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Abstract Daily spectral radiance observations by NASA's Atmospheric Infrared Sounder contain detailed
information about surface and atmospheric temperature and water vapor. We obtain climate geophysical trends
from 20 years (2002/09-2022/08) of Atmospheric Infrared Sounder (AIRS) observations using a novel method
operating mostly in radiance space. The observations are binned into 3 X 5 degree tiles using 16 day intervals,
after which nominally clear scenes are selected for each tile to construct the spectral radiance time series.
Deseasonalized spectral trends are then obtained, which are inverted using a physical retrieval to obtain
geophysical trends. This approach is distinct from traditional use of radiances whereby trends are generated after
operational retrievals or assimilation into Reanalysis models. Our approach rigorously ties the derived
geophysical trends to the observed radiance trends, using far fewer computational resources and time. The
retrieved trends are compared to trends derived from ERAS and MERRAZ2 reanalysis geophysical fields, and
NASA Level3 AIRS v7 and CLIMCAPS v2 data. Our retrieved surface temperature trends agree quite well with
ERAS, CLIMCAPS, and the GISS surface climatology trends. Atmospheric temperature profile trends exhibit
some variability among all these data sets, especially in the polar stratosphere. Water vapor profile trends are
nominally similar among the data sets except for the AIRS v7 which exhibits drying trends in the mid
troposphere. Spectral closure between observed trends and those computed by running the reanalysis and AIRS
L3 monthly retrieval products through a radiative transfer code are discussed, with the major differences arising
in the water vapor sounding region.

Plain Language Summary The current generation of infrared sounders, designed for weather
forecasting purposes, have been operational for a long enough time to enable anomaly and trending studies for
climate purposes. The daily radiance observations are routinely used for operational atmospheric state retrievals
and assimilation into reanalysis models, after which climate anomaly studies are enabled. Here we use a purpose
built algorithm to directly turn radiance observations into geophysical anomalies and trends with full error
characterization. This unique approach for observational climate trending uses only stable low noise sounding
channels, easily understood assumptions and well-tested retrieval algorithms, purpose-built for generating
climate data products.

1. Introduction

Accurate, stable observational records of global temperature and water vapor are foundational to our ability to
monitor, understand, and predict climate variability and change. As atmospheric concentrations of non-
condensing Greenhouse Gases (GHG) such as CO, rise (Friedlingstein et al., 2022; Keeling et al., 1976), the
gradually increasing opacity of the atmosphere prompts responses in temperature and water vapor throughout the
atmospheric column that feed back on Earth's radiative energy budget. Like a controlling knob on the climate, the
precise magnitude of these changes is a key determinant of the amount of GHG-induced planetary temperature,
precipitation and circulation change that Earth has experienced so far, and may experience in the future (Held &
Soden, 2000; Manabe & Wetherald, 1967; Muller et al., 2016; Schneider et al., 2010). Consequently, observations
of multi-decade temperature and water vapor trends have proven critical for confirming GHG-induced climatic
changes are occurring in nature and for monitoring and attributing its evolution over time. Vertically-resolved
information content in these measurements has been particularly important for confirming the influence of hu-
man activities on the climate. Spatially-resolved, observed trends have been used to identify the fingerprints of
CO, effects on the profile of temperature change (B. D. Santer et al., 1996; Thorne et al., 2011) and on upper-
tropospheric water vapor changes (Allan et al., 2022; Chung et al., 2014; Soden et al., 2005). Long-term re-
cords of temperature and water vapor profiles are also routinely used to monitor the drivers of unprecedented
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increases in Earth's energy imbalance observed in recent years (Kramer et al., 2021; Loeb et al., 2021). Key
documents which further underscore the importance of accurate measurements of global temperature and hu-
midity include the Intergovernmental Panel on Climate Change (IPCC) reports (see e.g., Houghton et al., 1990;
IPCC, 2021).

Data of past temperature and water vapor variability, with the global coverage necessary for climate analysis,
often comes from two main sources: satellite observations or reanalysis. While these sources have been
groundbreaking for our ability to monitor and understand the climate, in their current form, both can often be
deficient for the quantification of anomalies and trends. Reanalysis approaches (Gelaro et al., 2017; Hersbach
et al., 2020; Kalnay et al., 1996), which require an assimilation system and dynamic model, have not traditionally
been developed for the purpose of climate trend evaluation, and may give inaccurate trends because of one or
more of the following reasons (Cai & Kalnay, 2004; Kistler et al., 2001; Shao et al., 2023): they typically use
observing systems that change with time as new in situ or satellite based instruments become operational, the
observations may have biases and errors that are not correctly accounted for, the assimilated observations may
be obtained (or simply not available) in cloud conditions, the dynamical models cannot contain all the physics
(e.g., land topography, cloud microphysics) at the finite sized grid boxes used, and often do not use for example,
time varying concentrations of CO, or stratospheric aerosols. While modern reanalysis systems have better
addressed these issues (Dee et al., 2011), many of these issues remain, particularly in data sparse regions
(Bromwich et al., 2024; Hobbs et al., 2020).

Satellite based observations covering the Earth started in the 1970s and currently operational instruments cover
almost the entire electromagnetic spectrum, providing valuable information about the Earth's surface and at-
mosphere. These include passive microwave and infrared sounders that provide global information about
temperature and humidity 24 hr a day. In this paper we focus on 20 years of observational data (September
2002—-August 2022) from NASA's Atmospheric Infrared Sounder (AIRS), which is an infrared nadir sounder.
Even when a satellite instrument provides long, radiometrically stable measurements, such as AIRS as
described in the next Section, the downstream data products used by the scientific community still can suffer
from deficiencies in their usefulness for climate trend and anomaly analysis. Through the retrieval process, the
conversion of a stable, level 1 radiance record into a level 2/3 geophysical product can often introduce data
sampling biases, loss of error traceability, and instabilities from an a priori that render the final product less
appropriate for trend analysis than the initial radiance record. These issues can be exacerbated when a
geophysical record must stretch across successive instruments with different sensor characteristics, cal/val
approaches and algorithm development, especially when the data value chain is not designed with climate
continuity prioritized (KISS Continuity Study Team, 2024). Given strong sensitivity of IR Sounders to clouds,
AIRS retrievals of temperature and moisture are particularly challenging and susceptible to the introduction of
the retrieval uncertainties described above. Operational NASA AIRS daily Level 2 products and monthly Level
3 products (derived from Level 2) used in this paper retrieve the atmospheric state using cloud-cleared radi-
ances derived from a 3 X 3 grid of individual scenes. A main characteristic of traditional L2 retrievals is the
requirement for a good a priori state for each inversion, making errors in the a priori difficult to distinguish
from true variability in the observations.

Measurements by visible imagers which have ~1 km horizontal resolution or better (King et al., 2013) suggest
global cloud free fractions of ~30%, but the 15 km footprint of typical sounders means at most 5% of the
hyperspectral observations can be considered “cloud-free.” Current operational NASA L2 products for AIRS use
the method of cloud clearing on observed radiances in partly cloudy scene conditions before doing the
geophysical retrieval. The cloud clearing method takes in the raw observed all-sky radiances and solves for an
estimate of clear column radiances by examining adjacent Fields of View (FOVs) to estimate the cloud effects on
the observations. The method assumes any differences are solely due to different cloud amounts in each FOV, and
significantly increases geophysical retrieval yields (to about 50%—60%) (Smith & Barnet, 2023). The resulting
cloud cleared radiances (CCR), distinct from clear sky radiances which are obtained under nominally clear
conditions, have increased noise especially in the lower atmosphere sounding channels; in addition the subse-
quent retrieval depends on the first guess (which is a neural net for AIRS v7 and MERRA?2 reanalysis for
CLIMCAPS v2). The reader is referred to AIRS L2 literature (Smith & Barnet, 2020, 2023; Susskind, 2006;
Susskind et al., 2003, 2014) for more details about cloud clearing and the L2 algorithms.
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Geophysical retrievals are necessary for many climate applications and Level 2/3 products are heavily used by the
climate research, modeling and monitoring community. Some loss of climate applicability of the data due to the
retrieval process is inevitable. However, shortcomings of the community's reliance on retrieval products not
specifically designed for climate analysis have become increasingly apparent. For instance, He et al. (2021)
estimated temperature and water vapor feedbacks from multiple reanalysis and Level 3 products in an attempt to
constrain climate models, but found the spread across the observation-based estimates was larger than that of the
models. This paper introduces novel AIRS temperature and water vapor satellite retrievals specifically tailored for
climate analysis, and evaluates them relative to a suite of legacy Level 2/3 satellite and reanalysis data products.

1.1. Using Hyperspectral Infrared Radiance Observations Directly for Climate Trending

We have designed an algorithm that remains in hyperspectral infrared radiance time-series space to the maximum
extent possible, preserving the full thermodynamic and trace gas information contained in the well-characterized
and well-understood AIRS radiances (Strow & DeSouza-Machado, 2020), before performing a thermodynamic
trend retrieval using the well-known Optimal Estimation (OEM) Rodgers (2000) retrieval algorithm. Moreover,
our novel approach has zero temperature a priori and minimal water vapor a priori. This completely sidesteps
time variability and the accuracy of the a priori which causes errors in the retrievals, and ensures our work
examines trends directly inferred from the radiances versus those from traditional methods. This yields more
unbiased results which highlight where the sensor has limited sensitivity, for example, in retrieving boundary
layer or stratospheric water vapor.

Our approach is a significant refinement on the traditional “retrieve/assimilate then process” method which starts
with observational radiance observations, then produces geophysical variables using L2 retrieval algorithms or
assimilation into dynamical engines of reanalysis models, and finally computes climate anomalies or trends. The
key components of the retrieval and reanalysis models are not tailored for climate anomalies or trending. In
addition reanalysis and Level 2/3 products require large computational resources that preclude rapid full data set
re-processing to help fully understand trends; the work presented here, once the averaged/sorted observations are
available, can be processed in hours to days, and can easily be duplicated by small research groups as well as
adapted to study climate anomalies.

Applying our algorithm to AIRS observations is particularly advantageous, not just because of its long record
length, but because the hyperspectral measurements it provides are particularly useful for climate analysis, which
typically requires a granular decomposition of broadband radiative changes. Passive microwave and infrared
instruments with handfuls of channels have also been flown since the late 1970s for meteorological purposes. For
example, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU) provide
global scale records of upper atmospheric temperatures (Mears & Wentz, 2009, 2016). Another example is the 20
channel High resolution Infrared Radiation Sounder (HIRS) (Harries et al., 1998; Menzel et al., 2016; Shi &
Bates, 2011), which provides an ~ 40+ year global observational data set. However, these instruments have
limitations which constrain climate studies including: broad vertical weighting functions which only allows for
limited vertical resolution, drifts of the orbits or instruments, as well as the need to inter-calibrate the individual
instruments (lifetimes ~5-10 years). For example, the water vapor feedback is very sensitive to the H,O changes
in the thinner layers extending between the cold dry upper troposphere and lower stratosphere, while the HIRS
instrument upper tropospheric water vapor sensitivity is a 200-500 mb thick layer (Muller et al., 2016).

These limitations have largely been mitigated by the new generation of infrared sounders, which have high
spectral resolution (which gives superior vertical resolution), are radiometrically very stable (~0.002 K/year or
better) and whose overlapping orbits and long lifetimes allows for continual inter-calibration and monitoring of
the stability of these instruments; see for example, (Strow et al., 2021). AIRS is the first of the new generation of
low noise, high stability hyperspectral sounders, and has been in almost continuous operation since September
2002, making Top of Atmosphere (TOA) radiance observations at a typical 15 km (at nadir) horizontal resolution.
Instruments with similar characteristics and abilities include the ESA's Infrared Atmospheric Sounding Inter-
ferometer (IASI) and NOAA's Cross-track Infrared Sounder (CrIS), operational since June 2007 and March 2012,
respectively. The latter two already have followed on missions planned till the 2040s, and together these three
sounders will provide scientists with a 40 year high quality, near continuous observational data set for climate
studies.
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Infrared radiances contain a wealth of information. A short list focusing on scientific contributions using the AIRS
radiance observations includes improvements in surface temperature, atmospheric temperature and water vapor
profiles in weather forecasting models (see e.g., LeMarshall et al., 2006; Andersson et al., 2007), retrieving mixing
ratios of greenhouse gases such as CO, (Chedin et al., 2005), CH, (Zou et al., 2019), and O (Fu et al., 2018). Clouds
(Kahn et al., 2005, 2014) and large aerosols (volcanic ash and dust) (Carn et al., 2005; De Souza-Machado
et al., 2010) can also be detected and quantified. Examples of other trace gases that can be detected and quanti-
fied are CO (McMillan et al., 2005) and NH; (Warner et al., 2016). This list is not exhaustive and in addition
multiple papers have similarly been published using CrIS and IASI data.

