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Disclaimer

While best efforts have been used in preparing this training, Colfax International makes no
representations or warranties of any kind and assumes no liabilities of any kind with respect to
the accuracy or completeness of the contents and specifically disclaims any implied warranties
of merchantability or fitness of use for a particular purpose. The publisher shall not be held
liable or responsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly or indirectly, by the
information or programs contained herein. No warranty may be created or extended by sales
representatives or written sales materials.
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Parallel Programming
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Coprocessors

Handbook on the Development and
Optimization of Parallel Applications
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Additional Reading

Intel® Xeon Phi™ Coprocessor High Performance Programming,
Jim Jeffers, James Reinders, (c) 2013, publisher: Morgan Kaufmann

It all comes down to
PARALLEL
PROGRAMMING !
(applicable to processors
and Intel® Xeon Phi™
coprocessors both)

Forward, Preface
Chapters:
1. Introduction
2. High Performance Closed 

Track
Test Drive!

3. A Friendly Country Road Race
4. Driving Around Town:

Optimizing A Real-World
Code Example

5. Lots of Data (Vectors)
6. Lots of Tasks (not Threads)
7. Offload
8. Coprocessor Architecture
9. Coprocessor System Software
10.  Linux on the Coprocessor
11.  Math Library
12.  MPI
13.  Profiling and Timing
14.  Summary
Glossary, Index

Available since February 2013.

This book belongs on the 
bookshelf of every HPC 

professional. Not only does it 
successfully and accessibly 

teach us how to use and 
obtain high performance on 

the Intel MIC architecture, it is 
about much more than that. It 
takes us back to the universal 

fundamentals of high-
performance computing 

including how to think and 
reason about the performance 

of algorithms mapped to 
modern architectures, and it 

puts into your hands powerful 
tools that will be useful for 

years to come. 
—Robert J. Harrison

Institute for Advanced 
Computational Science, 

Stony Brook University

Learn more about this book:

lotsofcores.com

“© 2013, James Reinders & Jim Jeffers, book image used with permission
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Sign In

Please sign in during any coffee break to receive an invitation to a
survey. Completing the survey earns you a free electronic copy of our
book “Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors”.
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§1. Introduction to the Intel Many
Integrated Core (MIC) Architecture
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MIC Architecture from the Programmer’s Perspective
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Intel Xeon Phi Coprocessors and the MIC Architecture

PCIe end-point device

High Power efficiency

∼ 1 TFLOP/s in DP

Heterogeneous clustering

For highly parallel applications which reach the scaling limits
on Intel Xeon processors
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Xeon Family Product Performance

Many-core Coprocessors
(Xeon Phi) vs Multi-core
Processors (Xeon) —

Better performance per
system & performance
per watt for parallel
applications

Same programming
methods, same
development tools.

Source: “Intel Xeon Product Family:
Performance Brief”
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Intel Xeon Processors and the MIC Architecture

Many-core Intel Xeon Phi coprocessorMulti-core Intel Xeon processor

C/C++/Fortran; OpenMP/MPI

Standard Linux OS

Up to 768 GB of DDR3 RAM

≤12 cores/socket ≈3 GHz

2-way hyper-threading

256-bit AVX vectors

C/C++/Fortran; OpenMP/MPI

Special Linux µOS distribution

6–16 GB cached GDDR5 RAM

57 to 61 cores at ≈1 GHz

4-way hyper-threading

512-bit IMCI vectors
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Examples of Solutions with the Intel MIC Architecture

Colfax’s CXP7450 workstation with
two Intel Xeon Phi coprocessors

Colfax’s CXP9000 server with eight
Intel Xeon Phi coprocessors
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Paper: research.colfaxinternational.com/post/2013/01/07/Nbody-Xeon-Phi.aspx
Demo: http://www.youtube.com/watch?v=KxaSEcmkGTo
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Microarchitecture
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Core Topology
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Cache Structure

The caches are 8-way associative, fully coherent with
the LRU (Least Recently Used) replacement policy

Cache line size 64B
L1 size 32KB data, 32KB code
L1 latency 1 cycle
L2 size 512KB
L2 ways 8
L2 latency 11 cycles
Memory → L2 prefetching hardware and software
L2 → L1 prefetching software only
Translation Lookaside Buffer(TLB)
coverage options (L1, data)

64 pages of size 4KB (256KB coverage)
8 pages of size 2MB (16MB coverage)
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Features of the IMCI Instruction Set
Intel IMCI is the instruction set supported by Intel Xeon Phi copr.

512-bit wide registers
Ï can pack up to eight 64-bit elements (long int, double)
Ï up to sixteen 32-bit elements (int, float)

Arithmetic Instructions
Ï Addition, subtraction and multiplication
Ï Fused Multiply-Add instruction (FMA)
Ï Division and reciprocal calculation;
Ï Error function, inverse error function;
Ï Exponential functions (natural, base 2 and base 10) and the power function.
Ï Logarithms (natural, base 2 and base 10).
Ï Square root, inverse square root, hypothenuse value and cubic root;
Ï Trigonometric functions (sin, cos, tan, sinh, cosh, tanh, asin, acos . . . );
Ï Rounding functions
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Features of the IMCI Instruction Set

Initialization, Load and Store, Gather and Scatter

Comparison

Conversion and type cast

Bitwise instructions: NOT, AND, OR, XOR, XAND
Reduction and minimum/maximum instructions

Vector mask instructions

Scalar instructions

Swizzle and permute
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Interactions between Operating Systems
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Host-side offload

User code

SSH

User-level code
System-level code

Linux Host

Offload libraries,
user-level driver,

user-accessible APIs
and libraries

Linux OS PCIe Bus

Intel® Xeon Phi™

coprocessor support
libraries, tools, and drivers

Target-side “native"

User code

User-level code
System-level code

Intel® Xeon Phi™ coprocessor

Standard OS
libraries plus any
3rd-party or Intel

libraries

PCIe Bus Linux uOS

Intel® Xeon Phi™

coprocessor communication and
application-launching support

application

Virtual terminal session

Target-side offload

User code

Offload libraries,
user-accessible

APIs and
libraries

applicationapplication
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Linux µOS on Intel Xeon Phi coprocessors (part of MPSS)
user@host% lspci | grep -i "co-processor"
06:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
82:00.0 Co-processor: Intel Corporation Device 2250 (rev 11)
user@host% sudo service mpss status
mpss is running
user@host% cat /etc/hosts | grep mic
172.31.1.1 host-mic0 mic0
172.31.2.1 host-mic1 mic1
user@host% ssh mic0
user@mic0% cat /proc/cpuinfo | grep proc | tail -n 3
processor : 237
processor : 238
processor : 239
user@mic0% ls /
amplxe dev home lib64 oldroot proc sbin sys usr
bin etc lib linuxrc opt root sep3.10 tmp var
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Software Tools for Intel Xeon Phi Coprocessors

MIC Developer Boot Camp Rev. 11 Software Tools for Intel Xeon Phi Coprocessors © Colfax International, 2013–2014



Execute MIC Applications (all free):

Drivers : Intel MIC Platform Software Stack
(Intel MPSS) — mandatory —
detect, boot and manage
coprocessors

Libraries : Redistributable libraries —
optional — run and distribute
pre-built applications

OpenCL : Intel OpenCL SDK — optional Monitoring MIC activity with
micsmc (an MPSS tool)
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MPSS Tools and Utilities

micinfo a system information query tool

micsmc a utility for monitoring and modifying the physical
paramaters: temperature, power modes, core utilization, etc.

micctrl a comprehensive configuration tool for the Intel Xeon Phi
coprocessor operating system

miccheck a set of diagnostic tests for the verification of the Intel Xeon
Phi coprocessor configuration

micrasd a host daemon logger of hardware errors reported by Intel
Xeon Phi coprocessors

micflash an Intel Xeon Phi flash memory agent
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Build Xeon Phi & Xeon CPU Applications (all licensed):

Compilers : Intel C Compiler, Intel C++ Compiler,
and Intel Fortran Compiler — mandatory

Optimization tools : Intel VTune Amplifier XE and
Intel Trace Analyzer and Collector (ITAC)
— highly recommended

Mathematics support : Intel Math Kernel Library
(MKL) — highly recommended

Development : Intel Inspector XE, Intel Advisor XE —
optional All-in-One Bundles,

common for CPU and MIC
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Will Application X Benefit from the MIC architecture?
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Three Layers of Parallelism
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Three Layers of Parallelism
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Compute-Bound Application Performance

Scalar & Single-thread
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One Size Does Not Fit All

An application must reach scalability limits on the CPU in order to
benefit from the MIC architecture.

Use Xeon Phi if:

Scales up to 100 threads

Compute bound &
vectorized, or
bandwidth-bound

Use Xeon if:

Serial or scales to .10
threads

Unvectorized or
latency-bound
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Xeon + Xeon Phi Coprocessors = Xeon Family

Programming models allow a range of CPU+MIC coupling modes

Xeon - Multi-Core Centric MIC - Many-Core Centric

Multi-Core Hosted

General serial and
parallel computing

Offload

Code with highly-
parallel phases

Symmetric

Codes with
balanced needs

Many Core Hosted

Highly-parallel
codes

Breadth
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§2. Programming Models for Intel Xeon
Phi Applications
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Native Execution

“Hello World” application:
1 #include <stdio.h>
2 #include <unistd.h>
3 int main(){
4 printf("Hello world! I have %ld logical cores.\n",
5 sysconf(_SC_NPROCESSORS_ONLN ));
6 }

Compile and run on host:
user@host% icc hello.c
user@host% ./a.out
Hello world! I have 32 logical cores.
user@host%
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Native Execution
Compile and run the same code on the coprocessor in the native mode:

user@host% icc hello.c -mmic
user@host% scp a.out mic0:~/
a.out 100% 10KB 10.4KB/s 00:00
user@host% ssh mic0
user@mic0% pwd
/home/user
user@mic0% ls
a.out
user@mic0% ./a.out
Hello world! I have 240 logical cores.
user@mic0%

Use -mmic to produce executable for MIC architecture

Must transfer executable to coprocessor (or NFS-share) and run from shell

Native MPI applications work the same way (need Intel MPI library)
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Native Applications for Coprocessors with MPI
“Hello World” in MPI:

1 #include "mpi.h"
2 #include <stdio.h>
3 #include <string.h>
4 int main (int argc, char *argv[]) {
5 int i, rank, size, namelen;
6 char name[MPI_MAX_PROCESSOR_NAME];
7 MPI_Init (&argc, &argv);
8 MPI_Comm_size (MPI_COMM_WORLD, &size);
9 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

