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Abstract

The purpose of this research is to study how different machine learning and statistical models
can be used to predict bed topography in Greenland using ice-penetrating radar and satellite
imagery data. Accurate bed topography representations are crucial for understanding ice sheet
stability, melt, and vulnerability to climate change. We explored nine predictive models includ-
ing dense neural network, LSTM, variational auto-encoder (VAE), extreme gradient boosting
(XGBoost), gaussian process regression, and kriging based residual learning. Model performance
was evaluated with mean absolute error (MAE), root mean squared error (RMSE), coefficient of
determination (R2), and terrain ruggedness index (TRI). In addition to testing various predic-
tive models, different interpolation methods, including Nearest Neighbor interpolation, Bilinear
Interpolation, and Universal Kriging were used to obtain estimates the values of ice surface
features at the ice bed observation locations. The XGBoost model with Universal Kriging
interpolation exhibited strong predictive capabilities but demands extensive resources. Alterna-
tively, the XGBoost model with bilinear interpolation showed robust predictive capabilities and
required fewer resources. These models effectively captured the complexity of the Greenland ice
sheet terrain with precision and efficiency, making them valuable tools for representing spatial
patterns in diverse landscapes.
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1 Introduction

Knowing the topography of glacial ice beds is critical for modeling glacial changes accurately as
climate change continues. However, measuring ice bed elevation directly entails significant costs,
as it necessitates radar technology to scan through the ice and measure the underlying bedrock. In
contrast, surface glacier data can be readily obtained through satellite observations. Consequently,
researchers are exploring models capable of estimating glacial bedrock topography from surface
data. Prior efforts in this domain include the physics-based model BedMachine by Morlighem
et al. [13], which predicts ice bed topography in Greenland, and the deep neural network-based
DeepBedMap by Leong and Horgan [8], designed for Antarctic bed topography prediction.

To comprehensively understand the efficacy of diverse machine learning and statistical models
in predicting ice bed topography, in this paper, we evaluated nine distinct models. Our explo-
ration included statistical techniques such as gaussian process regression and universal kriging,as
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well as machine learning approaches such as variational autoencoder (VAE), XGBoost, VAE with
XGBoost, dense layer-based neural network, and LSTM-based neural network. Besides these stan-
dalone models, we also utilized hybrid models that combine two or more standalone models using
techniques such as residual learning. These hybrid models included Dense + LSTM, VAE + XG-
Boost, and Universal Kriging + XGBoost.

• The standalone XGBoost model yielded the best test metrics and the most detailed and
realistic topographic map predictions out of the models presented in this study and the
physics-based model BedMachine [13].

• Universal Kriging showed superior metrics to XGBoost for many regions of the dataset as
shown in 8.4, but failed to converge properly for some pixels, making extremely poor predic-
tions on pixels in those regions.

• To improve data integration and leverage physics-guided knowledge in preprocessing, we also
conducted an ablation study to compare the effects of training our models on datasets inter-
polated using different approaches and the effect of incorporating additional derived features
recommended based on known physics models. The results demonstrated that different in-
terpolation techniques had varying effects on machine learning model performance, and the
incorporation of our new derived features positively impacted machine learning performance.

• Besides evaluating the models on a test set with known ice bed elevation data, we also
evaluated each model by making predictions on a region spanning 32,400 km2 where true
ice bed elevation has not been measured completely. Visualizing the predictions for the
entire region provided a comprehensive understanding of the performance differences among
the models. Furthermore, we found the terrain ruggedness index(TRI) [11]to be a valuable
metric for quantifying these differences.

In the following sections, we will delve into the details of previous research in this field,
provide a brief explanation of our data sources and preprocessing techniques, and describe
the architecture of the models we employed. Our results are then presented, and compared
with those derived from the physics model in BedMachine [13].

2 Literature Review

Morlighem et al [13] produced a physics-based model that can predict Greenland bedrock
elevation using a mass conservation optimization scheme. Morlighem et evaluated their model
on the same dataset we train and evaluate our models on, which consisted of heterogenous data
collected from two main sources: time series satellite data describing five ice surface features,
and measurements of ice bed elevation at erratic locations obtained via ice-penetrating radar.
We compare the efficacy of our models to that of Morlighem et al by comparing test metrics,
and visually inspecting the predictions of all models on a 32,400 squared km region where
ground truth data is not fully known.

We also took inspiration from the work of Leong and Horgan [8], who also explored machine
learning approaches to predicting ice bed topography from surface features. Specifically, they
trained a convolutional neural network (CNN) to predict the ice bed topography of Antarctica.
Leong and Horgan used CNNs with deep learning to produce predictions with high roughness
for Antarctica using sparse but with high-resolution ground truth data.
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3 Background and Data Preprocessing

Addressing data gaps in bed topography is crucial due to its significance in predicting future
sea level rise. The shape of the bedrock beneath thick ice holds the key to understanding the
behavior of ice sheets in response to climate change. Although glacier fjords in Greenland
are now exposed due to ice retreat, measuring the landscape hidden beneath thousands of
meters of ice remains challenging. Scientists have developed simulation models to predict sea
level rise and ice sheet responses over the years. However, uncertainties persist in forecasting
potential catastrophic collapses of ice sheets in the next 100-200 years. The rate of ice sheet
mass loss depends heavily on the bedrock’s topography, which can lead to either slow, gradual
retreat or rapid, unstoppable degradation. Identifying retrograde regions with deepening beds
and areas with bumps and ridges that may impede retreat is critical. Without accurate bed
representations, precise sea level rise predictions are hindered. Understanding climate change
requires crucial insights into the underlying ice bed, even as thick ice poses significant obstacles
to direct observation.

3.1 Problem Definition

Our main objective is to train machine learning models to forecast ice bed elevation across a
vast area using solely surface data as input because the available ground truth data for the
area’s actual ice bed elevation is limited. So we aim to devise a method to produce reliable
predictions for the entire region using only surface data. Our analysis is centered on predicting
bed topographic elevation at new locations where direct measurement is unavailable, thereby
enhancing the depiction of Greenland’s ice deposits. Because the geolocations of the surface
variables are different from the ones for the target variable, we need to first match the two
sets of data points. Below, we explain the datasets used in our study and data preprocessing
tasks.