The stability and accuracy of the AIRS instrument is documented in recent work on analyzing 16 years of AIRS
radiance anomalies over cloud-free ocean (Strow & DeSouza-Machado, 2020). Geophysical retrievals on the
anomalies yielded CO,, CH,, N,O, and surface temperature time series that compared well against in situ NOAA
Global Monitoring Laboratories (GML) trace gas measurements and NOAA Goddard Institute of Space Studies
(GISS) surface temperature data, respectively. A significant difference between this paper and (Strow & DeS-
ouza-Machado, 2020) is the nominally clear scenes used in this paper are selected uniformly using tiles covering
the whole Earth, while the clear scenes in the latter were zonal averages which were sometimes concentrated in
certain regions. The tiles containing the AIRS measurements are of size ~3 °© X 5°, chosen such that the number
of observations in each tile is roughly equal. Nominally clear scenes for each tile are picked out using a quantile
approach; from the time series, radiance trends are made over the entire Earth, from which geophysical trends are
retrieved.

Observed infrared spectral trends from AIRS has already been a focus of earlier work by (X. Huang et al., 2023)
who studied a slightly shorter time period (2002-2020) using the nadir L1B radiance observations (which have no
or minimal frequency corrections compared to the L1C radiance data set we use here). Similarly the paper by
Raghuraman et al. (2023) converted the AIRS observed radiances to Outgoing Longwave Radiation (OLR) in the
0-2000 cm~'range, but neither of these studies involve retrieving geophysical trends from radiance spectral trends.
Instead, they include the effects of GHG forcings and convert various reanalysis geophysical trends (such as ERAS)
to spectral trends for comparison against the observed spectral trends, which we also show in Appendix B. Teixeira
et al. (2024) used the AIRS observations between 2003 and 2012 to measure the impact of increased CO, on the
outgoing radiances. Another noteworthy examination of the time evolution of high spectral resolution infrared
radiances (converted to spectral outgoing longwave radiation (OLR) fluxes) by Whitburn et al. (2021) covered
10 years (2007-2017) of IASI observations. They confirmed that the IASI-derived fluxes agreed well with in-
creases in GHG gas concentrations and El-Nino Southern Oscillation (ENSO) events within that time frame. A
more recent paper (Roemer et al., 2023) used the 10 year IASI observations to derive all-sky longwave feedback
spectral components (water vapor, CO,, window, and ozone) and total values, while also estimating clear sky
feedback values. Other relevant studies involving high spectral resolution infrared measurements include the all-
sky inter-annual variability at different spatial scales using 5 years (2007-2012) of IASI observations (Brindley
etal., 2015), and comparing Global Climate Model simulations to AIRS radiances as a diagnostic of model biases
(Y. Huang et al., 2007).

We will refer to our results as the AIRS Radiance Trends (AIRS_RT). Comparisons are made against monthly
output from the European Center for Medium Weather Forecast fifth generation reanalysis (ERAS) (Hersbach
et al., 2020) and NASA's second generation Modern-Era Retrospective analysis for Research and Applications
(MERRAZ2) (Gelaro et al., 2017), and also against the official monthly AIRS L3 products which are AIRS v7 L3
(Susskind et al., 2014; Tian et al., 2020) and CLIMCAPS v2 L3 (Smith & Barnet, 2019, 2020). Detailed noise
estimates for the underlying radiance time series are given in Appendix A. Geophysical trends and spectral
closure studies are presented for the averaged ascending (daytime (D)) and descending (nighttime (N)) trends;
Appendix B briefly discusses separate D and N trends.

2. Data Sets Used in This Study

Three main types of data sets are used in this study. The first is the AIRS L1C radiance observation data set we
analyze for this paper, which has both daytime (D) and nighttime (N) (ascending and descending) views of the
planet. Second is the monthly operational L3 retrieval data, which are the AIRS v7 and the CLIMCAPS v2
products, also separated into D/N subsets. Finally, we also compared trends from ERAS and MERRA?2 monthly
reanalysis of geophysical fields. The ERAS monthly data set is available in 8 averaged time steps, so we match to
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the average AIRS overpass times and separate into (D/N) sets over the 20 years, while MERRA2 monthly
geophysical output fields are only available as one time step; included here for completeness we mention the
NASA GISS surface temperature data set, which like MERRAZ2 is only available as a monthly mean. This means
four of the data sets: AIRS_RT (from AIRS L1C), AIRS L3 and CLIMCAPS L3 operational retrievals, and ERAS
are separable into D/N, while the other two (MERRA?2 and GISS) are only available as a diurnal averaged value.
We describe these data sets in more detail below.

2.1. The AIRS Instrument and L1C Observational Data Set

The Atmospheric Infrared Sounder (AIRS) on board NASA's polar orbiting EOS/Aqua platform has 2,378
channels, covering the Thermal Infrared (TIR) spectral range (roughly 649-1613 cm™') and shortwave infrared
(2181-2665 cm™!). The Aqua platform is a polar orbiting satellite with 1.30 a.m. descending (night time over
equator) and 1.30 p.m. ascending (daytime over equator) tracks. Each orbit takes about 90 min, with the 16 passes
yielding almost twice daily coverage of the entire planet, with about ~ 3 million AIRS spectral observations
obtained daily. AIRS became operational in late August 2002 and has provided observations almost continuously
since, with occasional shutdowns (each spanning a few days) such as during solar flare events.

AIRS channel full widths at half maximum satisfy v/6v ~ 1200 with (spectral dependent) noise typically < 0.2 K,
though it rises to ~ 1 K at the 15 pm (645 cm™!) end. The original L1b radiance observations suffer from spectral
gaps and noise contamination as detectors slowly fail. These limitations are addressed using a 2645 L1c channel
observational data set (AIRS Project Office, 2015), where spectral gaps and some of the noise “pops” are filled in
using principal component reconstruction (Manning et al., 2020). The channel frequency shifts that appear in the
L1b product have been essentially completely removed in L1c (AIRS Project Office, 2015) and is the data set used
in this paper. The frequency calibration received a further adjustment after 23 September 2021 for a frequency shift
caused by a deep space maneuver performed for checking the radiometric polarization corrections. The results
described in this paper use only the actual observed radiances in pristine channels stable to 0.002 K/year as
described in Strow et al. (2021), which have been shown to produce accurate CO,, SST, CH, trends. The shortwave
(SW) channels are drifting at a higher rate than the LW/MW channels, which can lead to incorrect surface tem-
perature rates, and are avoided in this paper. Similarly there are many channels in the LW and MW whose A-only
and B-only detectors are drifting in time, and which are also not used here. For example, we avoid using some
higher wavenumber (shorter wavelength) channels past the ozone band which have a significant drift in time,
possibly due to changes in the polarization of the scan mirror coating with time. Therefore, compared to other AIRS
operational products used in this paper, our results use channels that are demonstrated to have high stability (Strow
et al., 2021). We do note that some of the observed drifts in the AIRS channels stabilized after 6 years, so their
impact is reduced when looking at 20 year trends.

Observational data spanning 20 years (1 September 2002-31 August 2022) of AIRS L1C radiance observations
are gridded into 4,608 tiles covering the Earth: 72 longitude boxes which are all 5° in width, and 64 latitude boxes
which are approximately 2.5° in width at the tropics but wider at the poles to keep the number of observations per
16 day intervals (which is the repeat cycle of the AIRS orbit on the Aqua satellite) roughly the same. This way
there are ~12,000 observations per 16 days per tile, which are roughly equally divided between the ascending/
daytime (D) and descending/nighttime (N) tracks. In this paper we discuss results for both the ascending and
descending tracks using a retrieval based on the longwave (LW) and midwave (MW) regions of the spectrum
(640-1620 cm™! or 6-15 pm).

2.2. Reanalysis Geophysical Fields

The ERAS fifth generation reanalysis product from the European Center for Medium Range Weather Forecasts is
freely available on monthly timescales from the Copernicus Climate Data Store. This monthly data set is output at
37 pressure levels at 0.25° horizontal resolution (Hersbach et al., 2020), which is further subdivided into eight 3-hr
averages per month (corresponding to 00, 03, 06,... 21 UTC). For each month from September 2002 to August
2022 we downloaded the surface temperature and pressure fields, as well as atmospheric temperature, water vapor
and ozone fields. These are then colocated to each tile center using 2D spatial interpolation, as well as time
interpolated according to the average AIRS overpass time as a function of month. From the resulting monthly time
series of reanalysis geophysical fields for each tile, we generated (a) thermodynamic trends for surface tem-
perature, air temperature, water vapor and ozone fields (b) a 20 year average thermodynamic profile in order to
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produce Jacobians for the linear trend retrievals (c) by using the geophysical fields as input to the clear sky
SARTA radiative transfer code (Strow, Hannon, DeSouza-Machado et al., 2003) a monthly time series of clear
sky radiances for each tile was generated, from which we could compute radiance trends. The matching to ERAS
reanalysis was done for both the ascending and descending observations.

The MERRA version 2 (MERRAZ2) reanalysis used in this paper is the second generation (Gelaro et al., 2017)
product from NASA's Global Modeling and Assimilation Office. The monthly data we use is available on 42
pressure levels at a horizontal resolution of 0.5° X 0.625°, but only one monthly mean diurnally averaged output
is available per month. Similar to the ERAS output, we colocated the MERRA?2 surface temperature, atmospheric
temperature, water vapor and ozone fields to our tile centers for each month starting September 2002 in order to
produce a time series of geophysical and computed radiance output, from which radiance and thermodynamic
trends could be computed for comparisons against other data sets in this study; similar to above we also generated
a monthly time series of clear sky radiances for each tile, from which we could compute clear sky radiance trends
based on MERRA2.

The NASA Goddard Institute of Space Studies (GISS) v4 surface temperature data (GISTEMP Team, 2025;
Lenssen et al., 2019, 2024) is a 1,200 km smoothed monthly data set based primarily on near surface temperatures
land stations, and data from ships and buoys. As with MERRA2 we obtained one monthly mean data set per
month, which we could not separate into descending (N) or ascending (D) tracks.

2.3. AIRS L3 Operational Retrieval Products

NASA routinely produces two retrievals from the daily AIRS L1C observations, which are AIRS v7 (Susskind
et al., 2014; Tian et al., 2020) and CLIMCAPS v2 (Smith & Barnet, 2019, 2020). Both use the cloud clearing
process but there are significant algorithmic differences; in particular the AIRS v7 product is initialized by a
neural net, while CLIMCAPS uses MERRAZ2 for its initialization. The L2 retrieval products are then individually
turned into L3 monthly retrieval products, for both the ascending (daytime) and descending (nighttime) obser-
vational data. The time series of thermodynamic profiles were used as input to the clear sky SARTA RTA to
generate radiances, after which radiance trends and thermodynamic trends are also produced.

2.4. Other L3 Operational Retrieval Products

The Microwave Limb Sounder (MLS) monthly binned water vapor (H,O) mixing ratio data set (Lambert
et al., 2007, 2021; Livesey et al., 2006), which contains retrieved fields covering +82° latitude, at a spatial
resolution of 4° X 5° and useful vertical range between 316 and 0.00215 hPa was used in this paper to improve
retrieval trends in the upper atmosphere.

3. Filtering the Observational Radiance Data for Clear Scenes

In the following sections, we explain the novel AIRS_RT algorithm and provide testing and justification of the
specific choices made. In this section we discuss the “clear scene” selection from all the observed data stored for
each of the 72 X 64 tiles. Ideally, we would prefer to use a MODIS cloud fraction product (1 km) colocated to the
15 km AIRS footprints, but this is presently unavailable. Our earlier work used an uniform clear flag over ocean
(Strow et al., 2021) which will not work well over land because of surface inhomogeneity. In this section, we
discuss an alternative clear filter based on the hottest 10% of AIRS observations that are present inside any 16 day
tile, over any location.

3.1. Observed BT1231 Distributions

The radiances measured in thermal infrared window region (800-1000 cm™' and 1100-1250 cm™!) are domi-
nated by the effects of the surface temperature, water vapor continuum absorption and cloud/aerosol effects. The
effects of water vapor continuum absorption is largest in hot and humid tropical scenes (depressing the obser-
vations relative to surface temperatures by about 5-6 K, which reduces to about 2 K at +50°) and is almost
negligible for cold, dry scenes (less than 1 K). Scattering and absorption by liquid and ice clouds also affects the
window region (Deep Convective Clouds can depress the window channel observations by as much as 100 K
relative to surface temperatures). For each tile, we use the 1231.3 cm™! observation as our representative window
channel (AIRS L1C channel ID = 1520), as it is minimally impacted by weak water vapor lines. Changed to
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Figure 1. Zonally averaged BT1231 normalized histograms (probability distribution functions (pdf)) as a function of latitude
and temperature bin, for the 16 day timespan between 2012/08/27-2012/09/11. The vertical axis is in degrees Latitude and
the horizontal axis units are in Kelvin, while the color bar units for the pdfs are in normalized counts per Kelvin. We also plot
quantile curves Q0.XY which stand for the actual numerical value of the BT1231 quantile, as explained in the text. The blue
curve is the ©0.90 quantile used in this paper, and is very close to the maximum Q1.00 quantile. For clarity we have not shown
other “warmer” quantiles such as Q0.80,90.95 since they are offset very close to the left and right of Q0.90, respectively. The
210 K cutoff means we do not show the tail of the distribution of the observations over the winter polar regions, or the extremely
cold DCC in the tropics.