10 MPI_Get_processor_name (name, &namelen);
11 printf ("Hello World from rank %d running on %s!\n", rank, name);
12 if (rank == 0) printf("MPI World size = %d processes\n", size);
13 MPI_Finalize ();
14 }
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Running MPI Applications on Host

user@host% source /opt/intel/impi/4.1.0/intel64/bin/mpivars.sh
user@host% export I_MPI_FABRICS=shm:tcp
user@host% mpiicpc -o HelloMPI.XEON HelloMPI.c
user@host% mpirun -host localhost -np 2 ./HelloMPI.XEON
Hello World from rank 1 running on host!
Hello World from rank 0 running on host!
MPI World size = 2 processes

Set up MPI environment variables

Use wrapper script mpiicpc to compile

Use automated tool mpirun to launch
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Running Native MPI Applications on Coprocessors
user@host% source /opt/intel/impi/4.1.0/intel64/bin/mpivars.sh
user@host% export I_MPI_MIC=1
user@host% export I_MPI_FABRICS=shm:tcp
user@host% mpiicpc -mmic -o HelloMPI.MIC HelloMPI.c
user@host% scp HelloMPI.MIC mic0:~/
user@host% mpirun -host mic0 -np 2 ~/HelloMPI.MIC
Hello World from rank 1 running on host-mic0!
Hello World from rank 0 running on host-mic0!
MPI World size = 2 processes

Enable the MIC architecture in Intel MPI: I_MPI_MIC=1
Copy or NFS-share MPI library & executables with coprocessor

Use mpiicpc with -mmic to compile

Launch as if mic0 is a remote host
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Paper: research.colfaxinternational.com/post/2013/10/17/Heterogeneous-Clustering.aspx
Demo: http://youtu.be/GffmChTcWf8
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Offload Programming Models
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Explicit Offload: Pragma-based approach

“Hello World” in the explicit offload model:

1 #include <stdio.h>
2 int main(int argc, char * argv[] ) {
3 printf("Hello World from host!\n");
4 #pragma offload target(mic)
5 {
6 printf("Hello World from coprocessor!\n"); fflush(0);
7 }
8 printf("Bye\n");
9 }

Application runs on the host, but some parts of code and date are moved (“offloaded”)
the coprocessor.
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Compiling and Running an Offload Application
user@host% icpc hello_offload.cpp -o hello_offload
user@host% ./hello_offload
Hello World from host!
Bye
Hello World from coprocessor!

No additional arguments if compiled with an Intel compiler

Run application on host as a regular application

Code inside of #pragma offload is offloaded automatically

Console output on Intel Xeon Phi coprocessor is buffered and
mirrored to the host console

If coprocessor is not installed, code inside #pragma offload runs
on the host system
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Offloading Functions
1 __attribute__((target(mic))) void MyFunction() {
2 // ... implement function as usual
3 }
4

5 int main(int argc, char * argv[] ) {
6 #pragma offload target(mic)
7 {
8 MyFunction();
9 }

10 }

Functions used on coprocessor must be marked with the specifier
__attribute__((target(mic)))
Compiler produces a host version and a coprocesor version of such
functions (to enable fall-back to host)
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Offloading Multiple Functions

1 #pragma offload_attribute(push, target(mic))
2 void MyFunctionOne() {
3 // ... implement function as usual
4 }
5

6 void MyFunctionTwo() {
7 // ... implement function as usual
8 }
9 #pragma offload_attribute(pop)

To mark a long block of code with the offload attribute, use #pragma
offload_attribute(push/pop)
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Offloading Data: Local Scalars and Arrays
1 void MyFunction() {
2 const int N = 1000;
3 int data[N];
4 #pragma offload target(mic)
5 {
6 for (int i = 0; i < N; i++)
7 data[i] = 0;
8 }

Scope-local scalars and known-size arrays offloaded automatically

Data is copied from host to coprocessor at the start of offload

Data is copied back from coprocessor to host at the end of offload

Bitwise-copyable data only (arrays of basic types and scalars)
C++ classes, etc. should use virtual-shared memory model
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Offloading Data: Global and Static Variables

1 int* __attribute__((target(mic))) data;
2

3 void MyFunction() {
4 static int __attribute__((target(mic))) N;
5 // ...
6 }
7

8 int main() {
9 // ...

10 }

Global and static variables must be marked with the offload attribute

#pragma offload_attribute(push/pop) may be used as well
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Data Marshalling for Dynamically Allocated Data

1 double *p1=(double*)malloc(sizeof(double)*N);
2 double *p2=(double*)malloc(sizeof(double)*N);
3

4 #pragma offload target(mic) in(p1 : length(N)) out(p2 : length(N))
5 {
6 // ... perform operations on p1[] and p2[]
7 }

#pragma offload recognizes clauses in, out, inout and nocopy
Data size (length), alignment, redirection, and other properties
may be specified

Marshalling is required for pointer-based data
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Memory retention and data persistence on coprocessor

1 #pragma offload target(mic) in(p : length(N) alloc_if(1) free_if(0) )
2 { /* allocate memory for array p on coprocessor, do not deallocate */ }
3

4 #pragma offload target(mic) in(p : length(0) alloc_if(0) free_if(0) )
5 { /* re-use previously allocated memory on coprocessor */ }
6

7 #pragma offload target(mic) out(p : length(N) alloc_if(0) free_if(1) )
8 { /* re-use memory and deallocate at the end of offload */ }

By default, memory on coprocessor is allocated before, deallocated after offload

Specifiers alloc_if and free_if allow to avoid allocation/deallocation

Can be combined with length(0) to avoid data transfer

Why bother: data transfer across the PCIe bus is relatively slow (6 GB/s), and
memory allocation on coprocessor is even slower (0.5 GB/s)
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Precautions with persistent data

Use explicit zero-based coprocessor number
(e.g., mic:0 as shown below)

With multiple coprocessors, if target number is unspecified, any
coprocessor can be used, which will result in runtime errors if
persistent data cannot be found.

1 #pragma offload target(mic:0) in(p : length(N)) alloc_if(1) free_if(0) )
2 { /* allocate memory for array p on coprocessor, do not deallocate */ }

Do not change the value of the host pointer to a persistent array: the
runtime system finds the data on coprocessor using the host pointer
value, not variable name.
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Virtual-shared Memory Model
1 _Cilk_shared int arr[N]; // This is a virtual-shared array
2

3 _Cilk_shared void Compute() { // This function may be offloaded
4 // ... function uses array arr[]
5 }
6

7 int main() {
8 // arr[] can be initialized on the host
9 _Cilk_offload Compute(); // and used on coprocessor

10 // and the values are returned to the host
11 }

Alternative to Explicit Offload

Data synced from host to coprocessor before the start of offload

Data synced from coprocessor to host at the end of offload
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Virtual-shared Memory Model

1 int* _Cilk_shared data; // Pointer to a virtual-shared array
2

3 int main() {
4 // Working with pointer-based data is illustrated below:
5 data = (_Cilk_shared int*)_Offload_shared_malloc(N*sizeof(float));
6 _Offload_shared_free(data);
7 }

Addresses of virtual-shared pointers identical on host and
coprocessors

Synchronized before and after offload, with page granularity
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Target-Specific Code

During MIC architecture compilation, preprocessor macro __MIC__ is defined.

Allows to fine-tune application performance or output where necessary

1 void __attribute__((target(mic))) MyFunction() {
2 #ifdef __MIC__
3 printf("I am running on a coprocessor.\n");
4 const int tuningParameter = 16;
5 #else
6 printf("I am running on the host.\n");
7 const int tuningParameter = 8;
8 #endif
9 // ... Proceed, using the variable tuningParameter

10 }
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Using Multiple Coprocessors
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Clusters with Intel Xeon Phi Coprocessors

Option 1: run MPI processes on hosts and offload to coprocessors:

Option 2: MPI as native applications on hosts and coprocessors:
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Multiple Coprocessors with Explicit Offload

Querying the number of coprocessors:

1 const int numDevices = _Offload_number_of_devices();
2 printf("Number of available coprocessors: %d\n" , numDevices);

Specifying offload target:

1 #pragma offload target(mic: 0)
2 { /* ... */ }
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Multiple Blocking Offloads Using Host Threads
(Explicit Offload)

1 const int nDevices = _Offload_number_of_devices();
2 #pragma omp parallel for
3 for (int i = 0; i < nDevices; i++) {
4 #pragma offload target(mic: i)
5 {
6 MyFunction(/*...*/ );
7 }
8 }

Up to 8 coprocessors, up to 32 host threads

All offloads start simultaneously and block the respective thread
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Blocking Explicit Offloads Using Threads: Dynamic Work
Distribution Across Coprocessors

1 const int nDevices = _Offload_number_of_devices();
2 omp_set_num_threads(nDevices);
3 #pragma omp parallel for schedule(dynamic, 1)
4 for (int i = 0; i < nWorkItems; i++) {
5 const int iDevice = omp_get_thread_num();
6 #pragma offload target(mic: iDevice)
7 {
8 MyFunction(i);
9 }

10 }

Up to 8 coprocessors, up to 32 host threads

nWorkItems are dynamically scheduled on nDevices

MIC Developer Boot Camp Rev. 11 Using Multiple Coprocessors © Colfax International, 2013–2014



Asynchronous Offload

By default, #pragma offload blocks until offload completes

Use clause “signal” with any pointer to avoid blocking

Use #pragma offload_wait to block where needed

1 char* offload0;
2 #pragma offload target(mic:0) signal(offload0) in(data : length(N))
3 { /* ... will not block code execution because of clause "signal" */ }
4

5 DoSomethingElse();
6

7 /* Now block until offload signalled by pointer "offload0" completes */
8 #pragma offload_wait target(mic:0) wait(offload0)

Use the target number to avoid hanging
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Offload diagnostics
user@host% export OFFLOAD_REPORT=2
user@host% ./offload-application
Transferring some data to and from coprocessor...
Done. Bye!
[Offload] [MIC 0] [File] offload-application.cpp
[Offload] [MIC 0] [Line] 6
[Offload] [MIC 0] [CPU Time] 0.505982 (seconds)
[Offload] [MIC 0] [CPU->MIC Data] 1024 (bytes)
[Offload] [MIC 0] [MIC Time] 0.000409 (seconds)
[Offload] [MIC 0] [MIC->CPU Data] 1024 (bytes)
user@host%

Set environment variable OFFLOAD_REPORT to 1 or 2 for automatic
collection and output of offload information.