3.2 Data Sources

Specifically, we selected a 32,400 km2 square area in Upernavik, West Greenland. By splitting
this area into 1200x1200 uniform grids and each grid’s size is 150m x 150m, we can obtain
a dataset with 1,442,401 (1201x1201) total data points. Each data point provides values for
five surface variables (see rows 1-5 in Table 3.1), which are original features to be leveraged
by our predictive models. Because these are uniform grids, we refer to them as Grid Data.
Meanwhile, we also obtained 632,706 data points for ice bed elevation measurement as target
values, which are rows 6-7 in Table 3.1. These data points have ground truth that can be
used to measure the accuracy of our predictive models. Because these data points are only
along the tracks of the flown radar sensor, we refer to them as Track Data.

3.2.1 Ice Sheet Surface Measurement

We utilized five ice sheet surface measurements from various sources: 1) Surface Elevation is
obtained from the Greenland Ice Mapping Project using Interferometry(GIMP)/Greenland
Ice Mapping Project (GIMP) [15]; 2)Ice flow surface velocity data on both longitudinal and
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Table 3.1: Description of Data Variables
Variable Name Description

surf x, surf y Coordinates of grids (m)
surf vx, surf vy Ice flow velocity (m/yr)
surf elv Ice surface elevation (m)
surf dhdt Ice thinning rates annually (m/yr)
surf SMB Snow accumulation annually (m/yr)
track bed x, track bed y Coordinates of track bed points (m)
track bed target Ice bed elevation (m)

latitudinal directions is generated by integrating multiple satellite interferometry data prod-
ucts including Landsat-8, Sentinel-1, and RADARSAT-2 via the approach at [16]; 3)Ice thin-
ning rates are provided by ICESat-2:(Ice, Cloud, and land Elevation Satellite-2) [17];4)Surface
mass balance indicating annual snow accumulation is derived from RACMO (Regional Atmo-
spheric Climate Model) [18]. Examples of surface measurement variables used in our study
are illustrated in the left part of Figure 3.1.

3.2.2 Ice Bed Elevation Measurement

Bed topography measurements are acquired through ice-penetrating radar in NASA’s Oper-
ation IceBridge [19]. A substantial radar system, mounted beneath an aircraft’s wings, emits
signals through the ice, but the data collection is confined to the region directly beneath
the aircraft. The right part of Figure3.1 presents a visual representation of the dataset. In
contrast to surface variable data that are uniformly distributed and show complete spatial
patterns, our target variable data is irregularly distributed.

Figure 3.1: Surface variable grid data and target variable track data.

3.3 Data Preprocessing

The first data preprocessing we conducted is to estimate the values of the surface variables
for each track data point based on their geolocations so every track data point has five feature
variables and a target variable. It will end up with 632,706 data points for predictive models
to be trained on. To achieve this goal, we employed three distinct interpolation techniques:
nearest neighbor, bilinear, and universal kriging.

The first two interpolation approaches are straightforward. The first one, nearest neighbor,
involved associating each radar bedrock observation with its spatially-nearest surface observa-
tion. The second approach, bilinear interpolation, predicted the value of each surface variable
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by calculating the weighted average of the four nearest neighbor observations of that variable.
The weights of each neighbor were determined based on their distances from the prediction
location.

The third interpolation technique in our study is universal kriging. Similar to bilinear in-
terpolation, it estimated the values of surface variables using nearby observations. However,
unlike bilinear interpolation, universal kriging incorporated all observations in the dataset(or
a specified neighborhood due to memory constraints)to calculate a weighted average. The
weights were assigned based on the autocorrelation of the observations, utilizing a variogram
model. For each batch, universal kriging was fitted using different variogram models, selecting
the model with the lowest capability ratio(CR). Throughout the process, an anisotropy scale
of three and an anisotropy angle of ninety degrees were consistently applied to all surface
variables, while the highest number of lags allowed for each batch was determined.

The application of all three interpolation methods to the original region of interest dataset
yielded three distinct interpolated datasets. Each interpolated dataset comprises a total of
632,612 examples, with each example containing the interpolated values of the five surface
variables, the true observed value of the bed elevation at the corresponding location, and the
respective coordinates.

After obtaining our three interpolated datasets using the three interpolation methods, we
conducted further preprocessing steps to prepare the data for our models. This involved
dropping non-numerical values and calculating the magnitude of the ice flow velocity vector
for each surface observation, which was then added as a derived feature to the dataset.
Additionally, for the universal kriging and universal kriging + XGB models, we removed
duplicates from the dataset to ensure proper convergence during the training process.

3.4 Assumptions

Having clarified the definitions of the fundamental data variables our focus now shifts
to the underlying assumptions and methodologies involved in the data collection process.
These assumptions play a pivotal role in determining the most appropriate interpolation
and methods to employ in predicting Greenland’s ice bed topography accurately. The first
assumption is that all tools and data collected in the data collection from the Greenland Ice
Sheet (GrIS) and all data sources we are using are dependable, relevant, and accurate. The
second assumption is that the provided data is a normally distributed representation of the
topography and does not only focus on one type of topography. For example, the known
data includes a normal distribution of flat land, small mountains, and troughs which are
common across Greenland. This assumption allows us to tune our models to generalize to
unobserved data and derive conclusions of model accuracy. With a clear understanding of
the assumptions guiding our data collection process, we now proceed to provide an overview
of the methodology employed in this study.

4 Methodology Overview

In order to train a machine-learning model to make predictions at a location, it was neces-
sary to match each bed height observation from Operation IceBridge to a set of surface feature
observations. Interpolating datasets was necessary to merge these observations. Our study
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explored three different interpolation techniques: Nearest Neighbor (NNI), Bilinear Interpola-
tion(BLI), and Universal Kriging(UK). Interpolated data was validated through visualization
and comparison to Morlinghem’s 2014 model. Next, the dataset underwent additional pre-
processing to derive and select features as well as be prepared for models.

After the data completes preprocessing, it is ready for modeling. Numerous probabilistic,
machine learning and deep learning models were developed and tuned for our study includ-
ing Gaussian Process Regression, Spatio-Temporal Gaussian Processing, Variational Auto-
Encoders, CNNs, XGBoosts, and residual learning which are described later in this paper.
Models were then trained on the nearest neighbors dataset which provided a baseline for
model selection. The selected model was trained on the different datasets generated from
NNI, BLI, and UK.

