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Abstract—The purpose of this research is to study how
different machine learning and statistical models can be used
to predict bedrock topography under the Greenland ice sheet
using ice-penetrating radar and satellite imagery data. Accurate
bed topography representations are crucial for understanding ice
sheet stability and vulnerability to climate change. We explore
nine predictive models including dense neural network, long-
short term memory, variational auto-encoder, extreme gradient
boosting (XGBoost), gaussian process regression, and kriging
based residual learning. Model performance is evaluated with
mean absolute error (MAE), root mean squared error (RMSE),
coefficient of determination (R2), and terrain ruggedness index
(TRI). In addition to testing various models, different interpola-
tion methods, including nearest neighbor, bilinear, and kriging,
are also applied in preprocessing. The XGBoost model with
kriging interpolation exhibit strong predictive capabilities but
demands extensive resources. Alternatively, the XGBoost model
with bilinear interpolation shows robust predictive capabilities
and requires fewer resources. These models effectively capture
the complexity of the terrain hidden under the Greenland ice
sheet with precision and efficiency, making them valuable tools
for representing spatial patterns in diverse landscapes.

Index Terms—Machine Learning Applications, Model Evalua-
tion, Interpolation, Greenland, Subglacial Bed Topography

I. INTRODUCTION

Accurately mapping the topography of the bedrock under
the ice sheets is critical to improve our understanding of their
response to climate change and reduce the uncertainty in sea
level rise projections. The most effective way to measure the
height of the bedrock under a glacier is through airborne
ice penetrating radar. However, acquiring such data entails
significant costs, and it only provides data directly underneath
the aircraft, leaving significant data gaps. In contrast, surface
glacier data can be readily obtained through satellite observa-
tions, which researchers are using to explore model capabilities
of estimating glacial bedrock topography based on surface
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features. Prior efforts in this domain include the physics-based
model BedMachine by Morlighem et al. [1], which predicts
bed topography in Greenland based on mass conservation,
and the deep neural network-based DeepBedMap by Leong
and Horgan [2], designed to reconstruct a more realistic bed
topography roughness of the Antarctic bed based on existing
maps.

To comprehensively understand the efficacy of diverse ma-
chine learning and statistical models in predicting subglacial
bed topography, we evaluate nine distinct methods for Green-
land. Our exploration includes statistical techniques such as
gaussian process regression and universal kriging, as well as
machine learning approaches such as variational autoencoder
(VAE), extreme gradient boosting (XGBoost), dense layer-
based neural network, and long-short term memory (LSTM)
based neural network. Additionally, we also attempt three
novel approaches by combining two models into a single
hybrid model, e.g., dense + LSTM, VAE + XGBoost, and
universal kriging + XGBoost.

Our contributions are summarized as follows with our
implementation open source at the Big Data REU GitHub
repository [3].

• Our XGBoost model is the best-performing model overall
and demonstrates favorable performance compared to the
commonly used topography product BedMachine [1],
indicating the potential of machine learning for accurate
subglacial bed topography prediction.

• These experiments also show that the universal kriging
model achieves the best MAE score due to its ability to
leverage neighboring data points effectively. However, its
poor RMSE performance can be attributed to challenges
in handling sparse target variable observations, leading
to outliers that impact overall accuracy. A notable dis-
advantage of universal kriging is its extensive resource
requirement for convergence compared to other models.

• To improve data integration and leverage physics-guided
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knowledge in preprocessing, we conducted an ablation
study on different interpolation approaches. The results
demonstrate that different interpolation techniques have
varying effects on machine learning model performance,
and the incorporation of physics knowledge positively
impacts machine learning performance.

• Besides evaluating the models with ground-truth track
data, we apply them to a large region spanning 32,400
km2. Visualizing the predictions for the entire region pro-
vides a comprehensive understanding of the performance
differences among the models. Furthermore, we find the
terrain ruggedness index (TRI) [4] to be a valuable metric
for quantifying these differences.

The subsequent sections of this paper are structured as
follows. Section II, provides an overview of related works
in the field. Section III presents the background and data
sources utilized in this study. Section IV delves into the
detailed exploration of the predictive models employed. In
Section V, we outline the experimental metrics, present the
results, ablation studies, and corresponding descriptions. Sec-
tion VI entails a comprehensive discussion of our findings.
Finally, in Section VII, we draw conclusive remarks from our
investigation.

