a simple ANN
with three layers from left to right: the input, hidden, and output layers.
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Figure 3.2: Graph of artificial neural network [1].

3.1.1 Layer Types

ANNs are frequently used with many different layer types, among them are Gated Recurrent Units
(GRU), Long Short-Term Memory (LSTM), Dense, and Fully Connected Layers(FCL). GRU and
LSTM layers were created as a way to combat the short term memory of ANNs. Oftentimes,
learning networks would ”forget” or not accurately apply earlier data when working through a
lengthy dataset. If you passed a long essay, the network may not remember the thesis, as it weighs
more recent information heavier. LSTM layers introduce a few key components: the cell state,
input gate, forget gate, and output gate. The cell state takes information throughout the entire
chain of LSTM cells, and helps to preserve older information. The input gate determines how
information from the input is passed through the layer. Either a hyperbolic tangent or sigmoid
function is used to determine how much of the input should go to the cell state [13]. The forget gate
controls what information is thrown away or kept. A sigmoid function is used to generate values
from zero to one, and values closer to 0 are forgotten. finally the output gate takes the values that
are remembered, and passes them through the layer. GRU layers have only 2 gates, a update gate
and a reset gate. The update gate is responsible for keeping or forgetting information, and the
reset gate is responsible for distinguishing what past information should be forgotten.

3.1.2 Deep Neural Networks

A neural network with more than three hidden layers is called a Deep Neural Network (DNN). Deep
neural networks employ deep learning techniques to generate a suitable representation of the input
data required for a specific task. However, one significant challenge posed by the implementation
of these deep neural networks is the diminishment of human interpretability. The decision-making
processes of these sophisticated methodologies are primarily non-transparent and obscure, thereby
creating a ”black box” scenario [5]. Despite the drawback of reduced interpretability in deep learn-
ing methodologies, they are crucial when handling vast and high-dimensional datasets. Traditional
machine learning techniques can struggle to find meaningful patterns in such complex data due to
their limitations in managing multidimensionality and sheer volume. Therefore, the capability of
deep learning to model intricate and nuanced data structures makes it indispensable in advancing
machine learning applications, despite the trade-off in human interpretability.
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3.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network commonly used in tasks
involving sequential data, such as speech recognition, natural language processing, and time series
analysis. Unlike traditional neural networks where inputs and outputs are independent of each
other, RNNs have connections that allow information to flow in a loop, enabling them to capture
and utilize sequential dependencies in the data. The key feature of RNNs is their ability to maintain
an internal memory or hidden state that allows them to process inputs in a sequential manner. At
each time step, the output from the previous step is fed as input to the current step, allowing
the network to retain information about the past and make predictions based on the context of
the sequence. RNNs are composed of interconnected layers of artificial neurons, or nodes, with
weighted connections between them. These connections allow the network to learn and update its
parameters, such as weights and biases, through a process called backpropagation. During training,
the network compares its output to the desired output and adjusts its parameters to minimize the
error [11, 17]. The specific implementation of the recurrence block distinguishes several types of
RNNs. RNNs are a helpful model when classifying Compton camera events because of the ability
of the model to encode information about previous events into the evaluation of another event.

Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) are recurrent neural
network (RNN) layers that offer advantages in capturing sequential information and handling long-
term dependencies. They are widely used in various deep learning models, particularly in natural
language processing, time series analysis, and other sequential data tasks. These layers possess
gating mechanisms that control the flow of information through the network, enabling them to focus
on relevant information and discard irrelevant or redundant information. This feature enhances the
model’s ability to retain essential information over time. In previous years, the gating mechanisms
in GRU and LSTM layers have been used to help prevent overfitting by regulating the flow of
information and controlling the network’s capacity to memorize training data. This property is
particularly beneficial when dealing with large and complex datasets, as it improves the model’s
generalization capability [6].