Following training, each model was assessed individually with a supervised methodology. The
model was used to predict test data, which was excluded from the training dataset. The pre-
dictions were then quantified and compared to known target bed heights using Root Mean
Squared Error, Mean Average Error, Coefficient of Determination, and Terrain Ruggedness
Index. In addition to numerical comparison, the predictions were visualized with validation
data, a subsection of the Greenland dataset, and compared to Morlinghem’s 2014 physics-
based model again. Visualizations were supported by terrain ruggedness index calculations.
Finally, metrics from each individual model were compared to determine model recommen-
dations for future applications of modeling to topography predictions.

5 Preprocessing

In this section, we will outline decisions and the methodologies used to clean, normalize,
and transform the raw data, ensuring that it is suitable for analysis and the subsequent
application of machine learning and deep learning models.

5.1 Interpolation

As discussed in previous sections, our data comes from numerous sources. Interpolation
must be leveraged to merge large surface variable datasets with the known target variable
dataset. NNI, BLI, and UK were employed and tested; below is an explanation of each
method.

5.1.1 Nearest Neighbors

Nearest neighbor interpolation is a simple image resizing technique used in computer
graphics and digital image processing. Interpolation involves estimating the value of a function
at a point where the value is not explicitly known, using the information from nearby points
where the function’s value is given. The nearest neighbor algorithm tackles this task by
selecting the value of the closest known point without taking into account the values of other
nearby points. As a result, it creates a piecewise-constant approximation.

Each data grid is separated by 150 meters. For each track bed point, the other independent
features must be identified by their index in their own dataset. The index of the corresponding
features was identified using the following formulas. The column was identified by taking the
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first point of surf x and subtracting it from all the points of track bed x and dividing it by
150. The row is identified by subtracting track bed y coordinates from surf y coordinates.

(track bedx − surfx[0, 1])

150m
= p (5.1)

(surfy[−1, 0]− track bedy)

150m
= q (5.2)

The (p,q) index is used to map ice flow, elevation, ice thinning, and snow accumulation to
create the dataset.

5.1.2 Bilinear Interpolation

Bilinear interpolation is also a commonly used image resizing and interpolation technique
in computer graphics and digital image processing. It is an improvement over the nearest
neighbor interpolation method and provides smoother and more accurate results. In bilinear
interpolation, it considers the values of the four nearest neighboring pixels from the original
image to compute the value of a pixel in the new image. The method takes the weighted
average of these four pixels to estimate the value of the target pixel. This interpolation
is done on a regular or rectilinear grid in arbitrary dimensions. Our dataset is defined on a
rectilinear grid; that is, a rectangular grid with even spacing. After setting up the interpolator
object, the bilinear interpolation method is chosen at each evaluation.

The regular grid interpolation is done on gridded data of cell center coordinates on x and y
axis, the axis that constrains all the other features together. This gridded function is then
interpolated for track bed data.

5.1.3 Kriging Interpolation

In the data, all five surface variables we want to interpolate have local trends although not
all of the local trends are quantified. Because of this, Ordinary Kriging and Simple Kriging
are not appropriate for our dataset. Instead, this study uses Universal Kriging (UK).

Universal Kriging is a variant of the geospatial probabilistic interpolation algorithm, Kriging.
Like Bilinear Interpolation (BLI), UK uses the values of the surface features at nearby loca-
tions to estimate their values at each bedrock observation location. However, it differs from
BLI in two crucial ways. First, unlike BLI, UK does not treat all points equally. Kriging
weights nearby points based on their correlations with each other. This motivates Kriging
to accurately capture more complex patterns in spatial data than Bilinear Interpolation even
when lower amounts of data are present. The second difference is that UK is probabilistic
rather than a deterministic interpolation algorithm. The main consequence of the algorithm’s
probabilistic nature is it associates a quantification of certainty for each predicted point.

One challenge faced when implementing Kriging was the large requirement of resources re-
quired when scaled to our large, diverse dataset. Many modifications were made to the
traditional UK. The first alteration was applying individual variograms within a unique dy-
namic square for each point to be predicted. Each square was resized to capture a specific
range of points. The second adjustment was allowing each variogram model to fit a linear or
logarithmic trendline to better fit the data regions based on error metrics. This method will
be denoted as the localized cross-validation box method.

7



5.2 Additional Preprocessing

After interpolation has been performed on the raw data, we apply several additional
preprocessing steps to the interpolated data in order to prepare our data for the models. The
interpolated data requires preprocessing before modeling. Preprocessing involves deriving
additional features, feature selection, scaling values, and randomized splitting.

To incorporate relevant domain knowledge into our dataset, we collaborated with Dr. Mathieu
Morlighem, an Evans Family Professor of Earth Sciences at Dartmouth University and a
domain expert in ice-sheet and sea-level systems. Dr. Morlighem reviewed the features present
in our nearest neighbors dataset and emphasized the importance of the velocity magnitude of
ice flow as an indicator of topography. Based on his feedback, we derived the ice flow velocity
magnitude at each (x,y) coordinate by calculating the standard magnitude equation applied
to the scalar values of ice flow in the x direction (vx) and y direction (vy). This derived
feature, denoted as ”v mag,” was included in our modeling.

Table 5.1: Evaluation Metrics with XGBoost Model
RMSE MAE R2

Without velocity magnitude 33.016 22.663 0.966
With velocity magnitude 32.680 22.273 0.967

Adding the velocity magnitude feature, the metrics slightly improved. With more generalized
parameters, the velocity magnitude features plays a more significant role in the metrics.

After deriving the velocity magnitude feature, we performed feature selection to identify
relevant and insightful features that contribute to a clear final topography map and reliable
metrics. The selected features for the final model include ice flow in the x-direction, ice flow in
the y-direction, surface height, ice thinning rates, snow accumulation, and the newly derived
velocity magnitude of ice flow at each coordinate.

Features such as cell center coordinates used for data interpolation were not selected be-
cause they caused poor topography map predictions and did not improve the prediction error
significantly. Therefore, these features were excluded from the final feature set.