II. RELATED WORK

The work of Morlighem and colleagues [5] resulted in a
physics-based model for inferring bedrock topography beneath
the Greenland ice sheet using a mass conservation optimization
scheme. This model, constructed from a dataset comprising of
radar-derived bed topography, where available, and satellite-
based ice flow velocity, serves as a reference for visualizing the
extensive dataset utilized in our study, considering the absence
of a ground truth.

In the context of Antarctic bed topography, Leong and
Horgan [2] introduced a GAN-based approach to minimize
per-pixel elevation error. Their work was motivated by the
compilation of Bedmap1 [6] and Bedmap2 [7]. Notably, mass
conservation was only applied to fast-flowing regions, while
ordinary kriging or streamline diffusion was used in slow-
moving ice flow regions [8]. However, this method faced
challenges in capturing the intrinsic anisotropy of the ice
thickness data where mass conservation is essential.

Furthermore, the works of Leong and Horgan [2] and Liu-
Schiaffini et al. [9] have provided valuable insights into the
application of deep learning, specifically convolutional neural
networks (CNNs), for predicting bed topography roughness.
These prior studies have informed and guided our team in
the implementation of deep learning models to advance the
state-of-the-art in this field.

Our work encompasses extensive implementation of both
statistical and machine learning models on our dataset building
on previous research, thereby enhancing the understanding of
their respective performances.

III. BACKGROUND AND DATA PREPROCESSING

Addressing bed topography is crucial due to its significance
in predicting future sea level rise. It has been shown that
the shape of the bedrock can slow down the retreat of ice
sheet, or accelerate it through the Marine Ice Sheet Instability
[10]. Typically, glaciers tend to be stable on pro-grade bed
slopes (when the bed rises as we move inland), and unstable
on retro-grade bed slopes. Small scale roughness can also
affect the overall rate of retreat. Measuring the landscape
hidden beneath thousands of meters of ice, however, remains
challenging. Scientists have developed numerical models to
predict sea level rise based on existing bedrock topography
maps. However, uncertainties persist in forecasting the future
response of the ice sheets to climate change over the coming
decades and centuries because of our incomplete and some-
times erroneous representation of subglacial bed topography.
Identifying retrograde regions with deepening beds and areas
with bumps and ridges that may impede rapid retreat is
critical. Without accurate bed representations, precise sea level
rise predictions are hindered. Understanding climate change
requires crucial insights into the underlying bed, even as thick
ice poses significant obstacles to direct observation.

A. Problem Definition

Our main objective is to develop and train machine learning
models to infer bed elevation across a vast area using solely
surface data as input because the available ground truth data
for the area’s actual bed elevation is spatially limited. Our
analysis is centered on predicting bed topographic elevation
at new locations, where direct measurement is unavailable,
thereby enhancing the depiction of Greenland’s subglacial
topography. Below, we explain the datasets in our study and
data preprocessing tasks.

B. Data Sources

We selected a 32,400 km2 square area in the Upernavik
glacier system, in West Greenland. By splitting this area into
1200×1200 uniform grids (each grid’s size is 150 m × 150
m) we obtain a dataset with 1,442,401 (1201×1201) total
data points. Each data point provides values for five surface
variables (see rows 1-5 in Table I), which are original features
to be leveraged by our predictive models. Because these are
uniform grids, we refer to them as Grid Data. Meanwhile, we
also obtain 632,706 data points of radar-derived bed elevation
measurements as target values, which are rows 6-7 in Table I.
These data points have ground truth that are used to measure
the accuracy of our predictive models. Because these data
points are only along the tracks of the airborne radar sensor,
we refer to them as Track Data.

1) Ice Sheet Surface Measurement: We utilize five ice sheet
surface measurements from four sources: 1) Surface Elevation
is obtained from the Greenland Ice Mapping Project (GIMP)
[11]; 2) Ice flow surface velocity data on both longitudinal
and latitudinal directions is generated by integrating multiple
satellite interferometry data products including Landsat-8,
Sentinel-1, and RADARSAT-2 via the approach at [12]; 3) Ice



TABLE I
DESCRIPTION OF DATA VARIABLES

Variable Name Description
surf x, surf y Coordinates of grids (m)
surf vx, surf vy Ice flow velocity (m/yr)
surf elv Ice surface elevation (m)
surf dhdt Ice thinning rates (m/yr)
surf SMB Surface mass balance (m/yr)
track bed x, track bed y Coordinates of radar bed points (m)
track bed target Subglacial bed elevation along flight lines (m)

thinning rates are provided by ICESat-2: (Ice, Cloud, and land
Elevation Satellite-2) [13]; 4) Surface mass balance indicating
annual snow accumulation and ice surface ablation is derived
from RACMO (Regional Atmospheric Climate Model) [14].
Examples of surface measurement variables in our study are
illustrated in the left part of Figure 1.