Unset or set OFFLOAD_REPORT=0 to disable offload diagnostics
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Environment variable forwarding with offload

By default, all host environment variables on the host will be copied
to the coprocessor when offload starts.

In order to have different values for an environment variable on host
and coprocessor, set MIC_ENV_PREFIX
The prefix is dropped when variables are copied to coprocessor

user@host% # This enables s
user@host% export MIC_ENV_PREFIX=XEONPHI
user@host%
user@host% # This sets the value of OMP_NUM_THREADS on the host:
user@host% export OMP_NUM_THREADS=32
user@host%
user@host% # This sets the value of OMP_NUM_THREADS on the coprocessor:
user@host% export XEONPHI_OMP_NUM_THREADS=236

MIC Developer Boot Camp Rev. 11 Using Multiple Coprocessors © Colfax International, 2013–2014



Multiple Asynchronous Explicit Offloads From a Single
Thread

1 const int nDevices = _Offload_number_of_devices();
2 char sig[nDevices];
3 for (int i = 0; i < nDevices; i++) {
4 #pragma offload target(mic: i) signal(&sig[i])
5 {
6 MyFunction(/*...*/ );
7 }
8 }
9 for (int i = 0; i < nDevices; i++) {

10 #pragma offload_wait target(mic: i) wait(&sig[i])
11 }

Any pointer acts as a signal

Must wait for all signals
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MPI Applications and Heterogeneous Clustering
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Heterogeneous MPI Applications: Host + Coprocessors

user@host% mpirun -host mic0 -n 2 ~/Hello.MIC : -host mic1 -n 2 ~/Hello.MIC : \
% -host localhost -n 2 ~/Hello.XEON
Hello World from rank 5 running on localhost!
Hello World from rank 4 running on localhost!
Hello World from rank 2 running on mic1!
Hello World from rank 3 running on mic1!
Hello World from rank 1 running on mic0!
Hello World from rank 0 running on mic0!
MPI World size = 6 ranks

Specify Xeon executable for host processes

Specify Xeon Phi executable for coprocessor processes
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Heterogeneous Distributed Computing with Xeon Phi

Option 1: Symmetric Pure MPI.

MPI processes are single-threaded.

Native MPI processes on the coprocessor.

E.g., 32 MPI processes on each CPU, 240 on each coprocessor.
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Heterogeneous Distributed Computing with Xeon Phi

Option 2: Symmetric Hybrid MPI+OpenMP.

MPI processes are multi-threaded with OpenMP.

Native MPI processes on the coprocessor.

E.g., one 32-thr MPI proc on each CPU, 240-thr on each coprocessor.
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Heterogeneous Distributed Computing with Xeon Phi

Option 3: Hybrid MPI+OpenMP with Offload.

MPI processes are multi-threaded with OpenMP.

MPI processes run only on CPUs.

One or more OpenMP threads perform offload to coprocessor(s).
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File I/O in MPI Applications
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RAM Filesystem

Files are stored in the
coprocessor RAM

Does not survive MPSS restart or
host reboot

Fastest method

Good for local pre-staged input
or runtime scratch data

host
OS

uOS

HDD

HDD

RAM FS

PCIe BUS

IB HCA

native
MPI

process
I/O

NIC

host

Xeon
PHI
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Virtio Transfer to Local Host Drives

Files are stored on a physical or
virtual drive on the host

Written data persistent across
reboots

Fast method

Cannot share a drive between
coprocessors

Good for distributed
checkpointing

uOS

HDD

RAM FS

IB HCA

native
MPI

process

host
OS

HDD

PCIe BUS

I/O

/mnt/dir

NIC

Xeon
PHI

host
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Network Storage

Files are stored on a remote file
server

Can share a mount point across
the cluster

Lustre has scalable performance

NFS is slow but easy to set up
uOS

HDD

RAM FS

native
MPI

process

HDD

I/O

host
OS

IB HCA

NIC

/mnt/dir

PCIe BUS

I/O

to LUSTRE

to NFS

host

Xeon
PHI
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Review: Programming Models
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Programming Models

1 Native coprocessor applications
Ï Compile with -mmic
Ï Run with micnativeloadex or scp+ssh
Ï The way to go for MPI applications without offload

2 Explicit offload
Ï Functions, global variables require __attribute__((target(mic)))
Ï Initiate offload, data marshalling with #pragma offload
Ï Only bitwise-copyable data can be shared

3 Clusters and multiple coprocessors
Ï #pragma offload target(mic:i)
Ï Use threads to offload to multiple coprocessors
Ï Run native MPI applications
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§3. Porting Applications to the MIC
Architecture
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Choosing the Programming Model

MIC Developer Boot Camp Rev. 11 Choosing the Programming Model © Colfax International, 2013–2014



To Offload or Not To Offload
For a “MIC-friendly” application,

Use offload if:

Per-rank data set does not fit
in the Xeon Phi onboard
memory

Need CPU: serial workload,
intensive file I/O

MPI bandwidth-bound or
latency-bound workload

Cannot compile some of
dependencies for MIC

Use native/symmetric MPI if:

Parallel work-items too
small, so data transfer
overhead is significant

Peer-to-peer
communication between
workers is required

Difficult to instrument data
movement or sharing with
coprocessor
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PCIe Bandwidth Considerations

With data sent from host to coprocessor, communication overhead must
be considered:

PCIe bandwidth: 6 GB/s, theoretical max arithmetic performance
1 TFLOP/s, practical memory bandwidth 150-170 GB/s

Offload if MIC performs À 1000 operations per transferred word

Algorithms with strong complexity scaling (e.g., O(n2)) likely less
impacted by communication than with weak scaling (e.g., O(n),
O(n logn))
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Cross-Compilation of User Applications
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Simple Applications, Native Execution

Simple CPU applications can be compiled for native execution on Xeon
Phi coprocessors by supplying the flag “-mmic” to the Intel compiler:

user@host% icpc -c myobject1.cc -mmic
user@host% icpc -c myobject2.cc -mmic
user@host% icpc -o myapplication myobject1.o myobject2.o -mmic
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Native Applications with Autotools

Use the Intel compiler with flag -mmic
Eliminate assembly and unncecessary dependencies

Use --host=x86_64 to avoid “program does not run” errors

Example, the GNU Multiple Precision Arithmetic Library (GMP):

user@host% wget https://ftp.gnu.org/gnu/gmp/gmp-5.1.3.tar.bz2
user@host% tar -xf gmp-5.1.3.tar.bz2
user@host% cd gmp-5.1.3
user@host% ./configure CC=icc CFLAGS="-mmic" --disable-assembly --host=x86_64
...
user@host% make
...
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Static Libraries with Offload

In offload applications, additional object files are produced:

user@host% # Program in myobject.cc contains #pragma offload
user@host% icpc -c myobject.cc
user@host% ls
myobject.cc myobjectMIC.o myobject.o

In order to compile the *MIC.o files into a static library with offload, use
xiar -qoffload-build instead of ar.

See white paper for more details:
http://research.colfaxinternational.com/post/2013/05/03/Fast-Library-Xeon-Phi.aspx
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Performance Expectations
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Performance on MIC is a Function of Optimization Level
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Performance on MIC is a Function of Optimization Level

Performance will be
disappointing if code is not
optimized for multi-core
CPUs

Optimized code runs better
on the MIC platform and on
the multi-core CPU

Single code for two
platforms + Ease of porting =
Incremental optimization

Case study:
http://research.colfaxinternational.com/post/2013/11/25/sc13-

talk.aspx

MIC Developer Boot Camp Rev. 11 Performance Expectations © Colfax International, 2013–2014

http://research.colfaxinternational.com/post/2013/11/25/sc13-talk.aspx
http://research.colfaxinternational.com/post/2013/11/25/sc13-talk.aspx


Caution on Comparative Benchmarks

In most of our benchmarks,
“Xeon Phi” = 5110P SKU
(60 cores, TDP 225 W, $2.7k),
“CPU” = dual Xeon E5-2680
(16 cores, TDP 260 W, $3.4k
+ system cost)

Why dual CPU vs single
coprocessor? Approximately
the same Thermal Design
Power (TDP) and cost.

Case study:
http://research.colfaxinternational.com/post/2013/11/25/sc13-

talk.aspx
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Future-Proofing: Reliance on Compiler and Libraries
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Future-Proofing: Reliance on Compiler and Libraries
Ease of use

Fine control

Threading Options Vector Options

Intel® Math Kernel Library

Array Notation: Intel® Cilk™ Plus

Auto vectorization

Semi-auto vectorization:
#pragma (vector, simd)

OpenCL*

C/C++ Vector Classes
(F32vec16, F64vec8)

Intel® Math Kernel Library API*

Intel® Threading Building
Blocks

Intel® Cilk™ Plus

OpenMP*

Pthreads*

D
e

p
th

MIC Developer Boot Camp Rev. 11 Future-Proofing: Reliance on Compiler and Libraries © Colfax International, 2013–2014



Next Generation MIC: Knights Landing (KNL)

2nd generation MIC product: code
name Knights Landing (KNL)

Intel’s 14 nm manufacturing process

A processor (running the OS) or a
coprocessor (PCIe device)

On-package high-bandwidth
memory w/flexible memory models:
flat, cache, & hybrid

Intel Advanced Vector Extensions
AVX-512 (public)

Source: Intel Newsroom
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Getting Ready for the Future

Porting HPC applications to today’s
MIC architecture makes them ready for
future architectures, such as KNL

Xeon, KNC and KNL are not binary
compatible, therefore assembly-level
tuning will not scale forward.

Reliance on compiler optimization and
using optimized libraries (such as Intel
MKL) ensures future-readiness.