3.1.4 Feedforward Neural Networks

Feedforward Neural Networks (FNNs) are a type of artificial neural network where information
flows in only one direction, from the input layer through the hidden layers to the output layer.
FNNs are also known as multilayer perceptrons (MLPs) and are characterized by the absence of
cycles or loops in the network structure. In an FNN, each neuron in a layer is connected to every
neuron in the subsequent layer, forming a fully connected layer. This means that the output of
each neuron in one layer serves as input to all neurons in the next layer. The connections between
neurons are weighted, and each neuron applies an activation function to the weighted sum of its
inputs to produce an output [5].

FNNs are powerful models that can approximate any continuous function to arbitrary pre-
cision, thanks to the universal approximation theorem. They have been successfully applied in
various domains, including image classification, natural language processing, and financial forecast-
ing. Training an FNN involves adjusting the weights and biases of the network using optimization
algorithms such as gradient descent to minimize the difference between the predicted outputs and
the true outputs [5].
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3.1.5 Transformer Network

Transformer neural networks are a machine learning architecture that aims to solve sequence-to-
sequence tasks while handling long-range dependencies. To capture the long-range dependencies,
the network uses a self-attention mechanism to relate the different orderings of the sequence to
output an attention representation of the sequence. This mechanism was first proposed in [16] for
the purpose of introducing the attention mechanism aimed to solve the vanishing gradient issue
encountered in more traditional machine learning techniques that perform gradient-based learning
methods and backpropagation through the network. The problem is that with each iteration of
training, all of the weights in the network update their values proportional to the partial derivatives
of the error function with respect to the current weight. The gradient will vanish, so the weights are
effectively prevented from changing. The self-attention mechanism works by representing inputs
as an attention vector. For example, given a sentence, the mechanism will focus on how relevant
a particular word is with respect to the other words in the sentence. In sequence modeling, the
transformer network uses stack self-attention layers and point-wise, fully connected layers to create
an encoder and decoder structure. The full structure of a transformer network can be seen in
Figure 3.3.

Figure 3.3: Transformer neural network architecture [16].
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3.2 Translation to PyTorch

PyTorch and TensorFlow are both powerful, open-source deep learning frameworks, however, there
are some general differences that might make one more appealing than the other for certain use
cases. Previous works on this project used TensorFlow and Keras as ML library [2,7,8,18]. Our at-
tempt to improve accuracy values includes translating the code base from TensorFlow to PyTorch.
There are several reasons for refactoring the legacy code base into PyTorch such as python-like syn-
tax, easy setup of distributed and paralleled training, and easy GPU optimization and configuration.
In recent years, the percentage of research papers using PyTorch over TensorFlow has continued to
grow reaching 75% of all new data science research papers using the PyTorch library [12], visually
represented in Figure 3.4. We created a PyTorch sequential model and normalized the activation of
the layers to adjust and scale the inputs using batch normalization. Still focusing on single dense
layer neural network, we generated residual blocks to map and capture the difference between the
desired output and the input before obtaining the final output.

Figure 3.4: PyTorch prevalence over time [12].

We constructed fully connected layers for each residual block with new layers added to the
previous layers and specific number of neurons for each layer created. The dropout rate is defaulted
to 0 and batch normalization to False. The regularization selects the appropriate loss function of
the neural network, which are either nn.L2Loss (Mean Squared Error loss) or nn.L1Loss (Mean
Absolute Error loss). The activation function is default to None otherwise it applies the activation
function to the layer. The activation function is either LeakyReLU or PReLU. We used PyTorch
optim module to initialize the optimizer to Adam, Nadam, or SDG, which uses traditional or
Nesterov momentum.