2) Bed Elevation Measurement: Bed topography measure-
ments are acquired through ice-penetrating radar from NASA’s
Operation IceBridge [15]. A radar system is mounted beneath
an aircraft’s wings and emits an electromagnetic signal that
penetrates the ice. This signal is reflected at the ice-bed
interface directly underneath the aircraft and the travel time is
converted to ice thickness. The bed topography is calculated
by subtracting the ice thickness from the ice surface elevation.
The right part of Figure 1 presents a visual representation
of the dataset. This target variable data, that is irregularly
distributed, is contrasted with the uniformly distributed surface
variable data previously discussed.

Fig. 1. Surface variable grid data and target variable track data.

C. Data Preprocessing

The first data preprocessing step conducted is to estimate the
surface variables for each track data point based on their ge-
olocations, so every track data point has five feature variables
and a target variable. To achieve this goal, we employ three
distinct interpolation techniques: nearest neighbor, bilinear,
and universal kriging.

The first two interpolation approaches are straightforward.
Nearest neighbor, involves associating each radar bedrock
observation with its spatially-nearest surface observation. The
second approach, bilinear interpolation, predicts the value of
each surface variable by calculating the weighted average
of the four nearest neighbor observations of that variable.
The weights of each neighbor are determined based on their
distances from the prediction location.

The third interpolation technique in our study is universal
kriging. Similar to bilinear interpolation, it estimates the val-
ues of surface variables using nearby observations. However,
unlike bilinear interpolation, universal kriging incorporates all
observations in the dataset (or a specified neighborhood due
to memory constraints) to calculate a weighted average. The
weights are assigned based on the auto correlation of the
observations, utilizing a variogram model. For each batch,
universal kriging is fit using different variogram models,
selecting the model with the lowest capability ratio (CR).

The application of all three interpolation methods to the
original region of interest dataset yield three distinct interpo-
lated datasets. Each interpolated dataset comprises a total of
632,706 examples, with each example containing the interpo-
lated values of the five surface variables, the true observed
value of the bed elevation at the corresponding location, and
the respective coordinates.

Using our three interpolated datasets, we conduct further
preprocessing steps to prepare the data for our models. This
involves dropping non-numerical values, scaling the data with
Standard Scaler to account for outliers in real-world data,
and calculating the magnitude of the ice flow velocity vector
for each surface observation. Additionally, for the universal
kriging and universal kriging + XGB models, duplicates are
removed from the dataset to ensure convergence during the
training process. Finally, the dataset is randomly split into
60% training, 40% testing, and 20% validation datasets with
a constant randomization seed to ensure repeatability. Next,
models are developed and trained.

IV. STATISTICAL AND MACHINE LEARNING MODELS
EVALUATED

A. Statistical Models

Due to both models’ popularity in problems involving
spatial data, we apply gaussian process regression (GPR) and
universal kriging to our dataset as predictive models.

1) Gaussian Process Regression (GPR): GPR is a power-
ful probabilistic regression technique that leverages Bayesian
principles to compute predictive distributions [16]. Despite
its promising properties, GPR presents challenges in terms
of computational resources and storage requirements. During
development using a subset of data, 90% training and 10%
testing split, the model demonstrates impressive metrics, but
has poor computation time. Due to the high computational
cost of training GPR on large datasets, we employ mini-
batch processing with 10,000 points and one epoch, which
demonstrates sufficient metrics during development to manage
the significant time and financial investments. Unfortunately,
the model continues to demand an incredible number of
resources for computation, therefore, continuing the challenge
of applying GPR to large-scale geographical datasets. Because
of the challenge to engage the entire topography, we explore
other models.