Source: Intel Newsroom
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§4. Parallel Scalability on Intel
Architectures
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Vectorization (Single Instruction Multiple Data, SIMD,
Parallelism)
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SIMD Operations

SIMD — Single Instruction Multiple Data

Scalar Loop SIMD Loop

1 for (i = 0; i < n; i++)
2 A[i] = A[i] + B[i];

1 for (i = 0; i < n; i += 4)
2 A[i:(i+4)] = A[i:(i+4)] + B[i:(i+4)];

Each SIMD addition operator acts on 4 numbers at a time.
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Instruction Sets in Intel Architectures

Instruction
Set

Year and Intel Processor Vector
registers

Packed Data Types

MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3–SSE4.2 2004 – 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP
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Explicit Vectorization: Compiler Intrinsics
SSE2 Intrinsics

1 for (int i=0; i<n; i+=4) {
2 __m128 Avec=_mm_load_ps(A+i);
3 __m128 Bvec=_mm_load_ps(B+i);
4 Avec=_mm_add_ps(Avec, Bvec);
5 _mm_store_ps(A+i, Avec);
6 }

IMCI Intrinsics

1 for (int i=0; i<n; i+=16) {
2 __m512 Avec=_mm512_load_ps(A+i);
3 __m512 Bvec=_mm512_load_ps(B+i);
4 Avec=_mm512_add_ps(Avec, Bvec);
5 _mm512_store_ps(A+i, Avec);
6 }

The arrays float A[n] and float B[n] are aligned
on a 16-byte (SSE2) and 64-byte (IMCI) boundary

n is a multiple of 4 for SSE and a multiple of 16 for IMCI

Variables Avec and Bvec are
128 = 4 × sizeof(float) bits in size for SSE2 and
512 = 16 × sizeof(float) bits for the Intel Xeon Phi architecture
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Automatic Vectorization of Loops
1 #include <stdio.h>
2

3 int main(){
4 const int n=8;
5 int i;
6 int A[n] __attribute__((aligned(64)));
7 int B[n] __attribute__((aligned(64)));
8

9 // Initialization
10 for (i=0; i<n; i++)
11 A[i]=B[i]=i;
12

13 // This loop will be auto-vectorized
14 for (i=0; i<n; i++)
15 A[i]+=B[i];
16

17 // Output
18 for (i=0; i<n; i++)
19 printf("%2d %2d %2d\n", i, A[i], B[i]);
20 }

user@host% icpc autovec.c -vec-report3
autovec.c(10): (col. 3) remark:

loop was not vectorized:
vectorization possible
but seems inefficient.

autovec.c(14): (col. 3) remark:
LOOP WAS VECTORIZED.

autovec.c(18): (col. 3) remark:
loop was not vectorized:
existence of vector
dependence.

user@host% ./a.out
0 0 0
1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
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Automatic Vectorization of Loops on MIC architecture
Compilation and runtime output of the code for Intel Xeon Phi execution

user@host% icpc autovec.c -vec-report3 -mmic
autotest.c(10): (col. 3) remark: LOOP WAS VECTORIZED.
autotest.c(14): (col. 3) remark: LOOP WAS VECTORIZED.
autotest.c(18): (col. 3) remark: loop was not vectorized:

existence of vector dependence.
user@host% micnativeloadex a.out
0 0 0
1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
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Automatic Vectorization of Loops

Limitations:

Only for-loops can be auto-vectorized. Number of iterations must
be known at a runtime and/or compilation time

Memory access in the loop must have a regular pattern,
ideally with unit stride
Non-standard loops that cannot be automatically vectorized:

Ï loops with irregular memory access pattern
Ï calculations with vector dependence
Ï while-loops, for-loops with undetermined number of iterations
Ï outer loops (unless #pragma simd overrides this restriction)
Ï loops with complex branches (i.e., if-conditions)
Ï anything else that cannot be, or is very difficult to vectorize.
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Multi-Threading: OpenMP
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Parallelism in Shared Memory: OpenMP and Intel Cilk Plus

Intel Cilk Plus
Ï Good performance “out of the box”
Ï Little freedom for fine-tuning
Ï Programmer should focus on exposing the parallelism
Ï Low-level optimization (thread creation, work distribution and data sharing)

is performed by the Cilk Plus library
Ï Novel framework

OpenMP
Ï Easy to use for simple algorithms
Ï For complex parallelism, may require more tuning to perform well
Ï Allows more control over synchronization, work scheduling and distribution
Ï Well-established framework
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Program Structure in OpenMP
1 main() { // Begin serial execution.
2 ... // Only the initial thread executes
3 #pragma omp parallel // Begin a parallel construct and form
4 { // a team.
5 #pragma omp sections // Begin a work-sharing construct.
6 {
7 #pragma omp section // One unit of work.
8 {...}
9 #pragma omp section // Another unit of work.

10 {...}
11 } // Wait until both units of work complete.
12 ... // This code is executed by each team member.
13 #pragma omp for // Begin a work-sharing Construct
14 for(...)
15 { // Each iteration chunk is unit of work.
16 ... // Work is distributed among the team members.
17 } // End of work-sharing construct.
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Program Structure in OpenMP
18 #pragma omp critical // Begin a critical section.
19 {...} // Only one thread executes at a time.
20 #pragma omp task // Execute in another thread without blocking
21 {...}
22 ... // This code is executed by each team member.
23 #pragma omp barrier // Wait for all team members to arrive.
24 ... // This code is executed by each team member.
25 } // End of Parallel Construct
26 // Disband team and continue serial execution.
27 ... // Possibly more parallel constructs.
28 } // End serial execution.

1 Code outside #pragma omp parallel is serial, i.e., executed by only one thread
2 Code directly inside #pragma omp parallel is executed by each thread
3 Code inside work-sharing construct #pragma omp for is distributed across the

threads in the team
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“Hello World” OpenMP Programs

1 #include <omp.h>
2 #include <stdio.h>
3

4 int main(){
5 const int nt=omp_get_max_threads();
6 printf("OpenMP with %d threads\n", nt);
7

8 #pragma omp parallel
9 printf("Hello World from thread %d\n", omp_get_thread_num());

10 }
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“Hello World” OpenMP Programs
user@host% export OMP_NUM_THREADS=5
user@host% icpc -openmp hello_omp.cc
user@host% ./a.out
OpenMP with 5 threads
Hello World from thread 0
Hello World from thread 3
Hello World from thread 1
Hello World from thread 2
Hello World from thread 4
user@host% icpc -openmp-stubs hello_omp.cc
hello_omp.cc(8): warning #161: unrecognized #pragma

#pragma omp parallel
^

user@host% ./a.out
OpenMP with 1 threads
Hello World from thread 0
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Loop-Centric Parallelism: For-Loops in OpenMP

Simultaneously launch
multiple threads

Scheduler assigns loop
iterations to threads

Each thread processes
one iteration at a time
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Parallelizing a for-loop.
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Loop-Centric Parallelism: For-Loops in OpenMP

The OpenMP library will distribute the iterations of the loop following the
#pragma omp parallel for across threads.

1 #pragma omp parallel for
2 for (int i=0; i<n; i++) {
3 printf("Iteration %d is processed by thread %d\n",
4 i, omp_get_thread_num());
5 // ... iterations will be distributed across available threads...
6 }
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Loop-Centric Parallelism: For-Loops in OpenMP

1 #pragma omp parallel
2 {
3 // Code placed here will be executed by all threads.
4 // Stack variables declared here will be private to each thread.
5 int private_number=0;
6 #pragma omp for schedule(dynamic, 4)
7 for (int i=0; i<n; i++) {
8 // ... iterations will be distributed across available threads...
9 }

10 // ... code placed here will be executed by all threads
11 }
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Fork-Join Model of Parallel Execution

Each thread can spawn
daughter threads

Available threads pick up
queued tasks

Expresses algorithms
that cannot be expressed
in the loop model (e.g.,
parallel recursion)

- Elemental function
- Fork
- Join

Fork-join model of parallel execution.

(see #pragma omp task functionality, e.g., here)
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Synchronization: Avoiding Unpredictable Program Behavior

1 #include <omp.h>
2 #include <stdio.h>
3 int main() {
4 const int n = 1000;
5 int total = 0;
6 #pragma omp parallel for
7 for (int i = 0; i < n; i++) {
8 // Race condition
9 total = total + i;

10 }
11 printf("total=%d (must be %d)\n", total, ((n-1)*n)/2);
12 }

user@host% icpc -o omp-race omp-race.cc -openmp
user@host% ./omp-race
total=208112 (must be 499500)
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Synchronization: Avoiding Unpredictable Program Behavior

1 #include <omp.h>
2 #include <stdio.h>
3 int main() {
4 const int n = 1000;
5 int total = 0;
6 #pragma omp parallel for
7 for (int i = 0; i < n; i++) {
8 #pragma omp critical
9 { // Only one thread at a time can execute this section

10 total = total + i;
11 }
12 }

user@host% icpc -o omp-critical omp-critical.cc -openmp
user@host% ./omp-race
total=499500 (must be 499500)
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Synchronization: Avoiding Unpredictable Program Behavior

This parallel fragment of code has predictable behavior, because the
race condition was eliminated with an atomic operation:

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) {
3 // Lightweight synchronization
4 #pragma omp atomic
5 sum += i;
6 }
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Synchronization: Avoiding Unpredictable Program Behavior

Read : operations in the form v = x
Write : operations in the form x = v

Update : operations in the form x++, x--, --x, ++x, x binop= expr
and x = x binop expr

Capture : operations in the form v = x++, v = x–, v = –x, v = ++x,

v = x binop expr

Here x and v are scalar variables
binop is one of +, *, -, - /, &, ˆ , |, «, ».
No “trickery” is allowed for atomic operations:

Ï no operator overload,
Ï no non-scalar types,
Ï no complex expressions.
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Reduction: Avoiding Synchronization
1 #include <omp.h>
2 #include <stdio.h>
3

4 int main() {
5 const int n = 1000;
6 int sum = 0;
7 #pragma omp parallel for reduction(+: sum)
8 for (int i = 0; i < n; i++) {
9 sum = sum + i;

10 }
11 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
12 }

user@host% icpc -o omp-reduction omp-reduction.cc -openmp
user@host% ./omp-reduction
sum=499500 (must be 499500)
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Implementation of Reduction using Private Variables
1 #include <omp.h>
2 #include <stdio.h>
3

4 int main() {
5 const int n = 1000;
6 int sum = 0;
7 #pragma omp parallel
8 {
9 int sum_th = 0;

10 #pragma omp for
11 for (int i = 0; i < n; i++)
12 sum_th = sum_th + i;
13 #pragma omp atomic
14 sum += sum_th;
15 }
16 printf("sum=%d (must be %d)\n", sum, ((n-1)*n)/2);
17 }
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Multi-Threading: Intel Cilk Plus
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Program Structure with Intel Cilk Plus
Only three keywords in the Cilk Plus standard:

Ï _Cilk_for
Ï _Cilk_spawn
Ï _Cilk_sync

Programming for coprocessors may also require keywords
Ï _Cilk_shared
Ï _Cilk_offload

Language extensions
Ï array notation
Ï hyperobjects
Ï elemental function
Ï #pragma simd

Guarantees that serialized code will produce the same results as parallel code
Integrates vectorization and thread-parallelism
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“Hello World” Intel Cilk Plus Programs
1 #include <cilk/cilk.h>
2 #include <stdio.h>
3

4 int main(){
5 const int nw=__cilkrts_get_nworkers();
6 printf("Cilk Plus with %d workers.\n", nw);
7

8 _Cilk_for (int i=0; i<nw; i++) // Light workload: gets serialized
9 printf("Hello World from worker %d\n", __cilkrts_get_worker_number());

10

11 _Cilk_for (int i=0; i<nw; i++) {
12 double f=1.0;
13 while (f<1.0e40) f*=2.0; // Extra workload: gets parallelized
14 printf("Hello Again from worker %d (%f)\n",
15 __cilkrts_get_worker_number(), f);
16 }
17 }
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“Hello World” Intel Cilk Plus Programs

user@host$ export CILK_NWORKERS=5
user@host$ icpc hello_cilk.cc
user@host$ ./a.out
Cilk Plus with 5 workers.
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 1 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 3 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
user@host$

MIC Developer Boot Camp Rev. 11 Multi-Threading: Intel Cilk Plus © Colfax International, 2013–2014



“Hello World” Intel Cilk Plus Programs

user@host$ export CILK_NWORKERS=5
user@host$ icpc -cilk-serialize hello_cilk.cc
user@host$ ./a.out
Cilk Plus with 5 workers.
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello World from worker 0
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
Hello Again from worker 0 (10889035741470030830827987437816582766592.000000)
user@host$
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Loop-Centric Parallelism: For-Loops in Intel Cilk Plus

Intel Cilk Plus distributes the iterations between the available workers

1 _Cilk_for (int i=0; i<n; i++) {
2 // ... iterations will be distributed across available threads...
3 printf("Iteration %d is processed by worker %d\n",
4 i, __cilkrts_get_worker_number());
5 }

Controlling grain size in Intel Cilk Plus

1 #pragma cilk grainsize = 4
2 _Cilk_for (int i = 0; i < N; i++) {
3 // ...
4 }

Intel Cilk Plus uses the “work stealing” scheduling mode.

MIC Developer Boot Camp Rev. 11 Multi-Threading: Intel Cilk Plus © Colfax International, 2013–2014



Fork-Join Model of Parallel Execution

Each task can spawn
daughter tasks

Available workers pick
up queued tasks

Expresses algorithms
that cannot be expressed
in the loop model (e.g.,
parallel recursion)

- Elemental function
- Fork
- Join

Fork-join model of parallel execution.

(see _Cilk_spawn functionality, e.g., here or at www.cilkplus.org)

MIC Developer Boot Camp Rev. 11 Multi-Threading: Intel Cilk Plus © Colfax International, 2013–2014

http://www.colfax-intl.com/nd/xeonphi/book.aspx
http://www.cilkplus.org/


Cooperation Between Threads in Intel Cilk Plus

Limited vocabulary of Cilk is conducive to good parallel programming:

No synchronization facilities (locks). Programmer must use
reduction instead.

Ï Reducers (C++ templates) available for common operations on objects
Ï Custom reducers can be written

No private variables. Use holders (C++ template classes) instead.

Little user control over the number of workers and scheduling.

More information, e.g., www.cilkplus.org
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C++ Language Extensions of Intel Cilk Plus

Elemental functions: compiled for usage in thread- and
data-parallel loops (see, e.g., white paper)

Array notation: Intel C++ compiler understands expressions like
A[0:M][0:N]=B[0:M][0:N]
Guided automatic vectorization: #pragma simd.
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Task Parallelism in Distributed Memory, MPI
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Task Parallelism in Distributed Memory, MPI

The most commonly used
framework for distributed

memory HPC calculations is
the Message Passing

Interface (MPI).

Intel MPI library implements
MPI for the x86 and for the

MIC architectures.
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Compiling and Running MPI applications

1 Compile and link with the MPI wrapper of the compiler:
Ï mpiicc for C,
Ï mpiicpc for C++,
Ï mpiifort for Fortran 77 and Fortran 95.

2 Set up MPI environment variables and I_MPI_MIC=1
3 NFS-share or copy the MPI library and the application executable to

the coprocessors
4 Launch with the tool mpirun

Ï Colon-separated list of executables and hosts (argument -host hostname),
Ï Alternatively, use the machine file to list hosts
Ï Coprocessors have hostnames defined in /etc/hosts
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Peer-to-Peer Communication between Coprocessors
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Left: Gigabit Ethernet bridging on host allows to place coprocessors
on the same subnet as hosts( I_MPI_FABRICS=tcp)

Right: Coprocessor Communication Link (CCL) – virtualization of an
InfiniBand device on each coprocessor (I_MPI_FABRICS=dapl)
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Structure of MPI Applications
1 #include "mpi.h"
2 int main(int argc, char** argv) {
3 int ret = MPI_Init(&argc,&argv); // Set up MPI environment
4 if (ret != MPI_SUCCESS) {
5 MyErrorLogger("...");
6 MPI_Abort(MPI_COMM_WORLD, ret);
7 }
8 int worldSize, myRank, myNameLength;
9 char myName[MPI_MAX_PROCESSOR_NAME];

10 MPI_Comm_size(MPI_COMM_WORLD, &worldSize);
11 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
12 MPI_Get_processor_name(myName, &myNameLength);
13 // ... Perform work, exchange messages with MPI_Send, MPI_Recv, etc. ...
14 // Terminate MPI environment
15 MPI_Finalize();
16 }
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Point to Point Communication

1 if (rank == receiver) {
2

3 char incomingMsg[messageLength];
4 MPI_Recv (&incomingMsg, messageLength, MPI_CHAR, sender,
5 tag, MPI_COMM_WORLD, &stat);
6 printf ("Received message with tag %d: ’%s’\n", tag, incomingMsg);
7

8 } else if (rank == sender) {
9

10 char outgoingMsg[messageLength];
11 strcpy(outgoingMsg, "/Jenny");
12 MPI_Send(&outgoingMsg, messageLength, MPI_CHAR, receiver, tag, MPI_COMM_WORLD);
13

14 }
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Collective Communication: Broadcast

1 int MPI_Bcast( void *buffer, int count, MPI_Datatype datatype,
2 int root, MPI_Comm comm );

sender

data

receiver receiver receiverreceiver

Broadcast
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Collective Communication: Scatter

1 int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf,
2 int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm);

Scatter

sender

data

receiver receiver receiverreceiver

data

data

data
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Collective Communication: Gather
1 int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,
2 void *recvbuf, int recvcnt, MPI_Datatype recvtype,
3 int root, MPI_Comm comm);

Gather

sender

data

sender

data

sender

data

sender

data

receiver
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Collective Communication: Reduction
1 int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
2 MPI_Op op, int root, MPI_Comm comm);

Reduction

sender

5

sender

7

sender

3

sender

1

receiver

16

Available reducers: max/min, minloc/maxloc, sum, product,
AND, OR, XOR (logical or bitwise).
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Review: Parallel Scalability
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Expressing Parallelism
1 Data parallelism (vectorization)

Ï Automatic vectorization by the compiler: portable and convenient
Ï For-loops and array notation can be vectorized
Ï Compiler hints (#pragma simd, #pragma ivdep, etc.) to assist the compiler

2 Shared-memory parallelism with OpenMP and Intel Cilk Plus
Ï Parallel threads access common memory for reading and writing
Ï Parallel loops: #pragma omp parallel for

and _Cilk_for — automatic work distribution
Ï In OpenMP: private and shared variables; synchronization, reduction.

3 Distributed-memory parallelism with MPI
Ï MPI processes do not share memory, but can send information to each other
Ï All MPI processes execute the same code; role is determined by its rank
Ï Point-to-point and collective communication patterns
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§5. Optimization for the Intel Xeon
Product Family
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Optimization Roadmap
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Performance Expectations

vs.
One Intel Xeon Phi coprocessor Two Intel Xeon Sandy Bridge CPUs

Up to 2x-3x for linear algebraic workloads

Up to 2x-4x for bandwidth-bound and transcendental arithmetics

Why compare 1 coprocessor agains 2 processors?
Same thermal design power (TDP).

See also “Intel Xeon Product Family: Performance Brief”
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Optimization Checklist

1 Scalar optimization

2 Vectorization

3 Scale above 100 threads

4 Arithmetically intensive or bandwidth-limited

5 Efficient cooperation between the host and the coprocessor(s)
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Optimization for Xeon Family: Two Birds with One Stone

Our most flattering criticism:
“...the labs should have demonstrated
problems that were geared more towards
showing off the Phi’s capabilities rather
than mostly dealing with general Intel
compiler optimizations that worked on
both the Xeon & Phi. (Obviously the
optimizations for one are good on the
other, but this class could have just been
billed as an Intel Compiler Optimization
course with the same material).”

Customer of Colfax’s 4-day Parallel
Programming Workshop

From the creators of MIC:
“Really, everything that we talked about
in the book was about, fundamentally,
parallel programming... The one thing
we’ve seen over and over again is that if
you parallelize either for Xeon, or for
Xeon Phi, they both benefit.”

Jim Jeffers, author of “Intel Xeon Phi
Coprocessor High Performance
Programming”, in an interview to
insideHPC.
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Finding Bottlenecks with Intel VTune Amplifier
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Intel VTune Parallel Amplifier XE

Hardware event-based
profiler for parallel

applications on Xeon CPUs
and Xeon Phi coprocessors.

Bottleneck detection down
to a single line of code,

hardware event collection,
minimal impact on

performance.
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Using VTune

Setting up a VTune project:

Results of profiling, bottom-up view:
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Using VTune
Locating hotspots down to a single line of code:
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Using VTune

Analyzing custom events
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MPI Diagnostics Using Intel Trace Analyzer and Collector
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Intel Trace Analyzer and Collector

Profiler for MPI Applications
on Xeon and Xeon Phi

architectures.