During the process of converting models from Keras to Pytorch, several challenges were en-
countered due to the differences in layer parameterization and compatibility between the two
frameworks. PyTorch’s nn.Linear method requires the specification of input and output feature
dimensions as integers, representing the dimensions of the input and output spaces, while Keras’
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equivalent Dense layer only requires the output space dimension. Additionally, the tensor layers
used in PyTorch posed compatibility issues when attempting to pass them into the nn.Sequential()
container. Further disparities were observed in terms of layer initialization, with PyTorch employ-
ing the default initialization scheme and Keras utilizing Glorot uniform initialization by default.
Furthermore, activation functions in PyTorch are instantiated as modules (e.g., nn.ReLU()), while
in Keras, they are specified as strings (e.g., ’relu’). Model definition also varies, as PyTorch involves
subclassing nn.Module and overriding the forward method, while Keras provides the Sequential or
functional API. It is important to note that both frameworks offer a range of loss functions and
optimizers; however, syntax and availability may differ between the two. These differences and
challenges encountered during the PyTorch to Keras model conversion process underscore the need
to carefully account for the dissimilarities in layer parameterization and compatibility between the
frameworks. The compatibility issues with the layers being passed out as tensors instead of linear
layers kept persisting for several days. To resolve this issue, we opted to replace the original imple-
mentation of the model.py code with an alternative approach. While most of the initial challenges
were successfully addressed through this code replacement, we subsequently faced new obstacles.
One particular issue involved the usage of Distributed Data Parallel (DDP), which caused addi-
tional errors. We performed debugging and resolved these issues by identifying and fixing the root
causes.

3.2.1 PyTorch Distributed Data Parallel (DDP)

Threading is a standard solution to carrying out parallel tasks allowing tasks to be distributed
across multiple threads. A benefit of using PyTorch is implementing a similar technique to train
different machine learning models in parallel across multiple GPUs [10]. We use the DataParallel
function to perform this DDP to inform PyTorch that the model must be parallelized. By adding
this wrapper over our model, PyTorch will automatically use multiprocessing and data slicing
to achieve parallelism over multiple GPUs. DDP in PyTorch uses multiprocessing to avoid well-
known issues of threading in Python that arise due to the Global Interpreter Lock (GIL). The
Global Interpreter Lock only allows one program thread to use the Python Interpreter, locking
all of the others. This is the issue with threading since the GIL prevents perfect parallelism [4].
Implementing DDP will allow for faster training and better scaling as the training data size grows.
DDP reduces the memory footprint by sharing parameters and ensures consistency across the model
during training. Another benefit of implementing DDP into our research is that it provides a fault
tolerance mechanism to handle failures during distributed training.

3.2.2 PyTorch DDP Configuration

To setup the distributed data parallelism, we used the torch.distributed package [10] that provides
the functionalities for distributed training. To initialize the distributed environment, we used
dist.init process group() [10]. The backend is specified as ‘nccl’ [10] which is commonly used for
GPU-based distributed training. The dist.get rank() [10] and dist.get world size() [10] methods
get the current process rank and the total number of processes, respectively. To get the available
port, we used the getPort package for the free port. In the main() method where we created and
trained the model, the model is wrapped with DistributedDataParallel, which enables synchronized
gradient updates across multiple processes. Each process will operate on its own portion of the
dataset. For multiprocessing, we used PyTorch’s torch.multiprocessing package to launch the train
function across multiple processes. The ‘nprocs’ argument specifies the number of processes to
create, which matches the desired world size for distributed training.

12



3.2.3 PyTorch Model

In PyTorch, models are not compiled like in the Keras frameworks. Instead, we defined the model
architecture using PyTorch’s nn.Module class, implemented the forward pass in the forward method
of the model, defined the loss function using nn.CrossEntropyLoss() [10], and chose an optimizer
using optim.SGD [10] with the model parameters and learning rate. In the training loop, we
performed the forward pass, calculated the loss perform backward pass, and updated the model
parameters using the optimizer.

The getActivator() method is setup to return the appropriate function based on the name of
the activator used, which is the LeakyReLU or the PReLU. The getOptimizer() method returns the
PyTorch optimizer based on the provided optimizer name loading the parameters from params.json
file.