2) Universal Kriging: We select universal kriging [17] as
our preferred kriging variant due to its robustness in handling
trends, outliers, and skewed data distributions. Our application



of kriging adopts a nontraditional approach to account for the
large size and high degree of variance across different regions
of our dataset. Instead of employing a train-test split, we use all
of the labeled data in approach more akin to cross-validation.
We fit five different variogram models (exponential, power,
linear, gaussian, and spherical) on each prediction point using
a specific neighborhood of the prediction point. All covariance
models are fit with the same settings: an anisotropy scale of
3, an anisotropy angle of the arc-tangent of ice flow velocity,
and using the number of fitting points as the number of
lags. The best covariance model is chosen for each prediction
point as the model with the lowest capacity ratio (CR). These
adjustments are crucial to manage the considerable volume
of data points in our dataset, reduce computational complex-
ity, and accommodate the substantial variance in correlation
falloff across the entire region of interest. Even with these
adjustments, similar to GPR, universal kriging requires a
large number of resources during computation time and other
models are explored.

B. Machine Learning Models

1) Extreme Gradient Boosting (XGB/XGBoost): XGBoost
is a popular supervised machine learning algorithm. Known
for its effectiveness in regression tasks and computational ef-
ficiency, XGB is well-suited for processing large datasets [18]
with a focus on learning from smaller, diverse regions. The
model combines multiple decision trees, optimizing them to
minimize errors, which enhances flexibility and makes it
adaptable to diverse topographic data. XGB incorporates tech-
niques to prevent overfitting, ensuring reliable and accurate
predictions, while its ability to aggregate predictions from
individual trees solidifies its standing as the preferred choice
for our objectives.

In justifying our choice of the XGBoost algorithm, we
consider the importance of finding the right balance among key
parameters. To achieve optimal results, we employ a reverse-
engineering approach, overfitting the data and fine-tuning pa-
rameters through extensive experimentation and emphasizing
domain-specific characteristics to enhance the model’s perfor-
mance and adaptability. These efforts significantly impact the
XGBoost model’s accuracy in predicting Greenland’s bedrock
elevation.

Parameter settings are carefully chosen to optimize the
model’s performance while avoiding overfitting. The depth
of the decision trees is set to a balanced value of seven to
capture intricate patterns. The number of boosting rounds
and XGBoost trees is set at 350 to ensure comprehensive
learning while maintaining training efficiency. The minimum
child weight, set at 0.25, controls overfitting by requiring a
minimum number of samples to split a node. The subsample
parameter, set at 0.8, balances incorporating diverse samples
and providing sufficient dataset coverage. Finally, the learning
rate of 0.25 facilitates stable performance and convergence
without overshooting.

By precisely tuning the parameters of the XGBoost algo-
rithm, we gain the ability to discern intricate details across

the entire area, with a particular focus on emphasizing deep
and narrow glacial fjords that channelize the ice flow from the
interior of the ice sheet to the ocean. Through this fine-tuning
process, we achieve noteworthy results shown in Table II,
showcasing the model’s ability to capture nuanced patterns and
achieve accurate predictions tailored to our research objectives.

2) Multilayer Perceptron (MLP) Dense Network: Deep
learning models are gaining widespread popularity across
various domains, proving effective in tasks such as classifica-
tion, regression, and detection, among others motivating their
exploration in this study. In this study, we utilize a dense layer-
based neural network, known for its simplicity and feature
aggregation capabilities, to process the labeled dataset. The
sequential network is comprised of eight layers, including
five dense layers of sizes [128, 64, 32, 32, 16], two dropout
layers, and a final dense layer with one output unit. A dropout
coefficient of 50% is employed to enhance generalizability and
mitigate overfitting. ReLU serves as the activation function
for all layers, with a linear activation function being used for
the output layer. Training utilizes the Adam optimizer with
a mean squared error loss function over 200 epochs without
early stopping. These choices are to take advantage of the
network’s ability to effectively capture features and patterns
in our dataset.

3) Long Short-Term Memory (LSTM) Deep Neural Net-
work: LSTM, a specialized type of recurrent neural network,
excels at learning features from sequential data, thanks to
its long-term and short-term memory units that address the
vanishing gradient problem and retain patterns from distant
sequences [19]. The LSTM model is explored to capitalize on
LSTM’s ability to learn from sequential data. Leveraging these
advantages, our model comprises three LSTM layers of sizes
[64, 32, 16], followed by a 50% dropout layer and a single-
neuron dense layer for output generation. Training uses the
Adam optimizer with mean squared error as the loss metric
and 100 epochs without early stopping. This choice of LSTM
enables us to effectively capture hidden patterns in our data,
making it a reasonable approach for the prediction task.