Brightness temperature (BT) the observation in this 1231.3 cm™! channel (BT1231) therefore serves as a measure
for the cloudiness of an observation: if there are no or low or optically thin clouds, it will effectively measure the
surface temperature, but as the clouds get thicker and higher, it will measure the cold cloud top temperatures. For
every tile during any 16 day observation periods, we compute quantiles Q based on the observed BT1231 to
design a filter that chooses between cloudy and partially clear scenes. We describe below the testing of the
different BT1231 quantiles (where quantile Q0.XY will have a numerical value BT12314 xy associated with it)
to determine which value best provides nominally clear scenes for every tile (over ocean and land) that agree with
other nominally clear data sets we have used previously (Strow & DeSouza-Machado, 2020). Figure 1 shows all
the BT1231 observations for a chosen 16 day timestep in the form of a zonally averaged histogram (normalized
probability distribution functions (PDFs)), with latitude on the vertical axis and BT1231 on the horizontal axis.
The color bar is the PDF value, and we used observations spanning 27 August 2012—11 September 2012 which is
approximately half way through the 20 year AIRS mission data set used in this paper. The curves show the zonally
averaged BT1231 values of the median (Q0.50 in magenta), maximum (Q1.00 in gold) and Q0.90 in blue) curves.
We did not show other warmer quantiles such as ©Q0.80 Q0.95 and Q0.97 since they are only slightly offset, either
to the left (cooler) or right (warmer) as appropriate, relative to the Q0.90 curve. The exception is that at the
equator, Q0.80 still has the remnants of lower temperatures due to clouds and is slightly cooler, as similarly seen
in the behavior of the mean and median curves. The distributions are skewed to the left (negative skewness), as
confirmed by the mean being less than the median. The very cold (190 K) observations over the winter Antarctic
are not seen as we use a 220 K horizontal axis cutoff. The figure shows the expected qualitative features, for
example, (a) the tropical PDFs peak at around 295 K, but show some warmer observations, as well much colder
observations (below 230 K) corresponding to Deep Convective Clouds (DCC); this gives a dynamic range of
almost 100 K at the tropics (b) the BT1231 observed over the Southern Polar (polar winter) regions are much
colder than the BT1231 observed over the Northern Polar (polar summer) regions, and (c) the reddish peaks in the
30°N—40°N are a combination of the marine boundary layer (MBL) clouds and warmer summer land tempera-
tures. Figure 1 shows on average the cloud effect at the tropics is an additional modest 20 K (difference between

DESOUZA-MACHADO ET AL.

7 of 34

B5UB917 SUOWILOD BANEBID) 3(ed1 dde 3y} Ag peuseA0B a2 Sajo1Le O ‘8sN JO SaJNJ 10) AIq 1T UIIUO A8]IM UO (SUONIPUOD-PUE-SWLISYWI0D" A3 1M Afe.q1)BUIIUO//SANL) SUORIPUOD PUe SWiS | U1 39S *[5202/60/0€] Uo AriqiTauliuo A8|im ‘AlunoD alowneg ‘puelke N Jo AiseAIun A TOSEYOACSZ0Z/620T 0T/I0p/L0d A8 | Al jpuluo'sqndnBe//sdny Wwoiy papeojumod ‘ST ‘SZ0Z ‘96686912



NI Journal of Geophysical Research: Atmospheres 10.1029/20251D043501

ADVANCING EARTH
AND SPACE SCIENCES

300
=
=) 2804 290
2 3
3
2 280
p=]
8
270
z y — Q90 filter
— —clear filter
-100 0 100 -100 0 100 260
Longitude [deg] Longitude [deg] -50 0 50

Latitude [deg]

Figure 2. Clear scenes for the same 2012/08/27-2012/09/11 timespan selected by (left) a uniform/clear sky filter and (center) the Q0.90 BT1231 average described in
this paper. The color bars for the left and center plots are in Kelvin. The right hand plot shows the mean (over ocean) observed BT1231 (vertical axis, in Kelvin) as a
function of latitude, for the two selections; the difference is about 0 K + 1 K in most regions except in the southern midlatitudes where the Q0.90 average produced
scenes that were about 1 K cooler on average. Note that in this and subsequent figures, Q0.90 is the average of all data points values between Q0.90 (shown in Figure 1) and
the maximum, using observed BT1231 as the discriminator as explained in the text.

90.90 and Q0.50) compared to the 100 K dynamic range. This is because the cloud fractions and cloud decks in
the individual observations have effectively more clouds (with larger cloud fraction in the FOV) lower in the
atmosphere than higher up; the net effect is that in the window region the atmosphere is on average radiating from
the lower (warmer) altitudes, and so spectra whose BT1231 values are larger than BT12314 g9, see much of the
surface emission as well.

We now use the above plots to select “almost clear” scenes. For any one tile, we define set W, xy to have all
observations ¢ whose BTI1231 lies between quantiles ©QO0.XY and ©Q1.00, {i [BT123150xy <
BT1231(i) <BT1231 Ql.()()}- In what follows QO0.XY is the radiances averaged over all the observations i which are
in the set ¥ yy, namely

1

> r) €))

0.XY i€y

Ty QO.XY(V) =

where 1;(v) are the N yy individual observations in set W yy. In this section, we only use the v = 1231 cm™!

channel, but in later sections we easily form averages for all 2,645 channels, at any 16 day time step for any tile.

We tested different quantile sets ¥ yy to see which one can reliably be considered to provide a nominally “cloud
free” global observational data set, and chose the Q0.90 average (i.e. defined as averaged over the ¥ o) set, which
spans Q0.90 to Q1.00) as the one to use for the rest of this paper, unless explicitly stated otherwise. The tests
primarily involved comparisons to scenes produced by the uniform/clear sky filter described in (Strow &
DeSouza-Machado, 2020) for the same 27 August 2012-11 September 2012 16 day timespan. This latter filter
selects clear scenes by both testing for uniformity (to within 0.5 K) across a 3 X 3 grouping of AIRS scenes and
also using a criteria that the observed window channel observations should be within +4 K of clear-sky simu-
lations using thermodynamic parameters supplied by reanalysis models. The results are shown in the left hand
plot of Figure 2, plotted on a 1° X 1° grid. We note in this plot the uniform/clear scenes that are plotted are
limited to those over ocean, and for solar zenith less than 90° (daytime), which automatically filtered out many of
the views over the (wintertime) Southern Polar region. Immediately apparent are the gaps produced by the
uniform/clear filter, for example, in the Tropical West Pacific or off the western coasts of continents where there
are clouds. The gaps can be changed by, for example, changing the 4 K threshold to allow more or fewer scenes
through the filter.

The center plot shows for all tiles, the daytime scenes selected by the Q0.90 filter for the same time period, on the
same 1° X 1°grid. Compared to the left hand plot, the spatial coverage is almost complete, as the Q0.90 average
always has the hottest 10% of the observations. At this 1° resolution, used for comparison with the uniform/clear
grid filter described in the previous paragraph, gaps are seen in regions where for example, the local topography
means observations over mountains would be colder than the surrounding coastal or plain regions. This is not a
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concern since zooming back out to the coarser 3° X 5° tile resolution, will include Q0.90 observations for the
quantile and trending analysis.

To compare the mean observations we remove the over-land and over-polar region observations from the center
plot. The right hand plot shows the mean observed BT1231 from the 1° X 1° grid from the uniform/clear sky
filter as a function of latitude, compared to the 1° X 1° grid from the Q0.90 scenes. The difference between the
uniform/clear versus Q0.90 average is within about 0.25 K £ 1 K across the southern tropics to the northern
midlatitudes, though the bias rises to about 1 K by about —50°S. We consider this an acceptable difference, as we
could tune the thresholds for the uniform/clear filter to, for example, change the areal coverage and/or number of
clear scenes and hence comparisons to the Q0.90 scenes.

The results presented in this section have been checked for robustness, using other 16 day intervals spanning the
four seasons. We conclude that for any 16 day timestep the radiances used in the Q0.90 average (a) produces
almost complete spatial coverage of the Earth, (b) selects scenes whose average BT1231 is very close to the
average BT1231 from scenes selected using an uniform/clear filter (c) trends from that quantile typically differ by
less than +0.002 K yr~! from the other quantiles and (d) this selection produces spectral trends which compare
well against those obtained from the quality assured binned AIRS CCR data record (Manning, 2022), and re-
inforces the notion that nominally clear scenes are filtered through by our quantile based selector. Together these
imply the Q0.90 average is an acceptable proxy for “clear scenes.” For the remainder of the paper we therefore
consider Q0.90 as consisting of nominally clear observations whose BT1231 lies between the 90th quantile and
hottest observation. Our retrievals using this Q0.90 — ©Q1.00 averaged observational data set (shortened to
Q0.90) is referred to as AIRS_RT in what follows.

3.2. Computing Observed Trends in the Selected Q0.90 Quantile of Radiances

Having selected the Q0.90 observations, for each tile the average radiance per 16 day interval is computed. With
two 16 day periods not available (Aqua platform or AIRS shutdowns during, e.g., solar flare events) this gives a
total of 457 time steps over 20 years. Anomalies are formed from this time series, and then deseasonalized to give
the spectral radiance trends and error estimates (Strow & DeSouza-Machado, 2020) using Matlab robustfit:

4
p16 days @ ~m@®=r,+at+ Z ¢; sin (n2m + d)i) 2)

observations
i=1

with a; and its associated uncertainty, both converted to brightness temperature (BT), being the trends in K yr~!.

Using sub-harmonics in the fit did not produce any noticeable change in the AIRS_RT retrievals (described
below). The uncertainty includes a correction for the lag-1 autocorrelation in the residual time series (B. Santer
et al., 2000). Further details about noise and uncertainty of the time series are found in Appendix A.

The left panel of Figure 3 shows the globally averaged spectral observations for the five quantiles mentioned
above, averaged over 20 years (September 2002—August 2022) of descending (nightime) orbit observations. We
note the spectra in most of the plots in this section are weighted by the cosine(latitude) of the tiles, unless
otherwise stated. In addition we only show the 640-1640 cm™! region, and ignore the shortwave 2050-2750 cm™!
region since the AIRS SW channels are drifting relative to the LW (Strow & DeSouza-Machado, 2020). Spectral
averages constructed from Figure 1 would have this same behavior, namely that in the window region the mean
spectrum of observations populating the warmer quantiles (Q0.80, Q0.90, Q0.95, and Q0.97) as defined in
Equation 1 are on the order of a Kelvin apart, and have about half/quarter that difference in the optically thicker
regions dominated by H,O and/or CO, absorption, respectively.

The right hand panel of Figure 3 shows (top) the trends and (bottom) the 26 trend uncertainties for these quantiles,
in K yr~!'. We emphasize that the top right panel shows that the spectral trends for the quantiles lie almost on top of
each other; the difference between the Q0.50 and other trends is at most about +0.003 K yr™! (out of 2 0.02 K yr™!
signal) in the window region (and about +0.0045 K yr~! in the troposphere temperature sounding channels), or
less than 10%. Similarly the largest trend uncertainty in the bottom panel is for Q0.50. This implies that clouds
effects in the infrared produce the largest variability (blue curve). Globally on average for the infrared the spectral
trends for all quantiles, ranging from clearest (Q0.97) to all-sky (Q0.50) are very similar, but differences are seen
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Figure 3. Twenty year trends from different observation quantiles. The left hand panel shows the mean globally averaged BT
observations (in Kelvin) from 20 years of AIRS observations, for quantiles Q0.50, 0.80, 0.90, 0.95, and 0.97 as described in
the text. The right hand panel shows (top) the globally averaged trends for those different quantiles and (bottom) the spectral
uncertainty in the trends (both in K yr~!). The nighttime (descending) trends are shown in these plots.

on regional scales. This implies the +0.022 K yr~! window region trends are dominated by surface temperatures
changes and to a lesser extent by water vapor changes.

X. Huang et al. (2023); Raghuraman et al. (2023) and our work all show, either in radiance or OLR space, (a) the
increased observed radiance in the window channels, due to surface temperature increases (b) the ~—0.06 K yr™!
decrease in BT in the 700-750 cm™' troposphere sounding region, which is due to a combination of the CO,
amounts/optical depth rises leading to atmospheric emission from higher altitudes/lower temperatures together
with atmospheric temperature increases (shown later in this paper to be between +0.01 and +0.02 K yr~!); (c)
increases in the 13501640 cm™! free troposphere water vapor sounding region and (d) the 1280-1340 cm™!
decreases are due to CH, increases.