Next, we scaled the target values using StandardScaler from the sklearn preprocessing module
to standardize. StandardScaler takes the points and subtracts the dataset mean and divides
it by the standard deviation. This makes all features have a mean of approximately zero with
a standard deviation of one. The data was scaled to allow (1) a balance of feature weights in
training, (2) speed up the training speed and stability of training, and (3) more easily identify
patterns in the data for tuning. All data was scaled together. StandardScalar was selected
over MinMax Scaling because it is not as sensitive to outliers that exist in diverse real-world
data.

The final step in preprocessing involved randomly splitting the data into training, testing, and
validation datasets. We used the train test split function from the sklearn model selection
module for this purpose. The randomization seed was set to 168 to ensure reproducibility.
After experimenting with different ratio splits, we found that the best metrics were obtained
with a 60% training, 40% testing, and 20% validation data split. The training data was
further split to allocate the validation data, maintaining the same seed.

In summary, the preprocessing steps included deriving the velocity magnitude feature, select-
ing relevant features, scaling the data using StandardScaler, and randomizing the data into
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training, testing, and validation sets.

6 Modeling

Having successfully preprocessed the data and brought it to a standardized format suitable
for analysis, we now proceed to the modeling stage. In this section, we will describe the
probabilistic, machine learning, and deep learning models employed to predict ice bed height
in Greenland’s ice bed topography.

6.1 Kriging Residual Learning with XGBoost

In addition to interpolation, Kriging was applied as a form of residual learning using
the XGBoost model to predict residuals. We first used Universal Kriging to make a first-
pass prediction for ice bed height using the localized cross-validation box at every point.
Predictions were used to calculate residuals, the error of the prediction. XGBoost was trained
to predict the residual of Kriging’s first pass prediction. The residual was then subtracted
from the kriging first pass prediction to yield a final prediction.

6.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is a powerful probabilistic regression technique that
leverages Bayesian principles to compute predictive distributions. GPR works by optimizing
the log-marginal-likelihood (LML) to determine the shape and smoothness of the predictive
function. To implement GPR, we utilized the ‘sklearn.gaussian process‘ library and defined
a kernel with a constant term and radial basis function. Despite its promising properties,
GPR presented challenges in terms of computational resources and storage requirements
similar to the challenges of kriging. Due to the high computational cost of training GPR on
large datasets, we employed mini-batch processing to manage significant time and financial
investments. Unfortunately, the model continued to demand an incredible number of resources
for computation and continued the challenges of applying GPR to large-scale geographical
datasets.

Gaussian Process Regression offered a probabilistic approach to predict topography data
in Greenland, enabling us to gain valuable insights. While the model’s capabilities were
promising, its implementation demanded careful consideration of computational resources
and the selection of appropriate subsets due to the substantial storage requirements. Because
of the challenge to engage the entire topography, other models were pursued.

6.3 Spatio-Temporal Gaussian Process

We explore the Scalable Spatio-Temporal Gaussian Process (STGP) as a more efficient
and accurate method for predicting topography data in Greenland. STGP enhances Gaussian
process (GP) inference by combining spatial and time filtering and natural gradient variational
inference. Despite not aiming to predict future landscapes explicitly, STGP’s efficiency makes
it relevant for analyzing current spatio-temporal data of the topography.
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To fully understand STGP, we must understand variational inference (VI), a popular method
in machine learning, plays a vital role in STGP. VI employs optimization techniques to esti-
mate complex probability densities and converges faster than classical methods. By choosing
a family of probability density functions and optimizing the Kullback-Leibler (KL) divergence,
STGP leverages the advantages of GP while significantly reducing processing time.

As we explore the potential of STGP for predicting topography data, it is essential to ac-
knowledge the computational challenges encountered during our experimentation with Gaus-
sian Process Regression (GPR). It is important to note that when attempting to apply STGP
to larger datasets, even in batches, we encountered similar memory issues. The resource
demands for handling extensive spatio-temporal data remained a significant challenge. Ad-
dressing these memory constraints and optimizing the model’s performance for larger datasets
will be crucial for fully harnessing the potential of STGP in predicting topography data in
Greenland.

Further tuning and allocation of additional computational resources have the potential to
improve the results of STGP in predicting topography data for Greenland. However, to
explore alternative avenues and mitigate the challenges of resource-intensive methods, we
ventured into investigating other predictive models.

6.4 Variational Auto-Encoder

Variational Autoencoders (VAEs) have emerged as a significant and influential tool in
machine learning, particularly in the domain of predicting topography data for Greenland.
VAEs are designed to learn probabilistic representations of the geographical landscape by (1)
reconstructing features as the encoder and (2) incorporating KL regularization to leverage
existing knowledge, with the decoder aiming to accurately reconstruct the original input from
the latent space.

In the VAE architecture tailored for topography data, the input representing Greenland’s
surface features is transformed into a probability distribution across a hidden space, and
a point is sampled to reconstruct the original topography, minimizing the reconstruction
error during training through a process known as backpropagation. The introduction of KL
regularization ensures that the hidden space captures essential characteristics and aligns with
known information about Greenland’s geographical features.

To enhance the VAE’s performance, a cyclical training schedule is employed, repeating a
specific training pattern. This cyclic training process has proven to be effective, leading to
improved representation learning and meaningful representations of Greenland’s topography
[20].

While VAEs present a promising approach for predicting topography data in Greenland, it’s
important to acknowledge that their success in this specific application may not be as high as
desired. By reconstructing features and incorporating KL regularization, VAEs demonstrate
their potential to capture essential information about the landscape and leverage prior knowl-
edge. The use of cyclical training improves the model’s performance, making VAEs valuable
tools for analyzing and predicting geographical features not only in Greenland but also in
other regions. However, further research and fine-tuning may be necessary to achieve even
more accurate and reliable predictions in this challenging domain.
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6.5 VAE & Extreme Gradient Boosting

The motivation behind using Variational Autoencoders (VAEs) as an encoder in combi-
nation with Extreme Gradient Boosting (XGB) as the predictor lies in their complementary
strengths and the pursuit of understanding underlying patterns in Greenland topography.
VAEs excel in learning meaningful and compact representations of complex data, making
them ideal encoders for capturing essential features in the topographical landscape. Once
trained, the VAE can encode the input data into a lower-dimensional latent space, preserving
critical information while reducing the data’s dimensionality. On the other hand, XGBoost
has demonstrated exceptional predictive performance in the context of Greenland topography,
showcasing its ability to handle non-linear relationships and complex interactions between ge-
ographical features. By employing XGB as the predictor on top of the VAE-encoded represen-
tations, we aim to leverage both models’ strengths to achieve more accurate and interpretable
predictions. This integrated approach fosters a deeper understanding of the underlying pat-
terns in the topography, paving the way for more informed analysis and decision-making in
studying the complex landscapes of Greenland.