4) Variational Autoencoder (VAE): VAE models have
gained significant prominence in the field of machine learning.
By employing feature reconstruction and incorporating KL
regularization, VAE excels at learning probabilistic representa-
tions of geographical landscapes which motivates exploration
of the model in this research [20]. The decoder’s goal is to
accurately reconstruct the original input from the latent space,
leveraging existing knowledge to enhance performance. The
introduction of a cyclical training schedule further improves
the model’s capabilities, making VAE a valuable tool for
analyzing and predicting geographical features, not limited to
Greenland but potentially applicable to other regions as well.
Nevertheless, continued research and fine-tuning are essential
to achieve even higher levels of accuracy and reliability in this
challenging domain.



C. Hybrid Models

1) Dense + LSTM: In this study, we aim to leverage the
strengths of both dense layers and LSTM layers by integrat-
ing them into a hybrid deep-learning model. The motivation
behind this approach lies in the limited number of features
available for the regression task, as we want to extract complex
patterns from the dataset. The dense layer component of this
hybrid model generates latent representations of the input
features as a long sequence, which are then fed into the
LSTM layers to generate high-level features, treating each data
observation as an independent sequence. The dense layer part
of the hybrid model comprises three dense layer blocks, each
consisting of two dense layers, one batch normalization layer,
and one dropout layer with a 50% dropout coefficient. On
the other hand, the LSTM part of the model is two LSTM
layers with 64 and 32 cells, with a batch normalization layer
and one dense layer. The final regression result is generated
using a dense layer with a single neuron and a linear activation
function. This hybrid model is trained for 200 epochs using
the Adam optimization function with mean squared loss. By
integrating dense layers and LSTM layers, our hybrid deep-
learning model captures both combinatorial and sequential
patterns from the dataset, enabling us to obtain more com-
prehensive and accurate predictions for the regression task.

2) Variational Autoencoder + XGBoost: The rationale be-
hind developing the VAE + XGB model is to leverage the re-
spective strengths of VAE and XGBoost. The VAE component
excels at capturing essential features and patterns within the
dataset through its latent space representation. By compressing
and encoding the input data into a lower-dimensional latent
space, it creates a more concise and meaningful represen-
tation. Subsequently, the XGBoost model demonstrates its
capability for producing high-quality and rapid predictions
for the dataset. In the hybrid model, we utilize the trained
VAE encoder to capture patterns within our dataset. A subset
comprising 80% of the compressed patterns from the encoder
is employed as input for the XGBoost model, which is fine-
tuned with 350 trees, a maximum depth of seven levels, and
a minimum child weight of 0.25. The model performs pre-
dictions for the target elevations on all testing and validation
data, thereby enabling comprehensive analysis and predictions
with improved accuracy and efficiency.

3) Universal Kriging + XGBoost: Inspired by residual
learning [21], we study how to leverage the strengths of uni-
versal kriging and XGBoost in predicting bedrock elevation.
In this pipeline, universal kriging makes an initial prediction
for the target variable. Subsequently, the XGBoost model
is trained using the same features, with the target variable
being the residuals from the kriging prediction from the true
observed values. During testing, the XGBoost predictions of
residuals are combined with the kriging guess. This approach
aims to enhance the accuracy of the overall prediction by
allowing XGBoost to learn and correct any errors or inconsis-
tencies present in the kriging estimation.

V. EVALUATION RESULTS

We conduct three types of experiments to understand how
the models in the previous section perform for Greenland
bedrock elevation prediction. First, we compare all nine pre-
dictive models to understand their performance difference
using the same interpolated track data because it has ground
truth values. Second, we complete an ablation study for our
best performing model to understand how our preprocessing
affects the performance. Third, we use grid data to understand
the performance of the model for the whole area. Because
BedMachine [1] is a popular Greenland bedrock topography
data product is used in the ice sheet modeling community, we
use this physics-based estimate as one baseline.

A. Metrics for Model Evaluation

To evaluate the predictive performance of our models on
the track data, we employ root mean squared error (RMSE),
mean absolute error (MAE), and coefficient of determination
(R2) as evaluation metrics for the test sets.