Also of interest are the trends in the stratosphere (650-700 cm™') changes which consists of a stratospheric
cooling signal (negative) and emission higher up due to increased CO,; combining to give a net zero effect over
20 years, also seen in (Raghuraman et al., 2023). The H,O signal is evident in the 1400-1625 cm™' region, and is
only slightly positive; in other words, increasing temperatures have led to increased atmospheric amounts of H,O,
and the water vapor feedback has reduced the amount of outgoing flux in that region. By extension, this can also
be expected to have happened in Far Infrared (10-650 cm™!) spectral regions affected by water vapor, but cannot
be wholly confirmed as current sounders do not make direct measurements in that region. In the near future it is
anticipated the Far Infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission (Palchetti
et al., 2020) will provide observations to fill in this important observation gap.

4. Spectral Closure: Comparisons Between Observed and Simulated Spectral Trends

AIRS radiances have been shown to have very low drifts (equivalent to less than 0.002 K/year) and are therefore
suitable for climate studies (Strow & DeSouza-Machado, 2020). Here we present the comparisons in radiance
spectral trend space, by using the spectral closure method to assess monthly thermodynamic output from rean-
alysis and/or L3 retrieved products (see e.g., X. Huang et al., 2023). This is accomplished by geolocating the
entire 20 year monthly reanalysis and L3 retrieved surface temperature, air temperature, water vapor and ozone
fields for all 72 X 64 tiles. We also include realistic column linearly-increasing-with time mixing ratios for CO,,
CH,, and N,O as well as land or ocean surface emissivity co-located to tile centers together with view angles of
about 22°, which is the average view angle of the tiled observations. The geophysical fields are then converted to
spectral radiances by running through the SARTA fast model (Strow, Hannon, DeSouza-Machado et al., 2003).
Finally, spectral radiance trends are computed from the time series of (clear sky) spectral radiances using
Equation 2. This spectral closure, namely, the conversion of L3 retrieval and reanalysis monthly data to a radiance
time series using an accurate radiative transfer algorithm, and then deseasonalized and trended, provides a
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Figure 4. Globally averaged spectral trends (in K yr~!) for the 6.7 pm (1400-1650 cm™") free troposphere water vapor
sounding region, as a function of wavenumber (cm~!). AIRS L1C observations (blue) are compared to spectral closure from
the standard monthly AIRS L3 retrievals (red) and CLIMCAPS L3 retrievals (yellow) and from monthly ERAS simulations
(purple). Nighttime AIRS overpasses are used in this plot. The reconstructed AIRS_RT trends very closely match the AIRS L1C
observations and are not shown here.

rigorous check of their accuracy against the observed trends from the very stable AIRS instrument, independent of
any AIRS_RT retrieval errors.

Here we select two examples to illustrate differences (in spectral space) between the five data sets we use in this
paper. First, we study spectral trends in the water vapor sounding region. Water vapor is highly variable in space
and time, and the typical £ 90 min difference between observation and forecast leads to noticeable differences
between L2 water vapor retrievals compared to Numerical Weather Prediction (NWP) or reanalysis forecasts,
when considered locally and at a particular observation time. However, this will not affect the water vapor trends
we show in this paper since atmospheric water vapor timescale is on the order of about a week to 10 days (van der
Ent & Tuinenburg, 2017), and we are also considering data points averaged over 16 days. Figure 4 show the
globally averaged brightness temperature trends (in K yr~!) in the 1350-1650 cm™! water vapor sounding region,
for the nighttime (descending) AIRS overpasses. The blue curve shows the trends from the AIRS observations
used in this paper, while spectral trends constructed from the AIRS L3/CLIMCAPS L3 retrievals are in red/
yellow and the ERAS geophysical output fields are in purple. The AIRS observations and ERAS constructed
spectral trends are positive in this region, while the trends from the AIRS L3 and CLIMCAPS L3 retrieved
products are obviously different, being negative in this water vapor sounding region. The subtle differences in
these spectral trends arise from differences in the geophysical trends between observations and the models
themselves, and will be addressed in Sections 7.3 and 7.4 of the text.

Second, we focus on comparing zonally averaged spectral trends between AIRS observations and ERAS5 sim-
ulations. Figure 5 shows the AIRS observed Q0.90 (nominally clear) descending (night) zonally averaged results
in K yr~! in the left panel, and the zonally averaged simulated clearsky (without clouds) spectral trends (also in
K yr~!) from monthly ERAS fields in the right panel. The center panel shows the spectral trend uncertainties
from the observations, also in K yr~!. In the following sections we derive geophysical trends from the observed
AIRS L1C spectral trends, and compare against reanalysis and L3 retrieval fields. The similarities/differences in
geophysical trends between observations and models/operational data can be partially understood from the
similarities/differences in the spectral trends. For example, the H,O sounding region (1350-1600 cm™') of the
left and right panels of Figure 5 shows roughly similar (positive) spectral trends in the tropics and mid-latitudes;
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Figure 5. Twenty year zonally averaged spectral brightness temperature trends (color bars in K yr~!) for nighttime (left) AIRS Q0.90 observations and (right) clear sky
simulations using ERAS monthly geophysical fields. The center panel shows the ATRS Q0.90 spectral uncertainties (color bar also in K yr~!). Realistic linear trends of
CO,, CH,, and N,O were included in the ERAS5 simulations, while the O, trends in ERA5 are from the reanalysis itself. Horizontal axes are in wavenumbers (cm™') while

vertical axes are in degrees latitude.

there are some slight differences in the high altitude channels (1450-1550 cm™! region). The following sections
will also demonstrated how these spectral differences translate to subtle differences in the geophysical trends.
Observations and simulations both have positive dBT/dt in the 800-960,1150—-1250 cm™~! region, indicating
surface warming; however, the ERAS simulation show more warming in the southern polar regions than do the
AIRS observations. Note the mean warming in the tropics for both observations and ERAS simulations is less
than that in the mid-latitudes, and the polar regions show the largest overall change in brightness temperature in
the window region. Large differences are seen in the 10 pm (1000 cm™!) O, sounding region, which are not
surprising since ozone assimilation is not a primary goal of ECMWF assimilation; here we do not address these
as we focus on the changes to the moist thermodynamic state. The window region trends computed using the
ERAS geophysical fields are more positive in the Southern Polar region. Conversely the 640-700 cm™! spectral
region is positive, especially in the tropics; however, the observations show a net cooling trend away from the
tropics, compared to the ERA simulations. This demonstrates the importance of the reanalysis/L3 geophysical —
spectral trend comparisons, given the accuracy of the AIRS observations.

5. Testing the Variability of Representative Points From Reanalysis

Each 16 day 3° X 5° tile contains ~12,000 observations, resulting in about 600 daytime and 600 nighttime
observations averaged for each tile to produce the Q0.90 observational data set per timestep. Conversely there are
typically only ~240 monthly ERAS 0.25° points per 3° X 5° tile; for 1° resolution AIRS L3 and CLIMCAPS L3
operational retrievals there are even fewer (15) points per tile. The much fewer reanalysis or L3 points available
monthly per tile leads to two choices for building geophysical time series from the reanalysis and L3 operational
retrievals (a) using (or interpolating to) the grid cell closest to the center of each 3° X 5°tile and (b) averaging all
the data within any 3° X 5° tile. Option (a) is straightforward for both surface and profile fields, while (b) is
straightforward for surface temperature but much more computationally intensive for profiles due to inhomo-
geneous land surface pressures and reanalysis of sigma levels within a tile. A third option would involve (c)
averaging over the 10% warmest simulated BT1231 from reanalysis or L3 retrievals; this would have very few
points contributing to the average (10% of 240 or 15), and can realistically be explored only for the ERAS
reanalysis geophysical fields.

We compared the three above options for the ERAS reanalysis fields. First we built complete sets of approxi-
mately 240 ERAS surface temperature points per tile per month; at 0.25° resolution one of these is almost
certainly at the tile center. From these monthly sets, we could either directly read the tile center temperature (our
default), or compute the average surface temperature over each tile, or compute the average of the hottest 10%
surface temperatures over each tile. This was done for all 20 years (240 monthly timesteps) after which the three
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time series were trended. Over ocean the differences between all three sets of data were typically —0.001 +
0.005 K yr~!, while over land the differences were about 0.001 % 0.01 K yr~!. This is to be compared to mean
trends of about 0.014 + 0.02 K yr~! over ocean and 0.025 + 0.04 K yr~! over land: the spread of the ocean and
land ERAS surface temperature trends for the three methods, is much smaller than the mean trends. The percent
differences over the 64 X 72 tiles were typically zero centered Gaussians of FWHM 10%. In a similar fashion we
assessed the 37 level ERAS reanalysis temperature 7T( p) and specific humidity Q( p) fields to see how the profile
trends changed if we switched between the tile-center profile match and the profile average over a tile. Zonally
averaged the percent difference in trends for both temperature and fractional specific humidity were roughly zero
centered Gaussians with FWHM = 2.5% over the 64 latitude bins X 37 profile levels. Averaging over all 64 x 72
tiles yielded profile percent differences that typically can be characterized as within + 1.5% in the 100-1000 mb
range.

From this analysis, for the other data sets used in this manuscript, we chose to use (a) the mean over a tile for
surface temperature trends since this is straightforward to do for a scalar quantity and (b) the center tile point for
the profile trends since this is computationally easier than computing the mean profiles without significant loss of
accuracy.

6. Geophysical Trend Retrieval Outline
6.1. Setting Up the Retrieval Problem

The observed clear sky spectral brightness temperature for a tile at any time ¢ can be modeled as
BT(v.1) = f(X(1), (v, 1),0(2)) + NeDT pyyie(v) 3)

where the state vector X(¢) has the following five geophysical state parameters: (a) surface temperature (ST), (b)
atmospheric temperature profile T(z), (c) water vapor profile WV(z), (d) ozone profile O;(z) (e) greenhouse gas
forcings (GHG) due to CO,, CH,, and N,O changing as a function of time ¢ and f(X(),€,0,v) is the clear sky
radiative transfer equation for channel center frequency v. The spectral noise NeDT,;i.,;(v)) varies with scene
temperatures and on particulars of the retrieval algorithm. For single footprint retrievals using daily observations,
the spectral noise NeDT,,,0,0:(V)) in a typical tropical “clear scene” is about 0.1 K in window region, increasing
to about 1 K in the 15 pm temperature sounding channels and about 0.2 K in the 6.7 pm water vapor sounding
region, and is usually larger for operational L2 retrievals which use cloud clearing. We parametrize the GHGs
using single numbers (such as ppm(z) for the CO, column), and include the AIRS orbit and viewing angle ge-
ometry 6 and the surface emissivity e(v), while we omit forward model and spectroscopy errors. We ignore cloud
scattering as well as the spatial variation of the state parameters, emissivity and scan angle geometry within a tile.
Linearizing the above equation about the time averaged profile, the relationship between the observed spectral
trends and desired thermodynamic trends is given by

dBTW) _ 0f dwv _ w450 - D SO
dt - ay th(f) - K(V) th(ﬂ + Kelnl" f(f) — K(V) X(f)

where the matrix K(v) is the thermodynamic Jacobian (surface temperature, air temperature and trace gases) and
we ignore any orbit drifts (changes to ), instrument changes (changes to NeDT ,,.,/(v)) and surface emissivity
(e(v)); the last assumption is investigated in a later section. The overbars on parameters X denote this is a time
average (linear trend) that we are working with, and we have converted from radiances in Equation 2 to brightness
temperatures in Equations 3 and 4.

6.2. Jacobian Calculations

For a typical clear sky tropical sky atmosphere, the 800-1200 cm™! window region has surface temperature
(SKT) Jacobians which are about +0.5 to +0.75 K per degree SKT change and —0.75 to —0.25 K per 10% change
in column water vapor. The spectral variability in these window region Jacobians is primarily due to reducing
water continuum absorption as you move from the 800 cm~! end to the 1200 cm™!; consequently the surface
temperature Jacobians becomes closer to unity and the column water Jacobians become closer to zero as water
vapor amount decreases (drier atmospheres in the mid-latitudes and polar regions). The hyperspectral channels
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used in this work assist in partitioning these two competing changes (though not perfectly), which we validate
against other data sets in this study. As seen in Figure 5 typical magnitudes of the spectral trends on the left hand
side of Equation 4 are less than about 0.1 K per year. Equation 4 is in the usual inversion form dy = Kox, and the
OEM solution used to solve the anomaly time series in Strow et al. (2021) is also used here. The noise term
NeDT,,yienq(v) for the trend retrievals is now the uncertainty that naturally arises from the inter-annual variability
when doing the linear trend fitting and lag-1 autocorrelations used in Equation 2. Examples of typical noise values
are shown in the bottom right hand panel of Figure 3.