Graphical user interface,
visualization of computation

and communication.
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Using Intel Trace Analyzer and Collector

user@host% source /opt/intel/itac/8.1.0.024/bin/itacvars.sh
user@host% source /opt/intel/itac/8.1.0.024/mic/bin/itacvars.sh
user@host% mpiicpc -mkl -o pi_mpi pi_mpi.c
user@host% mpiicpc -mmic -mkl -o pi_mpi.mic pi_mpi.c
user@host% scp pi_mpi.mic mic0:~/
pi_mpi.mic 100% 433KB 432.5KB/s 00:00
user@host% export VT_LOGFILE_FORMAT=stfsingle
user@host% mpirun -trace -n 32 -host localhost ./pi_mpi : \
% -n 240 -host mic0 ~/pi_mpi.mic
Time, s: 0.36
[0] Intel(R) Trace Collector INFO: Writing tracefile pi_mpi.single.stf
in /home/user/pi
user@host% traceanalyzer pi_mpi.single.stf
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Using Intel Trace Analyzer and Collector
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Intel Math Kernel Library (MKL)
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Intel Math Kernel Library (MKL)

Linear algebra, fast Fourier
transforms, vector math,

parallel random numbers,
statistics, data fitting, sparse

solvers.

Intel MKL functions are
optimized for Xeon

Processors as well as for
Xeon Phi coprocessors.
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Using Intel MKL

Three modes of usage:

Automatic Offload
Ï No code change required to offload calculations to a Xeon Phi coprocessor
Ï Automatically uses both the CPU and the coprocessor
Ï The library takes care of data transfer and execution management

Compiler-Assisted Offload
Ï Programmer maintains explicit control of data transfer and remote execution
Ï Requires using compiler offload pragmas and directives

Native Execution
Ï Uses an Intel Xeon Phi coprocessor as an independent compute node.
Ï Data initialized & processed on the coprocessor, or communicated via MPI
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Using MKL in Automatic Offload Mode

Calling an MKL function from host code:

1 sgemm(&transa, &transb, &SIZE, &SIZE, &SIZE, &alpha,
2 A, &newLda, B, &newLda, &beta, C, &SIZE);

Compiling and running the code. Calculation will be offloaded to a Xeon Phi coproces-
sor, if one is available at runtime.

user@host% icpc -c mycode.cc -mkl -o mycode
user@host% export MKL_MIC_ENABLE=1
user@host% ./mycode
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Using MKL in Compiler-Assisted Offload Mode
Calling an MKL function from offloaded section:

1 #pragma offload target(mic) \
2 in(transa, transb, N, alpha, beta) \
3 in(A:length(matrix_elements)) \
4 in(B:length(matrix_elements)) \
5 out(C:length(matrix_elements) alloc_if(0))
6 {
7 sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);
8 }

Compiling and running the code. If no coprocessor at runtime, MKL will fall back to
CPU calculation.

user@host% icpc -c mycode.cc -mkl -o mycode
user@host% ./mycode
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Using MKL Native Execution Mode
1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main() {
5 const size_t N = 1<<29L;
6 const size_t F = sizeof(float);
7 float* A = (float*)malloc(N*F);
8 srand(0); // Initialize RNG
9 for (int i = 0; i < N; i++) {

10 A[i]=(float)rand() /
11 (float)RAND_MAX;
12 }
13 printf("Generated %ld random \
14 numbers\nA[0]=%e\n", N, A[0]);
15 free(A);
16 }

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <mkl_vsl.h>
4 int main() {
5 const size_t N = 1<<29L;
6 const size_t F = sizeof(float);
7 float* A = (float*)malloc(N*F);
8 VSLStreamStatePtr rnStream;
9 vslNewStream( &rnStream, //Init RNG

10 VSL_BRNG_MT19937, 1 );
11 vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD,
12 rnStream, N, A, 0.0f, 1.0f);
13 printf("Generated %ld random \
14 numbers\nA[0]=%e\n", N, A[0]);
15 free(A);
16 }
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Using MKL in Native Execution Mode
user@host% icpc -mmic -o rand \
% rand.cc
user@host% # Run on coprocessor
user@host% # and benchmark
user@host% time micnativeloadex \
% rand
Generated 536870912 random numbers
A[0]=8.401877e-01

real 0m56.591s
user 0m0.002s
sys 0m0.011s

user@host% icpc -mkl -mmic -o \
% rand-mkl rand-mkl.cc
user@host% export SINK_LD_LIBRARY_PATH=\
% /opt/intel/composerxe/mkl/lib/mic:\
% /opt/intel/composerxe/lib/mic
user@host% time micnativeloadex rand-mkl
Generated 536870912 random numbers
A[0]=1.343642e-01

real 0m7.951s
user 0m0.053s
sys 0m0.168s

On Intel Xeon Phi coprocessor, random number generation with
Intel MKL is 7x faster than with the C standard Library.
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Scalar Optimization Considerations
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Optimization Level

user@host% icc -o mycode -O3 source.c

The default optimization level -O2

optimization for speed

automatic vectorization

inlining

constant propagation

dead-code elimination

loop unrolling

1 #pragma intel optimization_level 3
2 void my_function() {
3 //...
4 }

Optimization level -O3

enables more aggressive
optimization

loop fusion

block-unroll-and-jam

if-statement collapse
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Using the const Qualifier
1 #include <stdio.h>
2 int main() {
3 const int N=1<<28;
4 double w = 0.5;
5 double T = (double)N;
6 double s = 0.0;
7 for (int i = 0; i < N; i++)
8 s += w*(double)i/T;
9 printf("%e\n", s);

10 }

user@host% icpc noconst.cc
user@host% time ./a.out
6.710886e+07
real 0m0.461s
user 0m0.460s
sys 0m0.001s

1 #include <stdio.h>
2 int main() {
3 const int N=1<<28;
4 const double w = 0.5;
5 const double T = (double)N;
6 double s = 0.0;
7 for (int i = 0; i < N; i++)
8 s += w*(double)i/T;
9 printf("%e\n", s);

10 }

user@host% icpc const.cc
user@host% time ./a.out
6.710886e+07
real 0m0.097s
user 0m0.094s
sys 0m0.003s
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Array Reference by Index instead of Pointer Arithmetics
1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < N; j++) {
3 float* cp = c + i*N + j;
4 for (int k = 0; k < N; k++)
5 *cp += a[i*N+k]*b[k*N+j];
6 }

user@host% icc array_pointer.cc
user@host% time ./a.out
real 0m1.110s
user 0m1.104s
sys 0m0.005s

1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < N; j++) {
3

4 for (int k = 0; k < N; k++)
5 c[i*N+j] += a[i*N+k]*b[k*N+j];
6 }

user@host% icpc array_index.cc
user@host% time ./a.out
real 0m0.228s
user 0m0.225s
sys 0m0.002s

With Pointer arithmetics, the code is 5x slower than with reference to
array elements by index.
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Common Subexpression Elimination
1 for (int i = 0; i < n; i++)
2 {
3 for (int j = 0; j < m; j++) {
4 const double r =
5 sin(A[i])*cos(B[j]);
6 // ...
7 }
8 }

1 for (int i = 0; i < n; i++) {
2 const double sin_A = sin(A[i]);
3 for (int j = 0; j < m; j++) {
4 const double cos_B = cos(B[j]);
5 const double r = sin_A*cos_B;
6 // ...
7 }
8 }

The value of sin_A can be calculated once and re-used m times in
the j-loop

In some cases, at -O2 compiler eliminates common subexpressions
automatically
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Ternary if-operator Trap

Ternary if operator ( ? : ) is a short-hand for if ...else
Example: the min() function as a pre-processor expression

1 #define min(a, b) ( (a) < (b) ? (a) : (b) )
2 const float c = min(my_function(x), my_function(y));

Problem: line 2 calls my_function() 3 times

Optimization:

1 #define min(a, b) ( (a) < (b) ? (a) : (b) )
2 const float result_a = my_function(x);
3 const float result_b = my_function(y);
4 const float c = min(result_a, result_b);
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Strength Reduction

Replace expensive operations with a combination of fast operations.
Example 1: replacing division with multiplication by the precomputed reciprocal:

1 for (int i = 0; i < n; i++) {
2 A[i] /= n;
3 }

1 const float rn = 1.0f/(float)n;
2 for (int i = 0; i < n; i++)
3 A[i] *= rn;

Example 2: algebraic transformations to replace two divisions with one

1 for (int i = 0; i < n; i++) {
2 A[i] = (B[i]/C[i])/D[i];
3 E[i] = A[i]/B[i] + C[i]/D[i];
4

5 }

1 for (int i = 0; i < n; i++) {
2 A[i] = B[i]/(C[i]*D[i]);
3 E[i] = (A[i]*D[i] + B[i]*C[i])/
4 (B[i]*D[i]);
5 }
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Consistency of Precision: Constants

1 Operations on type float is faster than operations on type double.
Avoid type conversions and define single-precision literal constants
with suffix -f.

1 const double twoPi = 6.283185307179586;
2 const float phase = 0.3f; // single precision

2 Use 32-bit int values including 64-bit long where possible,
including array indices. Avoid type conversions and define 64-bit
literal constants with suffix -L or UL

1 const long N2 = 1000000*1000000; // Overflow error
2 const long N3 = 1000000L*1000000L; // Correct

MIC Developer Boot Camp Rev. 11 Scalar Optimization Considerations © Colfax International, 2013–2014



Consistency of Precision: Functions

1 math.h contains fast single precision versions of arithmetic
functions ending with suffix -f

1 double sin(double x);
2 float sinf(float x);

2 math.h contains fast base 2 exponential and logarithmic functions:

1 double exp(double x); // Double precision, natural base
2 float expf(float x); // Single precision, natural base
3 double exp2(double x); // Double precision, base 2
4 float exp2f(float x); // Single precision, base 2
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Floating-Point Semantics
The Intel C++ Compiler may represent floating-point expressions in executable code
differently, depending on the floating-point semantics.
-fp-model strict Only value-safe optimizations
-fp-model precise calculations are reproducible from run to run

exceptions controlled using -fp-model except
-fp-model fast=1 (default) Value-unsafe optimizations are allowed
-fp-model fast=2 better performance at the cost of lower accuracy
-fp-model source Intermediate arithmetic results are rounded to

the precision defined in the source code.
-fp-model double Intermediate arithmetic results are rounded to

53-bit (double) precision.
-fp-model extended Intermediate arithmetic results are rounded to

64-bit (extended) precision.
-fp-model [no-]except controls floating-point exception semantics.
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Precision Control for Transcendental Functions

-fimf-precision= value[:funclist] Defines the precision for math
functions. value is one of: high, medium or low

-fimf-max-error= ulps[:funclist] The maximum allowable error
expressed in ulps (units in last place)

-fimf-accuracy-bits= n[:funclist] The number of correct bits
required for mathematical function accuracy.