3.2.4 PyTorch CSVLogger

In PyTorch, there is no direct equivalent to the CSVLogger like in Keras. To save the training
process to the CSV files, we created our own custom CSVLogger class, which checks if the train-
ing log.csv already exists or not using os.path.exists(). If it does not exists, it creates an empty
file in write mode with the specified filename that logs the desired information in training log.csv.
The TimeHistory() method defines on epoch begin and on epoch end() methods, which are called
at the beginning and end of each epoch, respectively. The information logged into training log.csv
include the epoch time, loss, accuracy, validation loss, and validation accuracy for each epoch.

3.2.5 PyTorch Tensors

The design and implementation of layers differ between Keras and PyTorch. In Keras, the Dense
layer is a high-level abstraction that encapsulates the weights, biases, and operations required for
a fully connected layer. When creating a Dense layer in Keras, it returns a KerasTensor object,
which is a symbolic representation of a tensor in the Keras computational graph. It allows Keras
to track the operations and dependencies between layers. However, in PyTorch, the nn.Linear
module represents a linear transformation layer. When we created an nn.Linear layer, it returned
an instance of the Linear class, which is a subclass of Module. The Linear class provides methods
for forward pass computation of the layer and manages weights and biases internally. We used
nn.Linear(nNeurons, nNeurons) to create a linear layer with nNeurons input features and nNeurons
output features. Since leaky relu() expects a Tensor type and not Linear type as input, we applied
the activation function to the output of the Linear module to ensure that a tensor is passed as
input to the activation function. In PyTorch, the input to a neural network layer is typically a
torch.Tensor object. The input tensor represents the data that is passed as input to the neural
network layer and it is a multidimensional array or tensor containing the input values for a batch
of samples.

3.2.6 Training Model Across Single/Multiple GPU(s)

DistributedDataParallel is a PyTorch module used for distributed training across multiple devices
or machines [10]. It is designed to work with GPU and CPU modules where model is trained
across multiple devices. The DDP wrapper requires that the underlying module supports parallel
execution. The device type we train our model on is CUDA, which means our model was on a GPU
device. The DDP wrapper takes a device ids array argument which specifies how many devices to
use for parallel training. If the array contains only one element, the training is done on a single
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GPU but if the array contains more than one element, the training is performed on multiple GPUs.
To ensure that all tensors used by the model are on CUDA devices, we checked that all the model
parameters are on CUDA and verified that the model inputs during training are also on CUDA
devices.

3.3 Hardware and Software

We used the Graphics Processing Unit (GPU) clusters in the ada system in the UMBC High
Performance Computing Facility (hpcf.umbc.edu) for our hyperparameter studies. The ada system
has 3 distinct node types: four nodes with 8 NVIDIA RTX 2080 Ti GPUs each with 11 GB GPU
memory; seven nodes with 8 NVidia Quadro RTX 6000 GPUs each with 24 GB of GPU memory;
two nodes with 8 NVidia Quadro RTX 8000 GPUs each with 48 GB GPU memory. Each node
has 384 GB of CPU memory (12 × 32 GB DDR4 at 2933 MT/s), except the two RTX 8000 nodes,
which have 768 GB of CPU memory (12 × 64 GB DDR4 at 2933 MT/s).

Networks built on ada were built using PyTorch v1.12.1 (https://pytorch.org/). We also used
scikit-learn v0.23.dev0 (https://scikit-learn.org/stable/) to preprocess and normalize the
data. Moreover pandas v1.1.0 (https://pandas.pydata.org/) and numpy v1.25.1 (www.numpy.
org) were also used to help preprocess the data. Finally, we used the matplotlib v3.5.1 (www.
matplotlib.org) library to graph our results. Networks built on ada were built inside the python
virual environment package Anaconda3 (https://www.anaconda.com/) v4.8.3.