ERAS monthly geophysical fields at tile centers, together with time varying concentrations of GHG such as CO,,
were averaged over 20 years so Jacobians could be computed. The GHG concentrations were a latitude dependent
increase of about 2.2 ppm yr~! for CO, derived from the CarbonTracker (Peters et al., 2007) (CarbonTracker CT-
NRT.v2023-4, http://carbontracker.noaa.gov) data at 500 mb. Our pseudo-monochromatic line by line code
KCARTA (De Souza-Machado et al., 2018, 2020) was used with these averaged profiles to produce accurate
analytic Jacobians . The HITRAN 2020 line parameter database (Gordon & Rothman, 2022), together with MT-
CKD 3.2 and CO,,CH, line mixing from the LBLRTM suite of models (Clough et al., 2005) were used in the
kCARTA optical depth database (De Souza-Machado et al., 2018). A 12 month geographical land-varying
spectral emissivity database spanning 1 year from Zhou et al. (2011) was used, while ocean emissivity came
from Masuda et al. (1988). The atmospheric temperature, water vapor and ozone profile Jacobians , and the
surface temperature and column Jacobians for the GHG gases such as CO, and CH, and N,O, were then
convolved using the best estimate AIRS Spectral Response Functions (Strow, Hannon, Weiler, et al., 2003).

Tests done for this paper including satellite zenith changes, together with the results in Strow et al. (2021),
established that Jacobians derived from MERRA?2 versus ERAS produced no significant differences in the context
of retrieved trends or anomalies done for this paper, as the uncertainty in linear trends due to inter-annual
variability dominates over any uncertainty (or differences between) reanalysis geophysical fields.

6.3. Optimal Estimation Retrieval: State Vector, Covariance Matrices, and A Priori

Using monthly ERAS geophysical fields averaged over 20 years, for each of the 64 X 72 tiles we computed
analytic Jacobians for the (vector) atmospheric thermodynamic variables fractional water vapor, fractional ozone
and temperature together with (scalar) surface temperature. We retrieved fractional gas concentration trends
dfracX/dt = 1/X,,,(2)dX,,,(z)/dt to keep all values in the state vector at about the same magnitude. A single
iteration OEM retrieval is used to simultaneously solve for the geophysical parameter trends. As in Strow and
DeSouza-Machado (2020) the geophysical OEM covariance uncertainty matrices are a combination of Tikonov
and covariance regularization. The uncertainties for the covariance matrices were typically [0.1,0.25,0.45] K yr~!
for the surface/tropospheric/stratospheric temperature trends, and [0.04/0.02] yr~! for the fractional tropospheric/
stratospheric water vapor trends. Tikonov L1 regularization Rodgers (2000) also included, with the scalar factor
multiplying this regularization corresponding to about 1/10 the covariance uncertainties. The spectral un-
certainties used in the retrievals come from the above mentioned trend uncertainties. For completeness we note
that a sequential trend retrieval produces very similar geophysical trends.

Here we emphasize four unique points about our geophysical trend retrievals, which distinguishes this approach
from trends derived from other data sets. First the a priori trend state vector is zero (dST/dr = dT(z)/dt = dQ(z)/
dr = 0) for all geophysical parameters, except for water vapor where we enforced constant (or slightly increasing)
relative humidity as described below. This ensures traceability of our retrieval is straightforward especially
wherever the AIRS instrument has sensitivity. For example, the 300—800 mb water vapor trend retrievals will be
based on the observed data only, thereby insulating us from any possible a priori information from, for example,
climatology or reanalysis, unlike the operational AIRS V7 or CLIMCAPS retrievals which use first guesses based
on neural net and MERRAZ2, respectively.

Second the 15 pm region of Figure 5 shows a large spectral overlap signal (—0.06 K yr~!) from the increasing
CO,, which is much larger than the expected atmospheric temperature trend (0.01-0.02 K yr~!). These corre-
lations make it difficult to jointly retrieve both temperature changes and changes in well mixed GHGs such as
CO,. We chose to focus on retrieving temperature changes only, by spectrally removing the effects of changing
CO,, CH,, and N,O GHG concentrations. This was done by using the GHG trends estimated from NOAA ESRL
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CarbonTracker data multiplied by the appropriate GHG gas column Jacobian (CO,,N,O and CH, and CFCl11,
CFC12) computed as described above using the averaged over 20 years ERAS monthly profile for each tile.

Third instead of using all 100 layers described in the AIRS forward model (Strow, Hannon, DeSouza-Machado
et al., 2003), we combine pairs of layers for a 50 atmospheric layer retrieval, as the AIRS radiances contain far
fewer than 100 pieces of information (see e.g., De Souza-Machado et al., 2018; Maddy & Barnet, 2008).

Fourthly, modern hyperspectral infrared sounders have highest sensitivity to temperature and water vapor in the
mid-tropopause; see for example, the averaging kernels in Irion et al. (2018). Using a zero fractional WV trends a
priori at all levels, it was fairly straightforward to obtain fractional WV(z) trends close to those from the reanalysis
data sets in the 300-850 mb region. In order to improve our results in the lowest layers, we enforced a constant
relative humidity approximation, which is a well-known, expected behavior under global climate change
(Sherwood et al., 2010; Soden & Held, 2006). This was done by ignoring the contribution due to water vapor
changes in the observed BT1231 trend, and using it as an approximation for air temperature trend over ocean; this
allows us to compute an estimate of how the water vapor would need to change

e 1 e L, 1

RH(T) = —— = 8(RH) = beu(T) = — e = — s

1
) e (DT 2 (T) ®)

Ly( 1 1
where e, e, (T) are the vapor pressures and we used e, (T) = esoek_v(ﬁ_f) (where L,,R, are latent heat of
vaporization and gas constant, respectively) to go from the expression in the center to the expression on the right.

If we expect the change in RH to be zero then % = 1LT o,

the a priori fractional vapor pressure rates (or a priori fractional water vapor rates) between surface and 850 mb,

where we can use 67/6t ~ d/dtBT1231 to approximate

smoothly tailing to 0 in the upper atmosphere. Subsection 7.2 has a similar discussion on a proposed method to
alleviate the lack of sensitivity to upper atmosphere water vapor. Our default results in this paper are from using
the MLS a priori, unless otherwise stated.

6.4. Testing on Synthetic Trend Spectra Made From ERAS5 Reanalysis Monthly Fields

We tested the retrieval code by using it on the simulated nighttime only ERAS spectral trends, and compared to
geophysical trends computed directly from the ERAS reanalysis. Spot checks of the spatial correlations of ERAS
fractional water vapor and temperature trends versus the trends retrieved from synthetic spectra/our retrieval
algorithm, peaked at 500 mb with correlations of about 0.9, compared to 800 mb correlations of 0.80 and 0.55 for
temperature and fractional water vapor trends, respectively and 200 mb correlations of 0.89 and 0.69 for dT/dt,
dWVfrac/dt. This is to be expected since a computation of the water vapor averaging kernels for infrared in-
struments for arbitrary atmospheric profiles typically shows they peak in the 300-850 mb range and decrease
rapidly away from those regions; conversely the temperature averaging kernels stay relatively uniform through
the free troposphere and above, though they also decrease close to the surface (see e.g., Irion et al., 2018; Smith &
Barnet, 2020; Wu et al., 2023).

Figure 6 shows a sample set of results using nighttime ERAS geophysical output converted to spectral trends as
described above. The top panels (a) are always the atmospheric trends computed directly from the monthly ERAS
geophysical fields, while the bottom panels (b) are the atmospheric trends retrieved from the converted ERAS
spectral brightness temperature trends. The left most panel is the atmospheric temperature trend comparison (both
in K yr~!) while the rightmost panel is the fractional atmospheric water vapor trend comparison (in yr~!).

It is evident from the figure that the tropospheric trends in the tropical and midlatitude regions are quite similar,
and there are differences in the polar regions and stratospheric regions where the AIRS instrument has reduced
sensitivity. The atmospheric and surface trends are shown in Table 1, divided into “all” (which is the entire = 90
latitude range and 0—1000 mb vertical range) and “T/M” which is the tropical/midlatitude region, which is further
reduced to 050-900 mb for air temperature and 300-800 mb for water vapor. “ERAS direct” are trends computed
directly from the geophysical fields, while “ERAS spectral” are retrieved from the spectral trends.
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Figure 6. Comparing geophysical trends derived directly from ERAS monthly nighttime fields (top) versus from the AIRS_RT retrieval applied to the ERAS
reconstructed spectral trends (bottom). The left hand panels are temperature trends (d7/df) in K yr~!while the right hand panels are fractional water vapor trends
(dWVfrac/dt) in yr~! (as fractional water vapor has no units). Horizontal axis are all in latitude (deg) while vertical axis is in pressure (mb). Note the vertical axis is
logarithmic for the temperature trends and linear for the water vapor trends.

6.5. Surface Emissivity Changes
Equation 3 explicitly includes the surface emissivity in the equation of radiative transfer; however, Equation 4

assumes this is unchanging. Here we rewrite Equation 4 as

dBT(v)
dt

dBT'(v)
dt

- Kemissivity(y) %@ - = K(V) %m (6)

Ocean emissivity has a dependence on windspeed (Lin & Oey, 2020; Masuda et al., 1988) and other literature
suggest wind speed increases of +2.5 cm s~ yr~! have occurred between 1993 and 2015 in the tropical Pacific,
and smaller (or close to zero) values elsewhere. The monthly ERAS u10,v10 10 m speeds for the 20 year time
period in this paper also showed the maximum absolute trend was 0.09 m/s/year (over the Southern Ocean) while
the global ocean mean and standard deviation were 0.006 + 0.022 m s~! yr~!; The emissivity changes over ocean
using a 0.025 m s~ wind speed change are on average on the order of 1 X 107 per year in the thermal infrared
window (or about 0.0003 K yr~! change in the window region); assuming the optical properties of water do not
substantially change with the ~0.02 K increases seen in all the data sets considered in this paper, these very small
emissivity changes due to windspeed changes are of no consequence.

We also estimate how the changing ocean temperatures would change the emissivity. Assuming no atmosphere,
the radiance measured at the TOA is ry(v) = e(v)B(v,Ty) where T is the temperature, € is the emissivity and
B(v,Ty) is the Planck function. If the temperature is perturbed by 67 then the radiances changes by an amount

Table 1
Cosine Weighted Air Temperature and Skin Temperature Trends (in K yr='), and Fractional Water Vapor Trends (in yr~"),
Together With Uncertainties

dTz/dt dTz/dt dSKT/dt dSKT/dt dfracWV/dr dfracWV/dt
K yr! Kyr! Kyr! Kyr! yr! yr!
A /M A /M A /M

SFC-TOA 050-900 mb GND-TOA 300-800 mb

ERAS direct 0.010 £ 0.038  0.029 £ 0.013  0.020 £0.035 0.018 £ 0.032  0.003 = 0.002  0.002 = 0.001
ERAS spectral ~ 0.004 = 0.033  0.027 £0.012  0.019 £ 0.033  0.016 = 0.029  0.001 £ 0.001  0.002 % 0.001

Note. The “ERAS direct” are directly from the ERAS geophysical trends, while “ERAS spectral” are trends retrieved from the
converted ERAS spectral trends.
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or(v,Ty) = e(y)%fﬂ + B(v,Ty) %BT. The derivative of the Planck function is easily computed
analytically. An estimate of the ocean emissivity change with temperature is ~2 x 10~ per Kelvin, using the
information in Nalli et al. (2022) and Newman et al. (2005). Inserting these numbers yields a BT change of ~1.5
%1073 K due to the change in emissivity, which is much smaller than the assumed 0.2 K ocean temperature
change.

Land emissivity changes were estimated as follows. A global monthly mean emissivity database, the Combined
ASTER and MODIS Emissivity over Land (CAMEL v003) has recently been released (Borbas et al., 2018). We
matched the tile centers to the database for the 20 X 12 months spanning our 2002/09-2022/08 time period, and
computed the emissivity trends over land; the results (not shown here) were on the order of —1 x 10™* and
+3 x 10~*in the 800-960 cm~! and 1100-1250 cm™~! regions, respectively, averaged over the land observations.
For each tile the Ky (V) %e(r) term was estimated by running SARTA with the default emissivity, then
differencing with the SARTA output obtained when the emissivity trends were added on. Averaged over the
planet, the spectral changes arising from these emissivity changes were much smaller than the spectral trends seen
in Figure 3, about —0.001 K yr~! between 800 and 960 cm™' and about +0.002 K yr~! on the 1100-1250 cm™!
region (which we do not use in our retrieval, since many of the channels are synthetic and the real channels are
drifting Strow et al. (2021)). The land only results were roughly three times these magnitudes. Using these
emissivity Jacobians on the left hand side of Equation 6 and running the retrieval on the adjusted spectral trends
over land, resulted in about at most 0.01 K increases to the zonally averaged surface temperature changes over
land; zonally averaged these largest differences were at about 40°N to 60°N and —25°S to +15°N, due to
emissivity decreases; the 20°N to +35°N region which included the Sahara and swathes of Asia, had emissivity
increases but the averaged-over-land temperature decreases were small, as there were offsetting emissivity in-
creases in other land areas at the same latitudes. We did not pursue the impact of these emissivity changes further
as the CAMEL database is affected by the stability of the MODIS data, and our results below will not include
accounting for changes in land emissivity.