-fimf-domain-exclusion= n[:funclist] Defines a list of special-
value numbers that do not need to be handled.
int n derived by the bitwise OR of types:
extremes: 1, NaNs: 2, infinites: 4, denormals1: 8, zeroes: 16.

1by default, on Intel Xeon Phi, denormals are flushed to zero in hardware, but supported in SVML
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Precision Control for Transcendental Functions
1 #include <stdio.h>
2 #include <math.h>
3

4 int main() {
5 const int N = 1000000;
6 const int P = 10;
7 double A[N];
8 const double startValue = 1.0;
9 A[:] = startValue;

10 for (int i = 0; i < P; i++)
11 #pragma simd
12 for (int r = 0; r < N; r++)
13 A[r] = exp(-A[r]);
14

15 printf("Result=%.17e\n", A[0]);
16 }
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Precision Control for Transcendental Functions

user@host% icpc -o precision-1 -mmic \
% -fimf-precision=low precision.cc
user@host% scp precision-1 mic0:~/
% precision-1 100% 11KB 11.3KB/s
user@host% ssh mic0 time ./precision-1
Result=5.68428695201873779e-01
real 0m 0.08s
user 0m 0.06s
sys 0m 0.02s
user@host%

user@host% icpc -o precision-2 -mmic \
% -fimf-precision=high precision.cc
user@host% scp precision-2 mic0:~/
% precision-2 100% 19KB 19.4KB/s
user@host% ssh mic0 time ./precision-2
Result=5.68428725029060722e-01
real 0m 0.14s
user 0m 0.12s
sys 0m 0.02s
user@host%
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Automatic Vectorization: Making it Happen and Tuning
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Challenges with Optimizing Vectorization on Xeon Phi

Must utilize 512-bit vector registers (16 float or 8 double)

Must convince compiler that vectorization is possible

Preferably unit-stride access to data

Preferably align data on 64-byte boundary

Avoid branches in vector loops

Guide compiler regarding expected iteration count, memory
alignment, outer loop vectorization, etc.

This section:
Ensuring that automatic vectorization succeeds where it must exist.
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Diagnosing the Utilization of Vector Instructions

When porting and optimizing an application:

Find performance-critical parts

Use -vec-report3 to get information about automatic vectorization

Use Intel VTune Amplifier XE to diagnose the executable

Benchmark regular compilation vs. -no-vec -no-simd case

Provide additional information to the compiler about loops in form
of #pragmas
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Assumed Vector Dependence. The restrict Keyword.

True vector dependence makes vectorization impossible:
1 float *a, *b; /...
2 for (int i = 1; i < n; i++)
3 a[i] += b[i]*a[i-1]; // dependence on the previous element

Assumed vector dependence: when compiler cannot determine
wheter vector dependence exists, auto-vectorization fails:

1 void mycopy(int n,
2 float* a, float* b) {
3 for (int i = 0; i < n; i++)
4 a[i] = b[i];
5 }

user@host% icpc -vec-report3 \
-c vdep.cc

vdep.cc(2): (col. 3) remark:
loop skipped: multiversioned.

vdep.cc(2): (col. 3) remark:
loop was not vectorized:
not inner loop.
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Ignoring Assumed Vector Dependence

To ignore assumed vector dependence
#pragma ivdep

1 void mycopy(int n,
2 float* a, float* b) {
3 #pragma ivdep
4 for (int i = 0; i < n; i++)
5 a[i] = b[i];
6 }

user@host% icpc -vec-report3 \
-c vdep.cc

vdep.cc(3): (col. 3) remark:
LOOP WAS VECTORIZED.

vdep.cc(3): (col. 3) remark:
loop was not vectorized:
not inner loop.
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Pointer Disambiguation (alternative to #pragma ivdep)

restrict keyword applies to each pointer variable qualified with it

The object accessed by the pointer is only accessed by that pointer
in the given scope

The compiler argument -restrict must be used.

1 void mycopy(int n, float* restrict a, float* restrict b) {
2 for (int i = 0; i < n; i++)
3 a[i] = b[i];
4 }

user@host% icpc -vec-report3 -restrict -c vdep.cc
vdep.cc(2): (col. 3) remark: LOOP WAS VECTORIZED.
vdep.cc(2): (col. 3) remark: loop was not vectorized: not inner loop.
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Automatic Vectorization: Data Structures
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Challenges with Optimizing Vectorization on Xeon Phi

Must utilize 512-bit vector registers (16 float or 8 double)

Must convince compiler that vectorization is possible

Preferably unit-stride access to data

Preferably align data on 64-byte boundary

Avoid branches in vector loops

Guide compiler regarding expected iteration count, memory
alignment, outer loop vectorization, etc.

The rule of thumb for achieving unit-stride access

Use structures of arrays (SoA) instead of arrays of structures (AoS)
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Example: Unit-Stride Access in Coulomb’s Law Application
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White paper: research.colfaxinternational.com/post/2012/03/12/AVX.aspx
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Elegant, but Inefficient Solution: Array of Structures

1 struct Charge { // Elegant, but ineffective data layout
2 float x, y, z, q;
3 } chgs[m]; // Coordinates and value of this charge

1 for (int i=0; i<m; i++) { // This loop will be auto-vectorized
2 // Non-unit stride: (&chg[i+1].x - &chg[i].x) != sizeof(float)
3 const float dx=chg[i].x - Rx;
4 const float dy=chg[i].y - Ry;
5 const float dz=chg[i].z - Rz;
6 phi -= chg[i].q / sqrtf(dx*dx+dy*dy+dz*dz); // Coulomb’s law
7 }
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Arrays of Structures versus Structures of Arrays
Array of Structures (AoS)

1 struct Charge { // Elegant, but ineffective data layout
2 float x, y, z, q; // Coordinates and value of this charge
3 };
4 // The following line declares a set of m point charges:
5 Charge chg[m];

Structure of Arrays (SoA)

1 struct Charge_Distribution {
2 // Data layout permits effective vectorization of Coulomb’s law application
3 const int m; // Number of charges
4 float * x; // Array of x-coordinates of charges
5 float * y; // ...y-coordinates...
6 float * z; // ...etc.
7 float * q; // These arrays are allocated in the constructor
8 };
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Optimized Solution: Structure of Arrays, Unit-Stride Access

1 struct Charge_Distribution {
2 // Data layout permits effective vectorization of Coulomb’s law application
3 const int m; // Number of charges
4 float *x, *y, *z, *q; // Arrays of x-, y- and z-coordinates of charges
5 };

1 // This version vectorizes better thanks to unit-stride data access
2 for (int i=0; i<chg.m; i++) {
3 // Unit stride: (&chg.x[i+1] - &chg.x[i]) == sizeof(float)
4 const float dx=chg.x[i] - Rx;
5 const float dy=chg.y[i] - Ry;
6 const float dz=chg.z[i] - Rz;
7 phi -= chg.q[i] / sqrtf(dx*dx+dy*dy+dz*dz);
8 }
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Electric Potential Calculation with Coulomb’s Law
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Automatic Vectorization: Data Alignment
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Challenges with Optimizing Vectorization on Xeon Phi

Must utilize 512-bit vector registers (16 float or 8 double)

Must convince compiler that vectorization is possible

Preferably unit-stride access to data

Preferably align data on 64-byte boundary

Avoid branches in vector loops

Guide compiler regarding expected iteration count, memory
alignment, outer loop vectorization, etc.

This section:
Data alignment and compiler hints.
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Data Alignment

char* p points to an address aligned on an n-byte
boundary if ((size_t)p%n==0).

128-bit SSE load and store instructions require 16-byte
alignment,

256-bit AVX load and store instructions do not require
alignment,

512-bit IMCI load and store instructions require 64-byte
alignment.
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Data Alignment

Data alignment on the stack

1 float A[n] __attribute__((aligned(64))); // 64-byte alignment applied

Ï The address of A[0] is a multiple of 64, i.e., aligned on a 64-byte boundary.
Ï Setting a very high alignment value may lead to wasted virtual memory.

Alignment of memory blocks on the heap

1 #include <malloc.h>
2 // ...
3 float *A = (float*)_mm_malloc(n*sizeof(float), 16);
4 // ...
5 _mm_free(A);

Ï _mm_malloc and _mm_free are aligned version of malloc and free:
Ï the header file malloc.h must be included

MIC Developer Boot Camp Rev. 11 Automatic Vectorization: Data Alignment © Colfax International, 2013–2014



Data Alignment Hints
Programmer may promise to the compiler (under penalty of
segmentation fault) than alignment has been taken care of:

1 float* packedData = _mm_malloc(sizeof(float)*nData, 64);
2 float* inVector = _mm_malloc(sizeof(float)*nRows, 64);
3 // ... Pragma vector aligned promises to the compiler that elements of array
4 // used in the first iteration are 64-byte boundary aligned.
5 #pragma vector aligned
6 for (int c = 0; c < blockLen[idx]; c++) // blockLen[idx] are multiples of 64
7 sum += packedData[offs+c]*inVector[j0+c];
8 outVector[i] += sum;
9 // ...

10 _mm_free(packedData); _mm_free(inVector);

This can lead to significant speedups, because compiler will not
implement runtime checks for alignment situation.
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Data Alignment and Padding
Note: when relying on #pragma vector aligned, may need to pad the
inner dimension on data structures to a multiple of 16 (in single
precision) or 8 (double precision).

1 void GaussEl(const int n, const int m, const int start, float* const matrix) {
2 for (int i = start+1; i < n; i++) {
3 const float factor = matrix[(i-1)*m]/matrix[i*m];
4 #pragma vector aligned
5 for (int j = 0; j < m; j++)
6 matrix[i*m + j] += factor*matrix[(i-1)*m + j];
7 }
8 // ... Padding inner dimension and allocating matrix
9 if (m % 16 != 0) m += (16 - m%16);

10 matrix = (float*)_mm_malloc(n*m*sizeof(float), 64);
11 //...
12 GaussEl(n, m, 0, matrix);
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Vectorization Pragmas, Keywords and Compiler Arguments
#pragma simd
#pragma vector always
#pragma vector aligned | unaligned
#pragma vector nontemporal | temporal
#pragma novector
#pragma ivdep
restrict qualifier and -restrict command-line argument
#pragma loop count
__assume_aligned keyword
-vec-report[n]
-O[n]
-x[code]
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Thread Parallelism: Reducing Synchronization
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Challenges with Thread Parallelism on Xeon Phi

Multi-core CPU: 4–48 threads, Xeon Phi: 228–244 threads.