4 Results

In our research, we trained a neural network using a dataset created by a Monte Carlo simulation,
containing 1,443,993 records across 16 columns. This dataset includes 13 different categories, with
a roughly even number in each. Of the 15 features, two are empty, specifically numbers 6 and
7. These features detail spatial coordinates, distances measured in Euclidean terms, and energy
levels for each interaction, with distances given in centimeters (cm). An interaction is made up of
three spatial points and an energy reading. Each row of data can be a triple, double-to-triple, or
false triple, and contains three of these interactions. The data used for training included only True
Triples, Double-to-Triple scatter, and False events.

We separated the data into training and validation parts, using 20% for validation, and reor-
ganized it to make sequential reading easier. Each initial record of 15 features was changed into
three interactions, and each of these interactions was made up of five features: three spatial points,
distance, and energy. Thus, each record was inputted into the neural network as three sequential
interactions.

This year, we encountered a significant change when using the cross-entropy loss function in
PyTorch. This function doesn’t work with a data format called one-hot encoded labels. So, we
didn’t use these labels during training. We made this specific change to make sure our training
with PyTorch’s cross-entropy loss function was efficient and accurate.

4.1 Inital Testing

During the initial stages of our research, we conducted comprehensive testing on the Keras code
provided from the previous year’s study. This existing code served as a valuable benchmark, offering
insights into the baseline performance for our project. During training, the beginning and end times
spent on each epoch was tracked and recorded in time history. The results from the training were
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Class 0 1 2 4 5 8 9 10 11 12 13 14
Count 59891 60306 60097 60313 60240 60171 60267 60151 60087 60223 60165 60398

Table 4.1: Class distribution.

stored in a log file called training-log-00.csv file. Figure 4.1 shows the plot of the accuracy from
the data generated.

(a) Model trained With 1 GPU (b) Model trained With 2 GPUs

Figure 4.1: Accuracy of previous model by epoch With timestamp.

In Figure 4.1, the entire training took about 5 hours and 27 minutes to complete on a single gpu
ada cluster. About 180 epochs into the training the accuracy was about 10%, but at 200 epochs
there was a rapid increase in the accuracy up to about 350 epochs which produced an accuracy of
approximately 55%. From this point on, the accuracy appears to be consistent throughout the rest
of the training up to 1024 epochs.

The class distribution provides insights into the number of instances or samples belonging to
each class in the dataset. In this case, it appears that there is a relatively balanced distribution
across the classes, as shown in Table 4.1

4.2 Hyper-parameter Study

Like previous research, we explore various networks for classification using the Dense, LSTM, and
GRU layers [2, 7, 8, 18]. We begin by examining the number of epochs, the batch size, and the
learning rate. We then explore the number of layers, neurons, and the dropout rate to determine
a promising configuration for the network. Table 4.2 shows the constant parameters for all model
studies. In order to mitigate overfitting, we then test the model using a clip gradient, batch
normalization, and L1 and L2 regularization to improve the model. The varying hyperparameters
that are tuned throughout this study can be seen in Table 4.3.

4.2.1 Number of Layers

When starting this study, we observe the parameters used for the dense models runs of previous
TensorFlow models [18]. We first investigated the number of layers, starting with 64, 128, and 256
layers. All other parameters were kept constant. See Table 4.2 for these parameters. These runs
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Hyper-parameter Value

Indim 15

Outdim 13

Optimizer Adam

Loss Function Categorical Crossentropy

Table 4.2: Constant model parameters.

Hyperparameter Value

Layers 256

Neurons 256

Batch Size 8192

Learning Rate 1.0e-3

Train/Validation 0.8/0.2

Dropout 0.45

Inter-activation leakyrelu

Clip Gradient 0

Layer Type Dense

Table 4.3: Variable Model Parameters

stagnated at roughly 7% accuracy with little to no improvement with increasing epochs. We then
tested a model with only 16 layers, which saw a significant increase in accuracy from 7% to 49.7%
as shown in Figure 4.2, indicating that fewer layers leads to higher accuracy in our dense model.
We then conducted 2048 epoch runs with 1–16 layers. We found that if there were too few layers,
the model would become severely over fitted. 11 layers produced the best accuracy while limiting
overfitting.