7. Geophysical Trends From Observational AIRS_RT Compared Against Trends
From Legacy Reanalysis and L3 Retrieval Products

The trends retrieved in the previous section using simulated radiance trends show that the retrieval package is
working as expected. Here we apply our retrieval to observed AIRS L1C radiance trends and compare the
retrieved AIRS_RT geophysical trends to those computed directly from the ERA5/MERRA?2 geophysical fields
and AIRS L3/CLIMCAPS L3 retrieval products. We will have an expectation that since the simulated radiance
trends had no noise added to them, the uncertainty in the spectral rates was lower than the actual observed spectral
uncertainty; this will lead to larger uncertainties and/or errors in our retrieval using observed radiance trends.

Most of the comparisons against reanalysis geophysical fields and L3 retrieval products will be made in the
context of averages over the descending/night (N) and ascending/day (D) observations since the MERRA?2 (and
GISS) data sets are only available as a D/N average; we show a few of the D-N differences in Appendix B. The
results are shown in the order of surface/column trends (surface temperature and column water), followed by
zonal averages of the atmospheric temperature and fractional water vapor trends. We also refer the reader to
Section 4 which presents an interpretation of these geophysical trend comparisons, using trends in radiance
spectral space.

7.1. Skin Temperature Trends

There are typically multiple (window) channels that are sensitive to a surface pressure, meaning the radiances
typically have more information content for the surface temperature (assuming the surface emissivity is well
known and there are no clouds) rather than, for example, air temperature. Figure 7 shows the diurnally averaged
day/night (D/N) surface temperature trends from 6 data sets: AIRS_RT observations, AIRS L3, CLIMCAPS L3,
ERAS, MERRA?2, and NASA GISTEMP. AIRS_RT shows an overall global warming of +0.021 K yr~!; the
cooling trends include the tropical eastern Pacific and south of Greenland and tropical northern Atlantic. The rest
of the data sets also show similar patterns of cooling in the N. Atlantic Ocean, warming over the Arctic and some
degree of cooling over the Antarctic Ice Shelf/Southern Ocean as does AIRS_RT. The AIRS v7 L3 operational
retrieval shows some cooling over Central Africa and the Amazon not seen in the AIRS_RT trends, where one
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Figure 7. Surface temperature trends dSKT/dt averaged over day and night for AIRS_RT, and separately fitting the monthly data in ERAS, MERRA2, AIRS L3,
CLIMCAPS L3, and GISS. The horizontal and vertical axis are longitude and latitude. Color bar units are in K yr=!.

could expect Deep Convective Clouds and possible cloud clearing issues. We also point out the AIRS L3 retrieval
product has many missing values off the western coasts of N. and S. America, due to cloud clearing issues.
MERRAZ2 shows significant cooling trends over C. Africa and near the Antarctic Ice Shelf. Of note here is that
although CLIMCAPS uses MERRA? as its first guess, their surface temperature trends are not similar, especially
around the Antarctic where MERRA?2 shows strong cooling trends. Over the ocean GISS shows similar trends to
what AIRS_RT trends show. An earlier study of Land Surface Temperatures between 2003 and 2017 using
MODIS (Prakash & Norouzi, 2020) shows very similar large daytime cooling trends over parts of central and
western Indian subcontinent that we see from our retrieval as well as directly from the BT1231 channel trends; for
tiles that straddle both ocean and land the quantile method picks up the hottest observations, which especially
during summer are mostly over the Indian subcontinent. For these reasons we also have confidence in our
retrieved cooling trends over for example, daytime continental Central/Eastern Africa, which are different from
the other 4 day/night data sets.

The spatial correlations between AIRS_RT retrieved rates and the various data sets is shown in Table 2 while the
cosine weighted skin temperature trends are shown in Table 3. By adding in the uncertainty in the trends for any of
the individual models or data sets, and then doing the cosine weighting, we estimate uncertainties of about +
0.015 K yr~! for “ALL”; the uncertainties for “OCEAN” are typically about 2/3 of that value, and for “LAND”
are about 4/3 of that value. We emphasize here that we use reanalysis geophysical fields and L3 operational
retrieval products averaged over a tile when computing their trends, while the AIRS_RT uses the hottest 10% of
“clear” observations (Strow & DeSouza-Machado, 2020); showed that the tropical retrieved surface temperature
trends and anomalies over ocean correlated very well with those from the ERA-I Sea Surface Temperature
data set.

A notable outlier in this group is the MERRA?2 trends, especially over land and the Southern Ocean which are
noticeably negative (blue) compared to the other data sets; the agreement with tropical and mid-latitude oceans is
much better. As noted earlier, the MERRA?2 monthly trends come from a combination day/night data set that was
downloaded, which as seen in Figure 7 consists of trends that are both positive and negative, combining to get a
closer-to-zero global weighted trend. In addition MERRA?2 is the only one of the six that (a) does not have the

extreme +0.15 K yr~! warming in the northern polar region and (b) shows

substantially more cooling in the Central African area. Using ERAS monthly

Table 2

Correlations of Average (Nighttime, Daytime) Retrieved Skin Temperature data, we devised a test similar to the one mentioned in Section 5 to determine

Trends From AIRS_RT, Versus Trends From Models/Products if the differences between MERRA?2 and ERAS surface temperature trends

ERA5 MERRA?2 AIRSL3 CLIMCAPSL3 GISS could be due to the temporal sampling (once for MERRA?2 vs. eight times for
ERADS). For each month we matched the eight ERAS timesteps available per

0.78 0.62 0.80 0.90 0.77

month to the tile centers and then averaged the surface temperatures per
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Table 3
Cosine Weighted Skin Temperature Trends (in K yr™'); Uncertainties Are on the Order of + 0.015 K yr~" as Explained in the
Text

SKT trend K yr~! AIRS_RT AIRS CLIMCAPS ERA5S MERRA2 GISS
ALL 0.021 0.015 0.022 0.022 0.012 0.021
TROPICS 0.013 0.011 0.014 0.015 0.010 0.015
MIDLATS 0.028 0.018 0.029 0.027 0.020 0.026
POLAR 0.032 0.025 0.033 0.038 —0.004 0.028
OCEAN 0.019 0.012 0.021 0.017 0.012 0.017
LAND 0.025 0.024 0.026 0.035 0.010 0.030

month; the ensuing geophysical time series was then trended. The day/night ERAS average of Figure 7 was
compared to these trends; of note are (a) we did not see the cooling in Africa and near the Antarctic that is seen in
MERRA? and (b) the main differences between the 1.30 a.m./1.30 p.m. average in the bottom middle (ERAS)
panel were over land (all 5 continents); the histograms of the differences showed the peak was typically close to
0 K yr~!, but the widths over land were about +0.02 K yr~! or less (compared to +0.005 K yr~! over ocean).
Trends from AIRS L3 retrievals and MERRA?2 geophysical fields show cooling in the Southern Ocean; we note
that although MERRA? is the a priori for CLIMCAPS L3, their trends are different that those from MERRAZ2; in
fact AIRS_RT shows the closest correlation to the CLIMCAPS L3 retrieval product trends. The AIRS L3 trends
in the Southern Ocean region could arise because of problems identifying ice during the L2 retrieval (private
communication: Evan Manning (JPL) and John Blaisdell (NASA GSFC)) though the MERRA?2 trends also show
significant cooling in that region, where few surface observations from buoys poleward of 60° exist to help
resolve these differences (see e.g., Figure 10 in Haiden et al., 2018).

Figure 8 shows the zonally averaged total (Iand + ocean) and ocean only surface temperature trends. The equator to
midlatitude ocean trends are almost linear for all data sets, with the slope for the northern hemisphere being about
double that of the southern hemisphere (roughly 0.001 K yr~! per deg latitude). Again, focusing on the right hand
plot, the AIRS L3 trends are negative in the Southern Ocean regions, compared to the other three data sets, due to the
cooling trends around the Antarctic continent shown earlier, but then agrees with most of the other data sets over the
Antarctic; the MERRA?2 trends significantly differ between —90 S and —50 S. MERRA?2 and ERAS also show
slightly smaller warming trends in the Northern Polar, compared to the three AIRS observation-based data sets.

We point out that the trends seen in Figure 7 vary noticeably at more local, regional levels and furthermore this
spatial variation can differ between daytime and nighttime, evident in Figure B1of Appendix B, and that the trends
derived from observations (AIRS_RT, CLIMCAPS L3, and AIRS L3) had larger differences than ERAS. Dis-
cussing the possible causes is outside the scope of the paper.

I I
——AIRS_RT ——AIRS_RT
0.1 ——AIRS L3 ——AIRS L3 .
CLIMCAPS L3 CLIMCAPS L3 ‘
0.08 ——ERA5 ——ERA5 /\\
— ——MERRA2 ——MERRA2
T 0.06 | GISS GISS ' |
> 004 F A
3 \
5 002 | PSS A Vo~ \
o " —
5 0 \ /‘/\ A /'/‘__\/
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-50 0 50 -50 0 50

Latitude [deg]

Latitude [deg]

Figure 8. Zonally averaged surface temperature trends for (left) sum of ocean and land point and (right) ocean only. The

vertical units are K yr~! while the horizontal axis are degrees of latitude.
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Figure 9. dWVfrac/dt (left) without and (right) with MLS a priori in the upper atmosphere. The vertical axis are pressure (in
mb), the horizontal axis are latitude (in degrees) while the color bar is in yr~! (fractional water vapor has no units).

7.2. Addition of Microwave Limb Sounder Water Vapor A Priori

The Microwave Limb Sounder (MLS), on board NASA's Aura platform, flies about 15 min behind AIRS on the
same orbit. It is designed for sounding of the atmosphere above 300 mb. We computed water vapor trends from
the L3 operational retrievals produced for that instrument (above 300 mb) and used them as an a priori for the
AIRS_RT retrieval.

Figure 9 shows the retrieved fractional water vapor trends when the a priori trend in the upper atmosphere in the
left and right panels were zero, or used MLS trends, respectively. One sees that the additional information brought
in by the instrument sensitive to upper troposphere humidity, significantly changes the water vapor sounding
especially in the polar region by moving toward the MERRA?2 and ERAS fractional water vapor trends seen in
Figure 12. We note that the other related results shown in this paper also use the MLS a priori.

7.3. Column Water Vapor Trends

Column water is dominated by water vapor amounts close to the surface and the column vapor trends thus provide
an assessment of the water vapor retrieval quality in the lower atmosphere. The water vapor information in the
lowest layers is best retrieved using the weak water lines in the thermal infrared region. As noted earlier this part
of the retrieval is significantly complicated by the simultaneous presence of nonzero surface temperature, air

temperature and water vapor Jacobians in this spectral region, meaning the

o
o
o

: AIRS instrument has much reduced sensitivity to the water vapor amounts in
ARGy these lowest layers. In addition the changing concentration of very minor
EE%CAPS s gases such as CFC-11 and CFC-12 (Strow & DeSouza-Machado, 2020) are
MERRAZ quite evident in the spectral trends, further complicating the water vapor trend

retrieval for the lowest layers.

Figure 10 shows the zonally averaged column water vapor trends; not shown
are the error bars which are on the order of + 0.005 mm/year. AIRS_RT is from
our retrievals while the rest are directly from the reanalysis or L3 operational
retrieval fields. Close examination shows the CLIMCAPS L3 column water

d mmw/dt [mm/yr]

£\
< ~——
/ trend is nearly identical to the MERRAZ2 trend, as is also seen in lower at-
mosphere water vapor trends shown later in Figure 12. Conversely the column
water vapor trends for AIRS L3 are negative in the lower troposphere in the

. midlatitudes and tropics, which is not to be expected given that the surface

-0.05 :
-50

Figure 10. Zonally averaged column water vapor trends for AIRS_RT, AIRS

Latitude [deq]

0 50 temperature trends are positive. AIRS_RT is slightly smaller but nominally
agrees with ERAS5 and MERRA2 in the tropics and midlatitudes, but is smaller
than either in the northern polar regions. A reduced rate for AIRS_RT is
additionally seen in the 0-50 N latitudes, where there is a larger fraction of land

L3, CLIMCAPS L3, ERA5, and MERRAZ. Vertical units are in MMW yr~! (for which we do not use the assumption of constant relative humidity)
while the horizontal axis are in degrees latitude. compared to the Southern Hemisphere. Screening out the tiles over land
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22;2:1: Water Trends Based on OMI Observations (16 Years) and AIRS_RT, ERAS, and MERRA?2 (20 Years)
DATASET OMI AIRS_RT ERAS5 MERRA?2 AIRS L3 CLIMCAPS L3
mm yr~! 16 years 20 years 20 years 20 years 20 years 20 years
GLOBAL (cosine average) 0.051 0.021 0.035 0.036 —0.009 0.038
TROPICAL 0.083 0.028 0.047 0.042 —0.015 0.045

Note. The units are in mm yr‘l; the uncertainties are on the order of 0.1 mm yr‘l for OMI and AIRS_RT, and half that for
ERAS5 and MERRAZ2, and AIRS L3 and CLIMCAPS L3.

slightly improves the agreement between reanalysis (ERAS5, MERRA?2) versus AIRS_RT column water trends.
Examination of the spectral trends in the window region does not shed any more insight into the differences, as the
observation spectral trends and reanalysis reconstructed trends are very similar and we are fitting the observed
trends. The magnitudes and patterns look similar to the 2005-2021 column water trends shown in Borger
et al. (2022), which were derived using observations from the Ozone Monitoring Instrument (OMI). We point out
their 16 year zonally averaged trends look similar to the 20 year ERAS zonally averaged column water trends
between —60°S and —10°S, but become almost a factor of 2 larger between —10°S and +40°N; the zonally
averaged OMI 16 year trends are negative in the polar regions. The column water trends are summarized in Table 4.