6.6 MLP (Dense)

The dense layers are the most prevalent layers in deep neural networks, and they operate in
a very straightforward manner. Each neuron in a thick layer receives input from every neuron
in the preceding layer and aggregates its results nonlinearly. To make the MLP (Dense) model
we employed three thick layers using ReLU, with a 50% dropout layer between each pair of
dense layers. Finally, the prediction result is derived from the model’s final layer, which
contains only one neuron.

The traditional Dense model was adjusted to fit our project goals. First, the Adam optimizer
was assigned to utilize the error gradient to determine the global optimum weights. The
MSE loss function calculates the difference between the predicted and actual ice bed heights
in the training dataset. By decreasing the MSE, the model learns to produce more accurate
predictions about ice bed height. Additional parameters were put in place during training
to ensure generalization ability in later performance. These parameters included random
shuffling of data, 20,000 batch size, and 100 epochs of training.

Deep neural network design with Adam optimizer and dropout layers has been shown to be
a reliable and efficient method for predicting ice bed height. The model exhibits improved
generalization and lower prediction errors than previous methods by exploiting the momen-
tum of the error gradient, optimizing with the MSE objective function, and 50% dropout
regularization, making it a viable tool in ice bed height prediction applications.

6.7 LSTM

Motivated by the dataset’s spatiotemporal elements, which included ice flow velocity
measurements collected over several years, the team sought to harness the power of Long
Short-Term Memory (LSTM) layers. LSTM layers were first proposed by Hochreiter and
Schmidhuber in 1997. LSTM layers are well-suited for handling sequential data and have the
capability to uncover hidden patterns that other types of layers might overlook. In our model,
we initialized with three LSTM layers comprising 64, 32, and 16 memory cells followed by a
50% dropout layer. To arrive at the final prediction, the LSTM layers were connected to a
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dense layer. The Adam optimizer was chosen for its computational efficiency and effectiveness,
making it ideal for processing the large datasets. Given the objective of predicting bed height
as accurately as possible, mean squared error was adopted as our loss measurement. Due to
the high variance in the bed height data, a large batch size of 5000 was utilized. To prevent
overfitting, 30% of the testing data was reserved for validation, and the testing-validation
split was shuffled each epoch. Striking a balance between accuracy and overfitting, the model
underwent training for 100 epochs.

6.8 Dense+LSTM

To effectively reveal intricate relationships within the dataset and address the challenges
posed by incomplete data and complex ice bed topography, we propose the fusion of dense and
Long Short-Term Memory (LSTM) layers in our model. The inclusion of dense layers in deep
neural networks provides a powerful and straightforward means of nonlinearly aggregating
input from preceding neurons. This fusion allowed the extraction of latent features and
revealed hidden patterns. The model architecture consisted of three dense layer blocks, each
featuring two dense layers with sigmoid activation functions, and two LSTM layers with 128,
64, and 32 cells, respectively. A batch normalization layer was introduced, and the output
of the model was generated through a single neuron with a linear activation function. The
dataset was transformed into a 3D array to enable the effective application of this integrated
model, capturing spatiotemporal elements in the ice flow velocity measurements.

The model was meticulously fine-tuned using a batch size of 5000 and 200 epochs as hyper-
parameters for training. The optimization process revolved around the Adam method, with
mean squared error serving as the objective function to be minimized. During each epoch,
60% of the training data was utilized, with the remaining 40% reserved for model validation.
This approach allowed for an accurate assessment of the model’s performance, promoting
generalization and preventing overfitting.

6.9 XGBoost

After testing various models, we decided to adopt the Extreme Gradient Boosting (XGB)
supervised machine learning algorithm. Known for its effectiveness in regression tasks and
computational efficiency, XGB is well-suited for processing large datasets. The model com-
bines multiple decision trees, optimizing them to minimize errors, which enhances flexibility
and makes it adaptable to diverse topographic data. XGB incorporates techniques to prevent
overfitting, ensuring reliable and accurate predictions, while its ability to aggregate predic-
tions from individual trees solidifies its standing as the preferred choice for our objectives.

In justifying our choice of the XGB algorithm, we carefully considered the importance of
finding the right balance among several key parameters. To understand the parameters the
model was tuned to extremely overfit the data. Each parameter was then tested individually to
identify how it affected the metrics and clarity of the predictions – through visualization. After
understanding the effects of each parameter, they were adjusted according to the project scope
to best represent the data predictions and emphasize domain specifics. These parameters
significantly impact the model’s performance and adaptability, making it crucial to achieve
optimal results.

12



Parameter settings were carefully chosen to optimize the model’s performance while avoiding
overfitting. The depth of the decision trees was set to a balanced value of 7 to capture intricate
patterns without overfitting. The number of boosting rounds and XGBoost trees was set at
350 to ensure comprehensive learning while maintaining training efficiency. The minimum
child weight, set at 0.25, controlled overfitting by requiring a minimum number of samples to
split a node. The subsample parameter, set at 0.8, is balanced incorporating diverse samples
and providing sufficient dataset coverage. Finally, the learning rate (eta) of 0.25 facilitated
stable performance and convergence without overshooting.

Finding the right balance among these parameters is crucial. Adjusting these parameters too
drastically may lead to either overly complex or oversimplified models, impacting performance
and pattern capture. By carefully fine-tuning these parameter values, we can strike the
optimal balance, maximizing the model’s performance, capturing important patterns, and
avoiding overfitting. This enables us to achieve reliable predictions tailored to our project’s
needs.