4.2.2 Learning rate

After finding that a lower number of dense layers produced better results, the next step was to adjust
our learning rate hyperparameters. We trained 2, 4, 6, and 11 layer dense models with constant
hyperparameters defined in Table 4.4. We used a learning rate of 1e-3, which was multiplied by
of 1e-1, 3e-1, and 5e-1 every 682 epochs and 341 epochs. From this experiment, we found better
results from changing the learning rate every 341 epochs. When we multiplied the learning rate by
1e-1, 3e-1, and 5e-1, we achieved an accuracy of 63.9%, 63.5%, and 59.8% and 5e-1 had an accuracy
of 59.8%. Decreasing the learning step from 682 to 341 improve all models independent of learning
change by a couple of percentage points, as shown in Figure 4.3.

4.2.3 Train-Validation Split

We trained dense models with 11 layers with train-validation splits of 0.9/0.1, 0.85/0.15, 0.8/0.2,
0.75/0.25, 0.7/0.3. We found that our train-validation split had an insignificant effect on our
model as all of the tested models were within 1% accuracy of each other with around 64% accuracy.
Table 4.5 shows the various validation split percentages with the corresponding train and validation
accuracies.
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(a) Dense 3 layer model (b) Dense 7 layer model

(c) Dense 11 layer mdoel (d) Dense 16 layer model

Figure 4.2: Accuracy of 3, 7, and 16 dense layer models.

4.2.4 Batch Size

Larger batch sizes can improve model performance by providing more stable weight updates, effi-
cient parallel processing, and better generalization. However, extremely large batch sizes can lead
to memory issues and slower convergence.

To determine the best batch size for the data we trained models using batch sizes of 8192,
16384, 32768, and 65536 as shown in Table 4.6. Based on our training of these model we concluded
that a batch size of 8192 has the best accuracy of any of the models with the least training time.
As the batch size increase the training time increased while the accuracy of the model significantly
decrease.

4.2.5 Clip Gradient

Clip Gradient has little to no change on peak accuracy, producing results that are less than .0005
different then our preset clip gradient. That being said, one run with 1.0e-4, 10x smaller than our
default performed slightly better (+.0004 peak accuracy). Other runs with higher clip gradients–
1.0e-3, 5.0e-4, 5.0e-4–performed slightly worse, but only brought down peak accuracy by 0.0006, as
shown in Table 4.7. Concluding testing, 1.0e-4 seems to be the best value out of values testing in
a similar range, but this is not a very powerful variable in changing peak accuracy.
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Hyperparameter Value

Learning Rate 1.0e-3

Train/Validation 0.8/0.2

Batch Size 8192

Neurons 256

Number of Layers 11

Dropout 0.45

Inter-activation leakyrelu

Clip Gradient 1.0e-3

Layer Type Dense

Table 4.4: Hyperparameters in learning rate model

(a) (b)

Figure 4.3: Graphs of model accuracy: dense 11 layer model with 3e-1 learning change and (a) 682
and (b) 341 learning steps.

4.2.6 Dropout

Dropout hyper parameterization during training can improve model performance by reducing over-
fitting. By randomly deactivating neurons, dropout prevents certain neurons from relying too
heavily on specific inputs, forcing the network to learn more robust and generalized features. This
regularization technique helps the model generalize better to unseen data, enhancing its ability to
generalize to new examples during inference. To determine the right dropout rate for Dense layers

Validation Split Accuracy Val. Accuracy

10% 62.25 64.29
15% 62.32 64.54
20% 61.45 64.08
25% 61.80 63.99
30% 61.67 64.02

Table 4.5: Hyperparameters in Train-Validation split model
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Batch Size Accuracy Val. Accuracy