D/N differences (not shown) for AIRS_RT were on the order of £0.005 mm yr~!' (with daytime trends being
smaller over land), for AIRS L3 were on the order of +0.01 mm yr~! or more (with larger values happening over the
daytime tropical oceans), while that for ERAS and CLIMCAPS L3 were typically on the order of £0.03 mm yr~! or
less.

7.4. Zonal Atmospheric Temperature and Water Vapor Trends

Figure 11 shows the zonally averaged atmospheric temperature trends from five of the data sets in Figures 7 and
10 above. In the troposphere the AIRS_RT retrievals show the same general features as the trends from ERAS,
though they begin to diverge in the stratosphere and especially above that. In particular AIRS_RT does not show
warming in the Southern Polar stratosphere; we have separately looked into seasonal trends and noted that our
retrieved September/October/November temperature trends in the upper atmospheric Southern Polar regions are
on the order of —0.12 K yr~!, possibly leading to an overall no net heating/cooling for the annual trends. We
highlight that our zonally averaged atmospheric trend results are smoother than those of the other data sets, while
the other sets have noticeable discontinuities that may not be physical under the thermodynamics or fluid dy-
namics frameworks. In addition the reanalysis models ingest many observational data sets, while the L2/L3
operational retrieval products are influenced by the a priori. In addition we point out that both our results and
AIRS v7 L3 retrievals show a hint of cooling over the tropical surfaces. Note that CLIMCAPS is initialized by
MERRAZ2, and their temperature trends are quite similar. AIRS v7 looks similar to AIRS_RT except in the tropics
where it almost has cooling in the lower troposphere and much more warming in the lower stratosphere. The

correlations between AIRS_RT and the [AIRS L3, CLIMCAPS L3, MERRA2, ERAS] temperature trends of

Figure 11 are [0.74, 0.65, 0.74, 0.72], respectively.

Figure 12 shows the zonally averaged atmospheric fractional water vapor trends (d/dt WV (z,t)/<WV(z,t)>). The
five panels are markedly different from one another. The AIRS_RT trends resemble those of ERAS in the tropical
troposphere, though we do not have drying in the lower tropical layers. Conversely, the trends in the Southern
Polar derived from sounder observations (AIRS L3, CLIMCAPS L3 and AIRS_RT) show drying rather than
wetting, though AIRS_RT is less than that of CLIMCAPS/MERRA?2. AIRS_RT is an outlier in the upper polar
atmosphere trends, as both the signals and the Jacobians are close to zero. Of some concern is a little bit of drying
in the northern polar region, where there are low H,O amounts leading to small Jacobians . CLIMCAPS v2 looks
quite similar to the MERRA2 trends. AIRSv7 shows substantial drying in the lower troposphere, and considerable
wetting in the upper troposphere, compared to any of the other data sets. Separate spectral closure studies using
the AIRS v7 H,O trend X the H,O Jacobians derived above from ERAS average profiles differ noticeably from
the CCR trends from AIRS v7 in the 1300-1600 cm™! region, indicating there are inadequacies in the AIRS V7
water vapor retrievals. The correlations between AIRS_RT and the [AIRS L3, CLIMCAPS L3, MERRA2,
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Figure 11. Zonally averaged dT/dt shown in 5 panels. The horizontal axis is in degrees latitude while the vertical axis is pressure (mb). The y-limits are between 10 and
1000 mb, on a logarithmic scale. The color bar is units of K yr=!.

ERAS] fractional water vapor trends of Figure 12 (limited to 100 mb, 1000 mb) are [0.65,0.24,0.36,0.58],
respectively.

Figure 13 shows the (smoothed) 400 mb fractional water vapor trends, with the left panel being the AIRS_RT
trends while the right panel is the ERAS trends. Note that there is general agreement except in the Southern Polar
region, as also seen later in Figure 12 in the other two L3 retrieval data sets (AIRS v3 and CLIMCAPS). This
could be related to work by Boisvert et al. (2019) who showed decreasing evaporation from the Southern Ocean in
the 2003-2016 period due to increasing ice cover.

8. Uncertainty

The uncertainties for the AIRS v7 geophysical products are impacted by radiance noise amplification due to cloud
clearing (Susskind et al., 2003) and the neural net first guess, while state vector errors are estimated based on
regressions. CLIMCAPS L2 geophysical retrieval products are similarly impacted by cloud clearing noise in the
radiances, but these are fully propagated together with geophysical error estimates from the MERRA?2 first guess,
through the retrieval algorithm which uses Optimal Estimation (Smith & Barnet, 2020). No estimate of un-
certainties are available for the monthly L3 retrieved products.

The uncertainties for the retrieved AIRS_RT geophysical trends are straightforward to obtain using the OEM
framework: the spectral uncertainties shown in Figure 5 are used together with the state vector covariance
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Figure 12. Zonally averaged dW Vfrac/dt shown in 5 panels. Horizontal axis is latitude while vertical axis is pressure. The y-limits are between 100 and 1000 mb, on a

linear scale. The color bar units are in yr—

1 as fractional water vapor is dimensionless.

matrices to generate the uncertainty matrix using the relevant equations from the OEM method; we use the di-
agonal elements for the final uncertainties. We refer the reader to Appendix A for a detailed discussion about the
uncertainty in the radiance time series. Panels (A) and (C) of Figure 14 show the zonally averaged (D/N) un-
certainties as a function of pressure and latitude. Inspection of the radiance trends uncertainties shown in the
center panel of Figure 5 shows the upper atmosphere temperature sounding region (650-700 cm™') has much
larger uncertainty in the polar regions. The instrument and spectroscopy characteristics, coupled with these
observational uncertainties, are such that for temperature the smallest errors are in the tropics while the largest
errors are in polar upper atmosphere, which are the regions below 100 mb where the ERAS trends differ most
from AIRS_RT trends. Similarly for water vapor the larger errors are in the lower atmosphere and above about
300 mb; the constant RH assumption and MLS a priori help alleviate the errors in the retrieved trends. We point
out earlier work on studying upper tropospheric/lower stratospheric humidity over tropical cyclones also used
MLS climatology together with AIRS observations (Feng & Huang, 2021).

The Z-test confirmed this picture, as seen in panels (B) and (D) of Figure 14, which show the temperature and
fractional water vapor trends, together with black dots marking the (latitude, altitude) points where the trends are
larger than the uncertainty in the trends, at the 5% significance level. This happens in panel (B) for the temperature
trends in most of the tropical/mid-latitude free troposphere (and stratosphere) but not at the southern polar
stratosphere; and in panel (D) for fractional water vapor trends in the 200-600 mb range, from the Southern Polar
region to about +60 N latitude, and some spots in the Northern Polar.
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Figure 13. The 400 mb fractional water vapor trends for (left) AIRS_RT and (right) ERAS show general agreement except in
the Southern Polar Regions. The color bar units are in yr~!, as fractional water vapor is dimensionless. Note these plots have
been smoothed using a moving mean.

9. Discussion

In general for surface temperature trends, the disagreements between the six sets shown in Figure 7 are over the
polar regions and over land (especially over the Amazon and Central Africa) and are smallest over tropical and
mid-latitude oceans, indicating the best agreements, except for slightly larger differences off the western coast of
the Americas and Africa (which have a prevalence of MBL clouds). The atmospheric temperature trends in
general agreed except for the upper atmosphere polar regions and in the high altitudes (less than about 200 mb).
Similarly fractional water vapor trends differed most in the upper atmosphere (200 mb and above) and in the
tropical/mid-latitude 600-800 mb region. A quick glance at Figure 12 shows the former is due to lower sensitivity
to upper atmosphere water vapor, leading the AIRS_RT retrievals to have low values while the AIRS L2 retrieval
is initialized by a neural net; conversely the latter is due to the AIRS L3 retrieval being negative while the rest
were mainly positive. Similarly the AIRS_RT retrieval differs above the Antarctic continent.

In general the observed surface temperature trends from the AIRS_RT retrievals agree with the ERAS5 and
MERRAZ? trends, as well as the NASA GISS trends, except in the Southern Antarctic. That is a region where there
are few surface observations; for retrievals there are competing effects of using ice versus ocean surface emis-
sivity. Overall, the AIRS_RT retrieved surface temperature trends are typically in between ERAS and MERRA?2
for land + ocean in all regimes (tropical, midlatitude and polar), though slightly larger overall for ocean than the
two reanalysis data sets; in general they are closer to the ERAS trends than the MERRA?2 trends.

(Strow et al., 2021) demonstrated that the long- and medium-wave channels of the AIRS instrument are radio-
metrically stable to better than 0.002-0.003 K yr~!, which is much smaller than the surface and tropospheric
temperature trends in the reanalysis models, AIRS L3 retrieved products and our retrieved trends. A separate
analysis of spectral trend uncertainties after 05, 10, 15,20 years (not shown here) show that these uncertainties have
been steadily decreasing and are now approaching this number, as can be seen in the bottom left panel of Figure 3.
Furthermore, though we cannot guarantee only cloud free scenes in our chosen Q0.90 observational data set used in
this paper, the high correlations between other data set surface trends compared to ours, is a good indication that our
results come from mostly cloud-free scenes, or scenes whose clouds have negligible impact on our results.

The observed zonal temperature trends agree with those from the models and the AIRS L3 operationally retrieved
products, except in the polar regions. Again this could be an issue of using slightly incorrect surface emissivity for
the AIRS_RT retrievals. In addition we point out that since there is very little water vapor, the temperature Ja-
cobians near the surface are quite small in magnitude (compared to more humid atmospheres) and so it is difficult to
separate out the effects of surface temperature trends versus lower atmosphere temperature and H,O trends. The
quantile construction used in this paper means that for example, tiles straddling the subcontinent of India and the
ocean will preferentially pick the land surface observations for daytime, which could lead to misleading trends on
these coastal tiles. It is possible to subdivide the 3° X 5°tiles into for example, 1° X 1° grids and do the analysis,
but the number of observations per small grid cell would drop, leading to more noise in the retrieved trend.
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Figure 14. Zonally averaged D/N plots of (a) temperature uncertainties in K yr~! and (b) temperature trends in K yr~!. Panels
(c) and (d) are the same except for fractional water vapor uncertainty and trends in yr~!. The left hand panels are the
geophysical uncertainties computed by the OEM retrieval, while the right hand panels show the retrieved trends together with
black dots identifying where the Z-fest indicates where the trends are larger than the uncertainty. Horizontal axes are in degrees
latitude while vertical axis are pressure (mb)—Ilogarithmic for temperature and linear for water vapor. See text for more detailed
explanation.

In general the AIRS_RT retrieved column water trends are slightly smaller than ERAS in the Southern Hemisphere
but noticeably smaller in the Northern Tropics to midlatitudes. We have mentioned difficulties we have retrieving
H,O close to the surface and in the upper atmosphere, due to the known sensitivity of infrared sounders whose water
vapor averaging kernels peak in the 300-600 mb range, even though examination of the spectral residuals in the
window region shows we are fitting the signal. The MERRA2 and CLIMCAPS column water vapor trends are quite
similar, while the AIRS v7 L3 retrieved trends are noticeably different, being negative almost everywhere. A zero a
priori initialization for water vapor at the surface allows a fit to the spectral trends, but the retrieved water vapor
trends in the lower layers which dominate column water amounts lead to column water trends that are easily double
or more than the results for the other data sets. We have adjusted the OEM water vapor covariance matrices so that
the zonally averaged column water trends agree in general with the other data sets.