7 Metrics

To validate the results, we considered a range of metrics to comprehensively assess the
performance and accuracy of the model. While all metrics provide valuable insights, four
key metrics were given importance: the coefficient of determination (R2), the root mean
squared error (RMSE), the mean absolute error (MAE), and the terrain ruggedness index
(TRI). These metrics play a critical role in evaluating performance and drawing meaningful
conclusions.

R2 is a crucial metric as it measures the proportion of the variance in the dependent vari-
able that is predictable from the independent variables. A high R2 value indicates a strong
relationship between the predicted and actual values, providing a measure of how well the
model fits the observed data. Focusing on R2 allows for an understanding of the achieved
predictability and an assessment of the goodness of fit.

Similarly, RMSE provides an essential measure of the average magnitude of the residuals or
errors between the predicted values and the actual values. By calculating the square root
of the average squared differences, RMSE offers a comprehensive evaluation of the model’s
predictive accuracy. Emphasizing RMSE allows for a focus on the precision of predictions
and an understanding of the typical magnitude of errors.

Furthermore, MAE is given equal importance as it provides insights into the average magni-
tude of errors, independent of their direction. By calculating the average absolute difference
between the predicted and actual values, MAE offers a robust measure of the model’s accu-
racy. It allows for a clear assessment of the typical error magnitude and helps quantify the
overall performance of the model.

The Terrain Ruggedness Index (TRI) is a valuable tool for quantifying terrain characteristics,
expressing the elevation difference between adjacent cells of a Digital Elevation Model (DEM).
It measures topographic heterogeneity by calculating the difference between the center cell
and its eight surrounding cells, squaring and averaging these differences, and taking the
square root to obtain the TRI value. Higher TRI values indicate greater terrain ruggedness
or complexity compared to lower values which indicate smoothness. By incorporating TRI
into our analysis, we can evaluate how well our predictions capture the terrain’s variability
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and roughness, ensuring an accurate representation of the study area’s complex topographic
features.

While R2, RMSE, MAE, and TRI are important in this evaluation, additional metrics such
as cosine similarity and the Pearson correlation coefficient have also been considered. Cosine
similarity assesses the similarity between predicted and actual values, regardless of their
magnitude, while the Pearson correlation coefficient measures the linear relationship between
predicted values and known values. These metrics contribute to the comprehensive evaluation
of the model’s performance and provide valuable insights into its predictive capabilities.

To validate the results, we considered a range of metrics to comprehensively assess the perfor-
mance and accuracy of the model. These metrics play a critical role in evaluating performance
and drawing meaningful conclusions. With a comprehensive evaluation of various metrics,
we now delve into the results to gain insights into the accuracy and efficacy of our integrated
model, showcasing its predictive capabilities and ability to capture intricate topographical
characteristics.

8 Results

In this study, we evaluated the performance of several predictive models to uncover the
most effective approach for capturing and representing spatial patterns in complex topog-
raphy. The models considered include the XGBoost model on Kriging residual learning,
Gaussian Process Regression, Spatio-Temporal Gaussian Process, Variational Auto-encoders
(VAE), VAE with XGBoost, Dense, LSTM, Dense+LSTM, and XGBoost on kriging interpo-
lated data as well as nearest neighbors interpolated data. Each model and interpolation set
was subjected to rigorous testing using RMSE, MAE, and R2 evaluation, with a particular
focus on their predictive accuracy and ability to represent the underlying topography.

8.1 XGBoost for Kriging Residual Learning

The XGBoosting model, trained for predicting Kriging’s first guess residuals using the same
features as other models, exhibited notably poor performance compared to the other models.
It produced an RMSE of 136.650, an MAE of 8.122, and an R2 value of 0.424. The results
accentuate Kriging’s first pass prediction results which produce RMSE of 188.948, MAE of
7.801, and R2 value of -0.103 which means the predictions are not strongly correlated with the
correct, known values. The large difference in RMSE to MAE can be explained by Kriging’s
ability to predict dense regions well (R2 of 0.998) and sparse regions poorly (R2 of -0.5).
These results indicate its inability to effectively capture the relationships across all the data
and render it unsuitable for practical use.

8.2 GPR Model

The application of GPR to predict topography data in Greenland produced interesting
results. The GPR model demonstrated an RMSE of 150.086 and an MAE of 97.855. Addi-
tionally, the coefficient of determination was found to be 0.293. The probabilistic nature of
GPR allowed for estimating predictive uncertainties, providing valuable information about
the uncertainties associated with the topographical predictions. However, the results re-
vealed some challenges in accurately capturing the complex and diverse geographical features
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of Greenland. The results show that the predictions made using GPR may not have been
very accurate, as indicated by the relatively high errors and lower R2 value. Additionally,
due to the considerable time and expensive computational resources required for training
and fine-tuning the GPR model, further optimization and tuning were not pursued. The
resource-intensive nature of GPR made it impractical to explore extensive hyperparameter
searches and exhaustive refinements. As a result, the focus shifted towards alternative mod-
eling approaches that could provide more efficient and cost-effective solutions for predicting
topography data in Greenland.

8.3 STGP Model

The results of the STGP in predicting topography data for Greenland yielded an RMSE of
225.772 and an MAE of 126.819. However, the coefficient of determination displayed a neg-
ative value of -0.580, indicating that the current STGP model might not effectively capture
the data’s variability around the mean and perform poorly compared to a simple horizontal
line. Despite these initial outcomes, with the acknowledgment that resource constraints may
have influenced the results, there remains hope that dedicating more time and computational
resources for further tuning and optimization could significantly enhance the model’s perfor-
mance. By continuing to explore and fine-tune STGP, in conjunction with other predictive
models, we aim to unlock valuable insights and develop more robust tools for accurately
predicting and understanding the complex geographical features of Greenland.

8.4 Universal Kriging

Universal kriging obtained very poor metrics for R2 and RMSE ( -0.103 and 188.948) yet a
very low MAE score depicted in 8.4. Upon further investigation, it became clear that this was
because of a small number of outliers with very poor predictions; and that Kriging performed
very well on the majority of the dataset. 83.4% of predictions had a residual of 10 or less,
81.4% had an RMSE of 25 or less, and 79.6% had an R2 score of 0.97 or higher. But because
RMSE is more sensitive to outliers than MAE, Kriging’s RMSE is poor.