8192 61.63 63.96
16384 61.73 63.89
32768 49.87 52.74
65536 48.75 50.32

Table 4.6: Batch size on 11-layer dense model accuracy

Clip Gradient Accuracy Val. Accuracy

5.0e-3 61.44 63.98
5.0e-4 61.41 64.10
1.0e-4 61.77 63.98

Table 4.7: Clip gradient on 11-layer dense model accuracy

in the model we trained models with constant parameters defined in Table 4.2 and variable dropout
rates of 15, 20, 30, 40, 60% dropout. As demonstrated in Table 4.8, we found that lowering the
dropout percentage increase the accuracy of our model with the best performing training being the
model with 15% dropout rate seen in Figure 4.4. In the GRU layers, we observed that a dropout
rate of 10% led to notable performance, achieving an accuracy of approximately 43%. However,
when the dropout rate was increased to 60%, the model’s performance deteriorated significantly,
with accuracy remaining below 7%. This could be due to their simple architecture: When the
dropout rate is set too high, it might cause the GRU to lose too much information during training,
leading to poor performance. On the other hand, the LSTM layers showed an intriguing behavior.
The training performance remained unchanged between a 10% dropout rate and a 70% dropout
rate. It appears that LSTM’s architecture is better suited to handle higher dropout rates, and
thus, the performance remains stable even with a 70% dropout rate.

4.2.7 Layer Type

Besides fully connected layers, in our experiment, we employed LSTM and GRU layers for our
classification task. In PyTorch, both GRU and LSTM layers are provided as part of the torch.nn
module, specifically as nn.GRU and nn.LSTM. PyTorch provides the num layers parameter for
these modules, allowing users to specify the number of stacked layers within the model architecture.
During our RNN training utilizing LSTM layers, we conducted evaluations across models with 2,

Dropout Accuracy Val. Accuracy

60% 59.27 62.76
55% 60.02 63.17
40% 62.04 64.31
30% 63.29 65.17
20% 64.81 66.37
15% 65.28 66.85

Table 4.8: Dropout rate on accuracy in 11-layer dense model
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Figure 4.4: Accuracy graph of dense 11 layer model with 15% dropout rate.

4, 16, and 128 LSTM layers. The models with 16 and 128 LSTM layers underperformed, yielding
accuracies not exceeding 7.73%. With 4 LSTM layers, the model achieved accuracies of 66.5%,
63.7%, and 56.4% under L2 regularization values of 1e-2 and 1e-3. In contrast, the 2 LSTM layer
configuration resulted in accuracies of 56.6%, 54.1%, 63.7%, and 63.3% with L2 regularization
values of 1e-2 and 1e-4.

Furthermore, we assessed the performance of our model using GRU layers, specifically with 2,
4, and 6 layers. The 6 GRU layer configuration, when paired with 16 and 64 dense layers, yielded
accuracies of 7.7% and 7.6% respectively. The 4 GRU layer model achieved a 55.1% accuracy
with 16 dense layers, but a significantly lower 8.4% accuracy with 64 dense layers. As shown
in Figure 4.5, the most optimal performance was observed with the 2 GRU layer model, which
registered accuracies of 69.08% when combined with 10 fully connected layers.

Figure 4.5: Accuracy graph of our 2 GRU + 10 FCL model
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4.3 Distributed Data Parallelization

In our experimentation process, we aimed to leverage PyTorch’s Distributed Data Parallel (DDP)
to enhance the training efficiency of our models across multiple GPUs. DDP, a model parallelism
technique provided by PyTorch, promises to distribute input data across various GPUs, allowing
each to process a unique subset of the input data. This approach replicates the model on each
processor, with every model processing a different partition of the input data. After the forward
and backward passes, DDP is designed to synchronize the gradients across all GPUs and update
the model. However, despite our efforts, we encountered challenges in integrating DDP into our
training pipeline. These challenges encompassed a variety of issues, starting with configuration
difficulties where aligning the DDP settings with our existing infrastructure proved more intricate
than anticipated. Additionally, we faced synchronization bottlenecks, particularly when attempt-
ing to consolidate gradients across the GPUs. This not only hindered the expected performance
improvements but also occasionally led to inconsistent model states across the devices. Such incon-
sistencies risked the integrity of our training process. Furthermore, we encountered complexities
related to memory management and data distribution, which added layers of troubleshooting that
diverted our focus from the primary objectives. Despite the promise that DDP holds in terms of
distributed training and potential speed-ups, these challenges compelled us to revert to single-GPU
training for the scope of this report. However, we remain optimistic about revisiting and harness-
ing the power of DDP in future iterations of our work, armed with the insights gained from this
experience.