Given the complex numerical algorithms used in both the reanalysis models and the AIRS L3 retrievals as well as
those in the AIRS_RT trends, it is difficult to offer precise explanations for any of the trends shown above. Our
results are relatively robust to changes in the covariance or Tikonov parameter settings. For instance changing
them by factors of two would keep the trends about the same, though of course the uncertainties would change.
There are however, a few general points that can be made. The first is that since infrared instruments are sensitive
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to the 300-800 mb region and lose sensitivity outside this, the retrievals from AIRS_RT and AIRS L3 have
difficulties with water vapor in the lower (Planetary Boundary Layer) and upper troposphere/lower stratosphere.
One way to mitigate this is to use trended observed data from external sources in the a priori, while keeping the a
priori trends for all other parameters as 0. For example, we have shown we can use the MLS observations above
300 mb without significantly degrading the AIRS_RT retrieval in the middle and lower atmosphere; conversely
the CLIMCAPS retrievals are initialized by MERRA?2 and while they can pull out weather signals, the trends from
the L3 retrieved products are still quite closely tied to the MERRA?2 trends. The tropical and mid-latitude ocean
surface temperature trends from the numerical models that assimilate observed data, L3 retrieved products and
AIRS_RT are very similar; however, they start to show differences where there are few in situ observations
combined with problems with ice identification (surface emissivity)/cold temperatures which exacerbate the
drifting AIRS detector problems (Strow et al., 2021), such as the Arctic and Southern Ocean.

10. Conclusions

We have designed a novel retrieval method, specifically to obtain global thermodynamic atmospheric climate
trends. It uses long-term stable, high spectral resolution infrared all-sky hyperspectral observations which are the
first subset for “nominally clear” scenes. The geophysical trends are derived using observed trends from the well-
characterized (radiometrically stable) radiances and from zero a priori (except for a constant relative humidity
assumption). This makes them much more direct and traceable than trends from traditional L2 retrieval algo-
rithms, which use complicated a priori information. We also performed “radiative closure” tests by running the
monthly reanalysis or L3 monthly retrieved data through a radiative transfer model to compare the spectral trends
obtained against the observed spectral trends. The most noticeable disagreement in spectral trend radiance space
was in the water vapor free troposphere sounding regions.

The temperature and water vapor trends retrieved from the “nominally clear” radiance trends resemble those
computed from monthly ERAS and MERRA?2 reanalysis. The radiative spectral closure helps identify the cause of
differences in the geophysical trends, rather than solely attributing them to deficiencies (e.g., the well-known
reduced sensitivity to water vapor near the boundary layer and above 200 mb) with our retrieval. For example,
the AIRS_RT temperature trends are quite similar to the reanalysis (MERRA2/ERAS) trends, while the water
vapor (and/or Relative Humidity) trends are quite different, especially in the lower troposphere and upper
troposphere, which is clearly manifest as differences in the spectral trends in the water vapor sounding region.

The 20 years of AIRS observations were binned into nominal 3 X 5 degree grid boxes covering the planet, with a
time step of 16 days, from which anomalies and trends were obtained. To alleviate the reduced sensitivity of
hyperspectral sounders to water vapor in the lower atmosphere we used an assumption of 0.01 increase in relative
humidity to initialize the a priori lower atmosphere fractional water vapor rates, while we similarly used Mi-
crowave Limb Sounder trends as an a priori to address the high altitude water vapor deficiencies caused by lower
sensitivity to upper atmosphere water vapor. Radiance trend error sources are discussed in detail in Appendix A,
while differences in trends from reanalysis or L3 retrievals when the data are aggregated using the tile centers
versus averaged over the tiles were discussed in Section 5. New or updated time dependent surface emissivity
databases may become available in the future, enabling us to include those effects into Equation 4. Problems in the
polar regions and Planetary Boundary Layer water vapor retrievals will be harder to overcome since there is very
little sensitivity to water vapor in these regions, together with fewer observations to compare against, though more
work is planned to address both of these.

In this paper we used the 90th quantile (Q0.90) nominally “hottest” observed BT1231 to form a time series over
which to obtain radiance trends, after establishing that the spectral trends from this quantile differed by less than
about +0.0015 K yr~! from the 50th (or average) quantile. In the future we plan to base the subset selection on
MODIS cloud products (obtained at 1 km resolution compared to the AIRS 15 km resolution). In any case the
AIRS L1C Q0.90 spectral trends used for the AIRS_RT results are very comparable to trends from quality assured
binned AIRS CCR data (Manning, 2022). The quantile method allows us to select which observations to use in the
trends: we have explored doing the trend retrievals using the cloud fields contained in ERAS, together with the
TwoSlab cloud algorithm (De Souza-Machado et al., 2018) to compute Jacobians when clouds are present,
together with trends from the Q0.50 observational data set described above. The retrieved geophysical trends
resemble those described above in the mid to upper atmosphere, and differ in the lower atmosphere, but more
work is needed and is not discussed further. Zonally averaged longwave clear sky flux trends (both outgoing top-
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Table A1

of-atmosphere and incoming bottom-of-atmosphere) derived using sums over the flux changes arising from the
AIRS_RT surface temperature, and atmospheric water vapor, ozone and temperature trends together with flux
changes induced by CO,,CH, forcings in general agree with those derived using observational flux trends from
the Cloud and Earth's Radiant Energy (CERES) clear sky Energy Balanced and Filled (EBAF) Level 3b product
(Kato et al., 2018; Loeb et al., 2018).

While the Aqua platform is scheduled to be terminated within the next few years, copies of nearly identical CrIS
instruments are already in orbit, and more will be launched over the next few years, till at least 2040. The Climate
Hyperspectral Infrared Radiance Product (CHIRP) (Strow et al., 2021) will seamlessly combine the AIRS ob-
servations between 2002 and 2015 to CrIS observations from 2015 to 2040 to obtain a 40 year observational
radiance record over which to study climate. This availability means that the current AIRS_RT and future AIRS/
CrIS radiance version, is well-positioned to enable climate analysis of geophysical trends and anomalies for years
to come.

Appendix A: Summary of Noise and Uncertainty in Radiance Time Series

The uncertainties in the geophysical 20-year linear trends reported depend upon the uncertainties in the 20-year
radiance trends directly derived from the AIRS radiance observations. The radiance trend uncertainties are the
standard errors of the linear term, a; in Equation 2. Note that the standard deviation is taken over the 460 16-day
bins that make up our radiance time series. In ideal conditions the time series of fit residuals of Equation 2 would
be the AIRS detector noise. However, the observed fit residuals are almost always dominated by other processes.
This would be true of any climate signal that is subject to variability induced by weather and inter-annual
variability, which often requires multi-decade records to recover accurate trends.

Various contributors to the radiance trend uncertainties include: (a) detector noise, (b) radiance anomalies that are
not linear in time (inter-annual variability, greenhouse growth rates, etc), (c) sampling noise that includes tem-
poral and spatial variability within our nominal 3 X 5 latitude/longitude 16-day sampling grid, (d) similar
variability among the 16-day sampling time-steps, and (e) variability in the satellite zenith viewing angle among
the different 16-day sampling steps. The origin of the noise/variability in these time series does not directly affect
the results of this work, other than possibly as a guide for finding better sampling approaches for future work.
Here we give a brief outline of the size of the fit residual standard deviations and a more detailed look at the origin
of the variability of the residuals for two different channels for two tiles.

Detector noise is inconsequential in this work since each 16-day mean radiance is an average over ~500 ob-
servations per spectral channel. This reduces the standard error in the mean by a factor of ~22 (4/500). Com-

parisons of the detector noise to the observed variability in the radiance time series fit residuals show that detector
noise is ~25X to 150X smaller than the observed variability.

The dominant sources of variability arise from items (b)—(e) listed above. Examination of the global maps of the
radiance trend fit residuals for four channels largely provides insights into the spatial variability in these un-
certainties. These channels are the 670 cm™! stratospheric CO, channel, the 732 cm™! tropospheric CO,, the 1231
cm™! surface temperature channels, and the water vapor channel at 1500 cm™!. Table A1 lists the global range of
fit residual standard deviations for these channels. Often they are in the 1-2K range with higher variability often
seen in polar regions. The variability in the water vapor channel is different in that it is largest in the tropics where
spatial and temporal variability can be quite large. Overall the lowest vari-
ability in the 1231 cm™! surface channel, and the highest variability in the
polar stratospheric channel at 670 cm™'. We examine them in more detail

Fit Residual Standard Deviations for Several Representative AIRS Channels below.

Channel cm™!

Residual std in K ENSO related inter-annual variability (anomalies) cannot be completely

670
710
732
1231
1500

1-2 K, but up to 5 + K in polar regions ~ modeled with a simple linear trend. However, any inter-annual anomalies can

05-19 K be examined in our data set by smoothing over the more random sampling

noise in the fit residuals of time-series regression. Figure Al shows a
1

0.5-3 K
0.37-5K
1.4-4.5 K (high in tropics)

smoothed version of the 1231 cm™" channel fit residual for a tile in the
tropical Eastern Pacific (1.37° S, 137.5° W). The residual (red curve) has been
smoothed with loess filter (quadratic) 1-year in length. Also plotted is the
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Figure Al. MEIV2 index compared to 1231 cm™" fit residual for tiled grid bin at 1.37°S, 137°W.

NOAA MEIv2 ENSO index (NOAA Physical Sciences Laboratory, 2011) for the same time period. Clearly, the
smoothed residual for this single tile closely follows the overall MEIV2 index. Note that the more smooth ENSO
anomalies are partially accounted for in our trend uncertainties by including the lag-1 autocorrelation correction
(see Section 3.2).

The raw residual standard deviation for this tile is 0.72K RMS, while the standard deviation of the smoothed
residual shown in Figure Al is 0.65K RMS. Using the sum of squares for Gaussian noise, this gives a value of
0.31K RMS for the more rapid variations in the residual. We have simulated the effect of the variation in satellite
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Figure A2. Trend fit residuals for the 670 cm™! channel tile centered at 59°N, —102°W, which clearly exhibit sudden
stratospheric warmings in the winter months.
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zenith angle for this channel and tile, which is only 0.04K RMS. Therefore in this particular example the ENSO
variations dominate the noise although the fast random sampling terms are far from zero.

The contribution of slightly varying satellite viewing zenith angles will be a maximum in the CO, long-wave
sounding region, centered near the 730 cm™! channel. A similar analysis of the noise components of the fit re-
sidual for this channel gives a raw residual standard deviation of 0.61K RMS, while the standard deviation of the
smoothed residual is 0.40 K RMS. (Some ENSO variability is seen in this channel.) Using the sum of squares for
noise, this gives a value of 0.47 K RMS for the more rapid variations in the residual. The simulated effect of the
variation in satellite zenith angle is 0.27 K RMS. Again, using the sum of the squares of the RMS values for the
satellite zenith variations we obtain a value of 0.38 K RMS for the variations in the rapidly changing part of the
residual. This suggests that a small component of the residual is due to the slight variations in the satellite zenith
viewing angle, it is far from dominant and that the ENSO variations and the fast random sampling terms dominate
the observation noise. In general the satellite secant angles, although variable from tile to tile, did not exhibit any
drifts that would impact the trend results shown here.

The stratospheric channels often exhibit very high fit residual standard deviations in the North Polar regions.
Figure A2 shows the 670 cm™! channel fit residuals for a tile centered at 59°N, —102°W (slightly west of the
Hudson Bay in Canada). Extremely large spikes are seen in the winter months caused by sudden stratospheric
warming (SSW) (Butler et al., 2015). These spikes are far above the background noise in the residuals since they
can be as large as 10-25K. These SSW spikes increase the fit residual standard deviation by more than a factor of
two. In this work no attempt was made to filter the SSWs from the radiance time series.

Appendix B: Day Versus Night Surface Temperature Trend Differences

Figure B1 shows the (top) daytime and (middle) nighttime surface temperature trends; from left to right the data
sets are (observational) AIRS_RT, (operational retrievals) AIRS L3, CLIMCAPS L3, and (reanalysis) ERAS. In
general the AIRS observations show enhanced daytime cooling over the Indian subcontinent and Central Africa,
compared to the ERAS model; they also show daytime warming trends over continental Europe and central Asia
and the Amazon are larger than during the nighttime. With the large ocean heat capacity and smaller land heat
capacity, the land is expected to show more of a diurnal cycle than ocean. ERAS sees warming over Eastern/
Central Africa during daytime while the observations show cooling. Similarly the three observations show more
daytime cooling over the Indian sub-continent and south eastern Australia than does ERAS; we omit more
detailed analysis in this paper. During the nighttime, the AIRS v7 L3 operational retrieval has cooling over C.
Africa and parts of the Amazon. The day—night differences are seen in the bottom row of the same figure. Note the
color bar is the same for all three rows. The differences are close to zero over the ocean. AIRS_RT and
CLIMCAPS L3 retrievals see more daytime cooling over E. Africa and the Indian subcontinent. Overall the
magnitude of the day—night differences for the observations are larger for the AIRS observations than for ERAS.
ERAS also sees negative differences over Central Asia compared to the AIRS observations, which see positive
differences (higher surface temperature trends during the daytime).

The atmospheric temperature and fractional water vapor day—night differences are quite small (compared to the
average values) and not shown here; AIRS v7 L3 operational retrievals show noticeable more wetting of the 600—
800 mb region during daytime versus nighttime, compared to the other three.
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Figure B1. Top two rows: The (top) day and (middle) night surface temperature trends for AIRS_RT, AIRS L3, CLIMCAPS L3 and ERAS5. Third row (bottom) is the
D-N difference. Color bar units are in K yr~!.
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