Besides the common statistical metrics above, for well-
performing models, we also compute the terrain ruggedness
index (TRI) on the grid data. TRI is a valuable measure for
quantifying terrain characteristics by capturing the elevation
differences between adjacent cells in a digital elevation model
(DEM). It quantifies topographic heterogeneity by computing
the squared and averaged differences between the center cell
and its eight surrounding cells, followed by taking the square
root to yield the TRI value. Higher TRI values indicate greater
terrain ruggedness and complexity, while lower values suggest
smoother terrain. Incorporating TRI into our analysis enables
us to assess how effectively our predictions capture the study
area’s terrain variability and roughness, thereby ensuring an
accurate representation of its complex topographic features.

B. Statistics Evaluation Results

Table II presents test data evaluation results for nine models
in Section IV trained with data interpolated using the nearest
neighbor approach. The results are ordered by RMSE with the
best results emboldened for each metric. Because our baseline,
BedMachine, has the same geolocation with our grid data, we
did bilinear interpolation to get its values for the track data first
in order to calculate its metrics using the same test data. Below,
the results are discussed for each of the models employed.

TABLE II
SUMMARY OF RESULTS (SORTED BY BEST METRICS)

Model RMSE MAE R2

XGBoost 32.680 22.273 0.967
BedMachine [1] 71.554 50.422 0.842
Dense + LSTM 81.174 57.993 0.797
LSTM 101.630 74.522 0.682
Dense 104.475 74.381 0.663
Variational AutoEncoder 106.884 83.798 0.648
VAE + XGBoost 129.760 100.035 0.481
XGBoost on Kriging Residual 136.650 8.122 0.424
Kriging Only 136.637 7.617 0.424
Gaussian Process Regression 150.086 97.855 0.293



1) XGB: Overall, XGB performs the best. The impressive
metrics of XGBoost come from the combination of multiple
decision trees in XGBoost, which are optimized to minimize
errors and provide flexibility in capturing diverse topographic
data. This architecture allows us to break down complex
topography, capturing unique sections, and then combine the
results for more precise predictions.

2) Dense + LSTM: The dense + LSTM model performs
better than dense model alone and LSTM alone. It shows
this hybrid approach is generally successful due to its unique
architecture that combines the strengths of both dense layers
and LSTM cells. The dense layers are effective in learning
complex relationships and patterns within the data, capturing
high-level features that contribute to predictive accuracy. On
the other hand, LSTM cells excel in capturing temporal
dependencies and long-term patterns, making them well-suited
for sequential data such as time-series or spatial-temporal
datasets. Combining dense and LSTM layers, the model can
effectively capture both spatial and temporal dependencies in
the topographical data. The dense layers process the input data
and extract essential features, while the LSTM cells process
the sequential information and capture temporal patterns. This
combination enables the model to understand the complex
interactions between geographical features over time, resulting
in improved predictive performance. Additional tuning may
result in further improved metrics.

3) LSTM: The LSTM model performs similarly with met-
rics falling in the middle. LSTM alone might not fully exploit
the spatial relationships and interactions between geograph-
ical features. The model’s architecture focuses primarily on
capturing temporal patterns, but it may not be as effective in
handling the spatial complexities of the topographical data.

4) MLP Dense: The MLP dense model metrics are mod-
erate. While MLP is capable of capturing some patterns
in the data, it is not as effective in handling the complex
spatial dependencies and sequential nature of the topographical
data in Greenland. MLP dense model lacks the specialized
architectures of models like LSTM, which captures long-term
dependencies in sequential data, or XGBoost, which efficiently
handles complex interactions between geographical features.

5) Variational Autoencoder (VAE): In this study, VAE
demonstrates moderate predictive capabilities compared to
other models. The model is known for its capability to capture
essential features and patterns in the data, but it is not
as effective in capturing complex spatial relationships and
variations present in the topographical data of Greenland.

6) Variational Autoencoder + XGBoost: The VAE + XGB
hybrid model did not perform better than VAE model itself.
The VAE component is adept at capturing essential features
and patterns in the data through its latent space representation.
It effectively compresses and encodes the input data into a
lower-dimensional latent space, allowing for a more concise
and meaningful representation. XGBoost, tries to take advan-
tage of the compressed and meaningful representations from
the VAE, but it does not have enough opportunity to learn with
the compressed data.

7) Universal Kriging + XGBoost: The XGBoost model,
trained for predicting kriging’s first guess residuals, exhibits
notably poor performance compared to the other models. The
large difference in RMSE to MAE can be explained by the
lack of outliers present in the dataset. Hoping to improve
the RMSE and R2 scores, XGB is implemented to predict
residuals and correct the first pass prediction. The XGB
struggles to capture the relationship between surface features
and computed kriging residual with an RMSE of 142.204 and
R2 of -0.083. Full implementation of the poorly performing
XGB with residual correction shows little difference in final
results of kriging residual learning seen in Table II.