Table 8.1: Proportion of UK predictions where R2 >= threshold
Threshold Proportion

.6 0.896

.9 0.841

.97 0.796

.99 0.416

Table 8.2: Proportion of UK predictions where RMSE <= threshold
Threshold Proportion

50 0.872
25 0.814
20 0.691
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Table 8.3: Proportion of UK predictions where AbsoluteResidual <= threshold
Threshold Proportion

20 0.925
10 0.834
5 0.703
2 0.510
1 0.387

8.5 VAE & XGB Model

The combination of VAEs as an encoder, and XGB as the predictor aimed to provide
a robust and interpretable approach for capturing patterns and predicting topography data
in Greenland. The results of this combined methodology revealed an RMSE of 129.760, an
MAE of 100.035, and an R2 of 0.481. The methodology appeared promising due to the VAEs’
ability to capture essential features, leveraging the encoder, and XGB’s powerful predictive
capabilities in handling complex interactions between geographical features. However, the
relatively high error metrics and lower R2 value indicate that the combined approach may
not have achieved the desired levels of accuracy and precision in predicting topographical
features in Greenland.

8.6 VAE Model

The application of VAEs as an encoder and decoder to predict topography data in Green-
land resulted in an RMSE of 106.884, an MAE of 83.798, and an R2 of 0.648. While the VAEs
demonstrated promise in capturing essential information about the topography, the relatively
high error metrics, and R2 suggest that their predictive performance may not be as accurate
as desired compared to other models. The complex nature of Greenland’s geographical fea-
tures presents challenges, highlighting the need for further refinement to enhance the VAEs’
effectiveness in predicting topographical data in this region and other diverse landscapes.

8.7 Multilayer Perceptron (MLP) Dense Model

The MLP (Dense) model demonstrated predictive capabilities in predicting ice bed height
with an RMSE of 104.475, an MAE of 74.381, and an R2 of 0.663. Despite not being the
best-performing model, there is reason to be hopeful that the ideas and insights gained from
this model will contribute to the development of a more powerful and effective LSTM+Dense
model in future iterations. The model’s architecture, optimization techniques, and regulariza-
tion approaches serve as valuable building blocks for further enhancing predictive performance
in ice bed height prediction applications.

8.8 LSTM Model

The Long Short-Term Memory (LSTM) model displayed commendable predictive capabil-
ities in predicting ice bed height, with an RMSE of 101.630, an MAE of 74.522, and an R2

of 0.682. These results indicate a notable performance that outperforms the Dense model,
making the LSTM model a strong contender among the evaluated methods. LSTM’s ability
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to capture long-term dependencies and handle sequential data allowed it to effectively exploit
temporal patterns within the ice bed height dataset. The model’s performance showcases its
potential as a reliable tool for accurate ice bed height prediction. Considering the promising
results achieved with LSTM, there is optimism that further refinement and combination of
ideas from both LSTM and the DNN model can lead to even more improved and precise
predictions in future iterations. By combining the strengths of LSTM and Dense layers, there
is potential to create a more sophisticated and accurate model for this critical task.

8.9 Dense+LSTM Model

The Dense+LSTM model, with the nearest neighbors interpolated dataset, displayed re-
spectable predictive accuracy, but it did not outperform the XGBoosting model. It achieved
an RMSE of 81.174, an MAE of 57.993, and an R2 value of 0.797. When visualizing the
predictions on the additional validation data, we can see clearly low areas in the topography,
but the predictions do not capture detail in other sections of the land. While this model
provided reasonably accurate predictions, it did not match the performance of the leading
XGBoosting model.

8.10 XGBoost with Kriging Interpolation

In contrast, the XGBoost model with kriging interpolated data demonstrated the best
metrics among the alternative models, achieving an RMSE of 27.099, an MAE of 17.947, and
an R2 value of 0.977, showcasing its predictive capabilities. The TRI analysis yielded a mean
TRI score of 169.498, with an R2 value of 0.951, further validating its ability to capture the
roughness and complexity of the terrain. However, it is important to note that the kriging
method demands extensive computational resources, taking an estimated 6 hours with five
nodes and 320GB memory on high-performance computing clusters for interpolation. While
the numerical evaluation of chosen metrics indicates strong performance, the method’s total
training time requirement poses a limitation in certain applications.

8.11 XGBoost with Nearest Neighbors Interpolation

The XGBoost model with nearest neighbors interpolated data showcased strong predic-
tive performance, achieving an RMSE of 32.680, an MAE of 22.273, and an impressive R2

value of 0.967. The TRI analysis further solidified its effectiveness, yielding a mean TRI
score of 168.384, with an R2 value of 0.932, attesting to its ability to predict the topography
with precision. Notably, this model required an estimated one hour for interpolation steps
to predict models, utilizing less than 12GB of memory. When applied to a larger dataset
for additional validation, the plotted topography predictions exhibited clear differentiation in
target heights, capturing intricate details of the underlying patterns in the data and topogra-
phy. These exceptional metrics highlight the effectiveness of the trained XGBoost model in
accurately predicting the target variable and capturing the complexity of the Greenland Ice
Sheet terrain with precision and efficiency.
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8.12 XGBoost with Bilinear Interpolation

Finally, the XGBoost model with bilinear interpolation also demonstrated excellent perfor-
mance, achieving an RMSE of 28.085, an MAE of 18.549, and an impressive R2 value of 0.976,
affirming its strong predictive capabilities. The TRI analysis further supported its effective-
ness, yielding an R2 value of 0.950 and a mean TRI score of 168.384, which is remarkably close
to the known validation TRI mean of 173.404. This model achieved these outstanding results
with a memory usage of only 12GB and completed in just 15 minutes, demonstrating both
efficiency and accuracy in its predictions. The XGBoost model with bilinear interpolation
proves to be a valuable addition to our evaluation, showcasing its capabilities in predicting
the target variable while efficiently processing large datasets with complex topography.

8.13 Summary

Through a comprehensive evaluation of various predictive models, we identified the XG-
Boost model with kriging interpolated data as the best performer with strong predictive
capabilities with an RMSE of 27.099, an MAE of 17.947, and an R2 of 0.977. However, due
to its extensive computational requirements, the XGBoost model with bilinear interpolation
emerged as a close contender, achieving an RMSE of 28.085, MAE of 18.549, and R2 of 0.976,
with a remarkable TRI validation result. Overall, these XGBoost models stood out, efficiently
capturing complex topography patterns and providing valuable tools for representing spatial
patterns in the Greenland Ice Sheet and beyond.