5 Conclusions and Future Work

Our research focuses on the methodology of defining and training DNNs in PyTorch, which provides
the advantage of dynamic computational graphs. This dynamic nature allows for greater flexibil-
ity in model development and debugging. Unlike TensorFlow, which uses static computational
graphs, PyTorch constructs the computational graph on-the-fly during runtime. This dynamic ap-
proach enables easier modifications to the model and supports dynamic control flow. In contrast,
TensorFlow requires the entire graph structure to be defined before execution. The dynamic com-
putational graph feature in PyTorch enhances its flexibility and ease of use in model development
and debugging compared to TensorFlow’s static computational graph approach.

In this study, we explored various networks, including Dense, LSTM, and GRU layers, for
classification to optimize the performance of recurrent neural networks (RNNs). To facilitate our
experiments and monitor the training process effectively, we implemented custom utilities in Py-
Torch. One of these utilities is the custom CSVLogger class, which allowed us to log essential
training details, including epoch number, loss, and accuracy. Additionally, we used the TimeHis-
tory() method to measure the duration of each epoch during the training process. By recording
the epoch times in the TimeHistory object, we gained valuable insights into the training progress
and performance.

To determine the optimal network configurations, we conducted an extensive hyperparameter
study, considering factors such as the number of epochs, batch size, learning rate, layer sizes,
learning change, learning step, train-validation split, clip gradient, and dropout rate. We first
explored the impact of the number of layers in the Dense models. Initial tests with higher layer
counts (64, 128, and 256) resulted in stagnant accuracy of around 7%. However, a model with 16
layers exhibited a notable increase in accuracy, and 11 layers were found to be optimal, achieving
the best accuracy while effectively preventing overfitting. The examination of learning change and
learning step hyperparameters revealed that a learning change of 1e-1 resulted in the most accurate
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model with 63.9% accuracy. The choice of train-validation split ratios had minimal impact on model
performance, with all tested models achieving similar accuracies of around 64%. Additionally, we
discovered that a batch size of 8192 yielded the highest accuracy while minimizing training time,
making it the favored option for our model. The influence of clip gradient on peak accuracy was
marginal, with 1.0e-4 displaying the most favorable outcomes among the tested values in a similar
range. Regarding dropout rates, we observed that lower percentages led to improved accuracy, with
the best model achieving a dropout rate of 15%.

Moreover, we evaluated models with varying LSTM and GRU layers. Models with 16 and
128 LSTM layers showed limited performance, with accuracies below 7.73%. However, the 4-layer
LSTM model achieved up to 66.5% accuracy, while the 2-layer configuration reached 63.7%. For
GRU layers, the 2-layer model combined with 10 fully connected layers stood out, achieving an
accuracy of 69.08%. In contrast, configurations with more GRU layers, especially with 64 dense
layers, generally underperformed.

Furthermore, we aimed to utilize PyTorch’s Distributed Data Parallel (DDP) for efficient multi-
GPU training. While DDP offers the potential for enhanced parallelism by distributing data across
GPUs, we faced challenges in its integration. Issues ranged from configuration difficulties to syn-
chronization problems and memory management complexities. As a result, we opted for single-GPU
training in this report. Nevertheless, our experience with DDP has provided valuable insights, and
we are hopeful about its potential benefits in future work.
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