Alternatively, to predict residuals accurately the XGB model
would need to understand the decisions made during kriging
that allowed the computation of residuals XGB is expected
to predict. In an ablation study, adding the initial kriging
prediction into the features of XGB showed an improvement in
predicting residuals (RMSE 34.188 and R2 of 0.937), but still
results in an extremely poor final score when the predicted
residuals are combined with the kriging predictions. Again,
the XGB model struggles to understand the implicit decisions
made during kriging.

Because the hybrid model is unable to accurately correct
initial kriging predictions with or without a well trained XGB
model predicting residuals, the hybrid model is unsuitable for
practical use.

8) Gaussian Process Regression (GPR): The GPR model’s
poor performance can be attributed to its computational de-
mands, which hinder extensive hyperparameter searches and
fine-tuning. The complex and diverse geographical features
of Greenland’s bed topography challenge GPR to accurately
capture underlying patterns, as it relies on the normal distri-
bution assumption that does not appear to hold in the tested
regions. Additionally, GPR’s relatively low R2 value indicates
its struggle to capture variability. As a result of poor metrics,
the focus shifts towards alternative modeling approaches that
could provide more efficient and cost-effective solutions for
predicting topography data in Greenland.

9) Universal Kriging: Interestingly, our kriging model
achieves the best MAE score with very poor R2 and RMSE.
Upon further investigation, it becomes clear that this is because
of a small number of outliers with extremely poor predictions.
Kriging actually performs very well on the majority of the
dataset. By our calculation, 83.4% of predictions have a
residual of 10 or less, 81.4% had an RMSE of 25 or less, and
79.6% have an R2 score of 0.97 or higher. Because RMSE is
more sensitive to outliers than MAE, kriging’s RMSE is poor.

Hoping to clarify why predictions are so poor for some
data points, we visualize the distribution data points and the
RMSE metric for grid regions of the kriging input dataset and
predictions. We split the input dataset and kriging prediction
set into spatial batches along an even 10×10 grid and plot
the data density (number of radar observations present in grid
square/area of grid square in m2) and RMSE for each grid
square as a heatmap on the original pixel points contained
within each grid square. The results are shown below in



Figure 2.

(a) Data density in 10×10 grid (b) RMSE in 10×10 grid

Fig. 2. Heatmaps of data density and RMSE on each batch in 10x10 grid.

Figure 2 shows a weak correlation between data density and
the RMSE metrics (Pearson correlation coefficient of -0.104).
This indicates some higher dense regions have lower RMSE
scores. But this factor alone is not enough to explain why
kriging results are so poor for certain regions. For instance,
the batch in the upper right (dark blue lines on the RMSE plot)
has very large error, even though its data density is not low.
This leads us to conclude that additional factors, such as low
spatial correlation or high variability, may be the reason why
kriging is unable to make good predictions in these particular
regions.

C. Ablation Study Results

1) Interpolation Study Results: We use our best performing
model, XGBoost for ablation studies to understand how differ-
ent preprocessing approaches affect model performance. The
metrics for XGBoost trained on each of the three interpolated
datasets are shown in Table III.

TABLE III
INTERPOLATION EVALUATION METRICS

Interpolation RMSE MAE R2

Kriging 27.099 17.947 0.977
Bilinear 28.085 18.549 0.976
Nearest Neighbor 32.680 22.273 0.967

We form three conclusions about interpolation methods
with XGBoost. First, XGBoost produces the best metrics with
universal kriging interpolation, but knowingly uses extensive
resources during preprocessing. Second, XGBoost with bilin-
ear interpolation is the most efficient in time and memory re-
quired and produces high metrics when compared to universal
kriging. Finally, XGBoost with nearest neighbor interpolation
produces competitive metrics and captures subglacial topog-
raphy well, but ranks third in the metrics tested.

2) Derived Feature Selection Study Results: In addition
to studying interpolation methods, feature selection is also
explored. By adding the additional feature, namely ice ve-
locity magnitude, according to domain knowledge, our model
slightly improved. This can be seen in Table IV.