Table 8.4: Summary of Results (Sorted by Best Metrics)
Model RMSE MAE R2

XGBoost (Kriging) 27.099 17.947 0.977
XGBoost (Bilinear) 28.085 18.549 0.976
XGBoost (Nearest Neighbors) 32.680 22.273 0.967
Physics BedMachine 71.554 50.422 0.842
Dense + LSTM 81.174 57.993 0.797
LSTM 101.630 74.522 0.682
Dense 104.475 74.381 0.663
Variational AutoEncoder 106.884 83.798 0.648
VAE + XGBoost 129.760 100.035 0.481
Kriging Only 188.948 7.801 -0.103
XGBoost on Kriging Residual 136.650 8.122 0.424
Gaussian Process Regression 150.086 97.855 0.293
Spatio-Temporal GP 225.772 126.819 -0.580

9 Conclusions

Motivated by the significance of understanding complex topography and its implications
in various fields, such as climate change research, environmental modeling, and glaciology,
this study aimed to identify the most effective predictive models for accurately capturing and
representing spatial patterns in intricate terrain. Leveraging insights from past literature and
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Figure 8.1: Validation Data Visualized for XGBoost Models

a comprehensive understanding and preprocessing of our data, we embarked on a rigorous
evaluation of several predictive models, employing well-established evaluation metrics like
RMSE, MAE, R2, and TRI with a specific focus on predictive accuracy and topography
representation.

The results revealed distinct performance characteristics among the evaluated models. The
XGBoost model with kriging interpolated data exhibited the best metrics, achieving an RMSE
of 27.099, an MAE of 17.947, and an R2 value of 0.977, indicating its strong predictive
capabilities. However, the method’s computational requirements, taking an estimated 6 hours
with extensive resources, limit its practicality in certain applications.

The XGBoost model with bilinear interpolation also demonstrated excellent predictive capa-
bilities, achieving an RMSE of 28.085, an MAE of 18.549, and an R2 value of 0.976. The
TRI analysis further supported its effectiveness, with an R2 value of 0.950 and a mean TRI
score of 168.384, remarkably close to the known validation TRI mean of 173.404. Notably,
this model required a mere 15 minutes and 12GB of memory, showcasing both efficiency and
accuracy in its predictions.

The other evaluated models exhibited varying degrees of predictive performance, with some
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showing promising results and potential for further refinement. However, the XGBoost mod-
els with kriging and bilinear interpolated data stood out as the top performers, effectively
capturing the complexity of the Greenland Ice Sheet terrain with precision and efficiency.

In conclusion, the XGBoost models with kriging and bilinear interpolated data proved to
be highly effective in predicting topographical features in complex terrains. These mod-
els demonstrated exceptional predictive accuracy while efficiently processing large datasets,
making them valuable tools for capturing and representing spatial patterns in the Greenland
Ice Sheet and potentially other diverse landscapes.

10 Future Work

The comprehensive evaluation of predictive models in this study has provided valuable
insights into the most effective approach for capturing and representing complex topography.
Moving forward, there are several exciting avenues for future research that can further enhance
predictive accuracy and efficiency in modeling topographical features in diverse landscapes.

The results of this study highlight the promising potential of incorporating the Terrain
Ruggedness Index (TRI) as an early stopping method in model training. By leveraging
TRI as a metric during the training process, we can effectively identify when the model has
reached a satisfactory level of capturing the terrain’s complexity and variability. This ap-
proach could save computational resources and time. As a future direction, further research
can explore the integration of TRI-based early stopping in different predictive models and
assess its impact on training efficiency and predictive accuracy.

Another avenue for future work involves dedicating more computational resources to explore
the Spatio-Temporal Gaussian Process (STGP) model in greater depth. The initial results
from the STGP model demonstrated its potential to predict topographical features in complex
terrains. However, the limitations imposed by resource constraints may have influenced the
model’s performance. By allocating additional resources, such as computational power and
memory, researchers can conduct more extensive hyperparameter searches and fine-tuning,
leading to a better understanding of the model’s capabilities and potential for accurate predic-
tions. With the availability of larger datasets and advancements in computing technologies,
exploring the STGP model’s full potential becomes an essential future research direction.

Additionally, an intriguing direction for future work involves combining the Spatio-Temporal
Gaussian Process (STGP) model’s pattern capturing with the powerful computational speed
and architecture of the XGBoost model. Leveraging the complementary strengths of STGP
and XGBoost has the potential to unlock new possibilities in accurately predicting and under-
standing spatial patterns in diverse landscapes, paving the way for more efficient and effective
applications in terrain modeling and related fields.

Furthermore, extending the investigation to consider other interpolation techniques and data
preprocessing methods can provide valuable comparisons and insights. While the XGBoost
models with kriging and bilinear interpolated data demonstrated impressive performance, ex-
ploring other interpolation methods, such as inverse distance weighting, radial basis functions,
or splines, could uncover additional nuances and optimizations for predicting complex topog-
raphy. Fine-tuning the parameters and configurations of the selected interpolation techniques
may further enhance predictive accuracy and efficiency.
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Another potential avenue for future research involves exploring ensemble approaches that
combine multiple models to harness their collective predictive power. Ensemble methods,
such as bagging or boosting, can help mitigate the weaknesses of individual models and
capitalize on their strengths, leading to improved overall performance and robustness. By
leveraging the complementary nature of different predictive models, ensemble techniques can
provide more reliable and accurate predictions, especially in complex terrains where capturing
spatial patterns requires a multifaceted approach.

This study represents a valuable step forward in understanding the predictive capabilities
of various models for complex topography representation. The integration of the Terrain
Ruggedness Index as an early stopping method and the exploration of the Spatio-Temporal
Gaussian Process model with more resources and alternative architecture offers future direc-
tions to enhance predictive accuracy and efficiency. By continuously refining and advancing
our predictive approaches, we can deepen our understanding of complex topographical fea-
tures and their implications, ultimately contributing to a wide range of applications, from
environmental modeling to climate change research.
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