D. Topographic Evaluation

In addition to the metrics and ablation studies, predictions
for validation data are visualized and quantified using the

TABLE IV
EVALUATION METRICS WITH XGBOOST AND NEAREST NEIGHBOR

INTERPOLATION

Velocity Magnitude RMSE MAE R2

With Velocity Magnitude 32.680 22.273 0.967
Without Velocity Magnitude 33.016 22.663 0.966

popular topographic metric terrain ruggedness index (TRI).
First, the TRI is calculated for known validation data where
XGBoost performs with over 93% R2 for all interpolation
methods. Then, the TRI is calculated for the grid data and
is compared to the TRI of BedMachine, which is known to
be overly smoothed compared to radar data. Average TRIs for
XGB with nearest neighbor interpolation, XGB with kriging
interpolation, XGB with bilinear interpolation and BedMa-
chine for the grid data are given in Table V.

TABLE V
TERRAIN RUGGEDNESS INDEX FOR XGBOOST ON VALIDATION DATA

Interpolation TRI Mean
Kriging 15.926
Bilinear 14.682
Nearest neighbors 14.178
BedMachine [1] 3.302

Figure 3 shows the trained XGBoost model produces im-
proved details and roughness in the terrain when compared
to the baseline result which is known to be overly smooth.
Meanwhile, XGB based predictions show some discontinuity
especially for the dark colored fjords, which might differ from
actual topography.

(a) BedMachine (b) XGB with bilinear interpolation

Fig. 3. Comparison of interpolation ablation study results.

VI. DISCUSSION

The comprehensive evaluation of predictive models in this
study yields valuable insights into the most effective approach
for capturing and representing complex topography. To en-
hance predictive accuracy and efficiency in modeling topo-
graphical features in diverse landscapes, there are promising
avenues for future research.

Firstly, implementing the terrain ruggedness index (TRI) as
an early stopping method could be beneficial. By utilizing TRI



as a metric during the training process, we can effectively
determine when the model adequately captures the terrain’s
complexity and variability, potentially saving computational
resources and time.

Secondly, exploring tuning options for universal kriging
presents another opportunity for improvement. While universal
kriging demonstrates favorable performance in certain regions,
it exhibits subpar results in others. Investigating potential flaws
in the resizing method or identifying regions with poor spatial
correlations can contribute to enhancing universal kriging’s
overall performance.

This study significantly advances our understanding of
predictive capabilities for complex topography representation
using various models. By continually refining and advancing
our predictive approaches, we can deepen our understanding
of complex topographical features and their implications,
ultimately contributing to diverse applications, including envi-
ronmental modeling and climate change research.

VII. CONCLUSIONS

Driven by the importance of comprehending complex topog-
raphy and its implications in diverse fields like climate change
research, environmental modeling, and glaciology, this study’s
objective is to identify the most effective predictive models
for accurately capturing and representing spatial patterns in
complex terrain. Leveraging insights from past literature and
a comprehensive understanding and preprocessing of our data,
we embark on a rigorous evaluation of several predictive
models, employing well-established evaluation metrics like
RMSE, MAE, R2, and TRI with a specific focus on predictive
accuracy and topography representation.

The results reveal distinct performance characteristics
among the evaluated models. The XGBoost model with krig-
ing interpolated data exhibits the best metrics, achieving an
RMSE of 27.099, a MAE of 17.947, and an R2 value of
0.977, indicating its strong predictive capabilities. However,
the method’s computational requirements, taking much longer
time even with distributed resources, limit its practicality.

The XGBoost model with bilinear interpolation also demon-
strates excellent predictive capabilities, achieving an RMSE
of 28.085, a MAE of 18.549, and an R2 value of 0.976. The
TRI analysis further supports its effectiveness. Notably, this
model requires fewer resources, showcasing both efficiency
and accuracy in its predictions.

The other evaluated models exhibit varying degrees of
predictive performance, with some showing promising results
and potential for further refinement. However, the XGBoost
models with kriging and bilinear interpolated data stand out
as the top performers, effectively capturing the complexity of
the Greenland ice sheet terrain with precision and efficiency.

In conclusion, the XGBoost models with kriging and bilin-
ear interpolated data prove to be highly effective in predicting
topographical features in complex terrains for our dataset.
These models demonstrate exceptional predictive accuracy
while efficiently processing large datasets, making them valu-
able tools for capturing and representing spatial patterns in the

bed topography under the Greenland ice sheet and potentially
other diverse landscapes.
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