Must have enough parallelism to keep all cores busy

Must have less synchronization than on CPU

Must have lower per-thread memory overhead

Must access core-local data whenever possible

Must co-exist with vectorization in each core
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Example: Dealing with Excessive Synchronization

Computing a histogram (m << n) with a serial code:

1 void Histogram(const float* age, int* const hist, const int n,
2 const float group_width, const int m) {
3 for (int i = 0; i < n; i++) {
4 const int j = (int) ( age[i] / group_width );
5 hist[j]++;
6 }
7 }

Code cannot be automatically vectorized

True vector dependence
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The Same Calculation, Strip-Mined, Vectorized
1 void Histogram(const float* age, int* const hist, const int n,
2 const float group_width, const int m) {
3 const int vecLen = 16; // Length of vectorized loop
4 const float invGroupWidth = 1.0f/group_width; // Pre-compute the reciprocal
5 // Strip-mining the loop in order to vectorize the inner short loop
6 // Note: this algorithm assumes n%vecLen == 0.
7 for (int ii = 0; ii < n; ii += vecLen) { //Temporary store vecLen indices
8 int histIdx[vecLen] __attribute__((aligned(64)));
9 // Vectorize the multiplication and rounding

10 #pragma vector aligned
11 for (int i = ii; i < ii + vecLen; i++)
12 histIdx[i-ii] = (int) ( age[i] * invGroupWidth );
13 // Scattered memory access, does not get vectorized
14 for (int c = 0; c < vecLen; c++)
15 hist[histIdx[c]]++;
16 }
17 }
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Adding Thread Parallelism

1 #pragma omp parallel for schedule(guided)
2 for (int ii = 0; ii < n; ii += vecLen) {
3 int histIdx[vecLen] __attribute__((aligned(64)));
4 #pragma vector aligned
5 for (int i = ii; i < ii + vecLen; i++)
6 histIdx[i-ii] = (int) ( age[i] * invGroupWidth );
7 for (int c = 0; c < vecLen; c++)
8 // Protect the ++ operation with the atomic mutex (inefficient!)
9 #pragma omp atomic

10 hist[histIdx[c]]++;
11 }
12 }
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Improving Thread Parallelism
1 #pragma omp parallel
2 {
3 int hist_priv[m]; // Better idea: thread-private storage
4 hist_priv[:] = 0;
5 int histIdx[vecLen] __attribute__((aligned(64)));
6 #pragma omp for schedule(guided)
7 for (int ii = 0; ii < n; ii += vecLen) {
8 #pragma vector aligned
9 for (int i = ii; i < ii + vecLen; i++)

10 histIdx[i-ii] = (int) ( age[i] * invGroupWidth );
11 for (int c = 0; c < vecLen; c++)
12 hist_priv[histIdx[c]]++;
13 }
14 for (int c = 0; c < m; c++) {
15 #pragma omp atomic
16 hist[c] += hist_priv[c];
17 } } }
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Dealing with Excessive Synchronization

Scalar Serial Code Vectorized Serial Code Vectorized Parallel Code
(Atomic Operations)

Vectorized Parallel Code
(Private Variables)
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Computing a histogram: elimination of synchronization
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Thread Parallelism: False Sharing
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False Sharing. Data Padding and Private Variables
CPU 0 CPU 1

Thread 0 Thread 1

Memory

same 
Cache Line 

Cache Cache

False sharing is similar to
race condition

Threads accessing the same
cache line

Caused by coherent caches

Cache line is 64-byte wide
(in modern Intel architectures)
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False Sharing. Data Padding and Private Variables
1 const int m = 5;
2 int hist_thr[nThreads][m];
3 #pragma omp parallel for
4 for (int ii = 0; ii < n; ii += vecLen) {
5 // False sharing occurs here
6 for (int c = 0; c < vecLen; c++)
7 hist_thr[iThread][histIdx[c]]++;
8 }
9 // Reducing results from all threads to the common histogram hist

10 for (int iThread = 0; iThread < nThreads; iThread++)
11 hist[0:m] += hist_thr[iThread][0:m];

The value of m=5 is small

Array elements hist_thr[0][:] are within m*sizeof(int)=20
bytes of array elements hist_thr[1][:]
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Padding to Avoid False Sharing

1 // Padding for hist_thr[][] in order to avoid a situation
2 // where two (or more) rows share a cache line.
3 const int paddingBytes = 64;
4 const int paddingElements = paddingBytes / sizeof(int);
5 const int mPadded = m + (paddingElements-m%paddingElements);
6 // Shared histogram with a private section for each thread
7 int hist_thr[nThreads][mPadded];
8 hist_thr[:][:] = 0;
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Padding to Avoid False Sharing

Baseline: Parallel Code
(Private Variables)

Poor Performance:
False Sharing
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Thread Parallelism: Expanding Iteration Space
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Example: Dealing with Insufficient Parallelism

Si =
n∑

j=0
Mij, i = 0. . .m. (3)

m is small, smaller than the number of threads in the system
n is large, large enough so that the matrix does not fit into cache

1 void sum_unoptimized(const int m, const int n, long* M, long* s){
2 #pragma omp parallel for
3 for (int i=0; i<m; i++) {
4 long sum=0;
5 #pragma simd
6 #pragma vector aligned
7 for (int j=0; j<n; j++)
8 sum+=M[i*n+j];
9 s[i]=sum; }}
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Dealing with Insufficient Parallelism
VTune Analysis: Row-Wise Reduction of a Short, Wide Matrix
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Strip-Mining: Simultaneous Thread and Data Parallelism
1 // Compiler may be able to simultaneously parallelize and auto-vectorize it
2 #pragma omp parallel for
3 #pragma simd
4 for (int i = 0; i < n; i++) {
5 // ... do work
6 }

1 // The strip-mining technique separates parallelization from vectorization
2 const int STRIP=1024;
3 #pragma omp parallel for
4 for (int ii = 0; ii < n; ii += STRIP)
5 #pragma simd
6 for (int i = ii; i < ii + STRIP; i++) {
7 // ... do work
8 }
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Exposing Parallelism: Strip-Mining and Loop Collapse
1 void sum_stripmine(const int m, const int n, long* M, long* s){
2 const int STRIP=1024;
3 assert(n%STRIP==0);
4 s[0:m]=0;
5 #pragma omp parallel
6 {
7 long sum[m]; sum[0:m]=0;
8 #pragma omp for collapse(2) schedule(guided)
9 for (int i=0; i<m; i++)

10 for (int jj=0; jj<n; jj+=STRIP)
11 #pragma simd
12 #pragma vector aligned
13 for (int j=jj; j<jj+STRIP; j++)
14 sum[i]+=M[i*n+j];
15 for (int i=0; i<m; i++) // Reduction
16 #pragma omp atomic
17 s[i]+=sum[i];
18 } }

MIC Developer Boot Camp Rev. 11 Thread Parallelism: Expanding Iteration Space © Colfax International, 2013–2014



Exposing Parallelism: Strip-Mining and Loop Collapse
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Dealing with Insufficient Parallelism
Row-Wise Reduction of a Short, Wide Matrix
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Thread Parallelism: Affinity
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Setting Thread Affinity

OpenMP threads may migrate from one core to another
according to OS decisions.

Forbid migration — increase the performance.

Control: environment variable KMP_AFFINITY
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Uses of Thread Affinity

Bandwidth-bound applications: 1 thread per core + prevent
migration. Optimizes utilization of memory controllers.

Compute-bound applications: 2 (Xeon) or 4 (Xeon Phi) threads per
core + prevent migration. Ensures that threads consistently access
local L1 cache data (+L2 for Xeon Phi).

Offload applications : physical core 0 on Xeon Phi is used by µOS for
offload tasks. Prevent placing compute threads on that core.

Aplications in multi-socket NUMA (Non-Uniform Memory Access)
systems: partition the system for two independent tasks, pin tasks to
respective CPUs.
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The KMP_AFFINITY Environment Variable

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

modifier:

verbose/nonverbose
respect/norespect
warnings/nowarnings
granularity=core or thread

type=compact, scatter or
balanced

type=explicit,proclist=[<proc_list>]
type=disabled or none.

user@host% export MIC_ENV_PREFIX=MIC
user@host% export KMP_AFFINITY=compact,granularity=fine
user@host% export MIC_KMP_AFFINITY=balanced,granularity=fine
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Bandwidth-bound, KMP_AFFINITY=scatter
user@host% export OMP_NUM_THREADS=32
user@host% export KMP_AFFINITY=none
user@host% for i in {1..4} ; do ./rowsum_stripmine | tail -1; done
Problem size: 2.980 GB, outer dimension: 4, threads: 32
Strip-mine and collapse: 0.061 +/- 0.002 seconds (52.89 +/- 1.31 GB/s)
Strip-mine and collapse: 0.059 +/- 0.002 seconds (54.11 +/- 1.56 GB/s)
Strip-mine and collapse: 0.077 +/- 0.001 seconds (41.71 +/- 0.69 GB/s)
Strip-mine and collapse: 0.070 +/- 0.005 seconds (45.59 +/- 3.14 GB/s)
user@host% export OMP_NUM_THREADS=16
user@host% export KMP_AFFINITY=scatter
user@host% for i in {1..4}; do ./rowsum_stripmine | tail -1 ; done
Problem size: 2.980 GB, outer dimension: 4, threads: 16
Strip-mine and collapse: 0.059 +/- 0.004 seconds (54.47 +/- 3.25 GB/s)
Strip-mine and collapse: 0.061 +/- 0.004 seconds (52.30 +/- 3.30 GB/s)
Strip-mine and collapse: 0.062 +/- 0.005 seconds (51.37 +/- 4.29 GB/s)
Strip-mine and collapse: 0.058 +/- 0.001 seconds (55.48 +/- 1.27 GB/s)

MIC Developer Boot Camp Rev. 11 Thread Parallelism: Affinity © Colfax International, 2013–2014



Compute-Bound, KMP_AFFINITY=compact/balanced

1 double* A = (double*)_mm_malloc(sizeof(double)*N*Nld, 64);
2 double* B = (double*)_mm_malloc(sizeof(double)*N*Nld, 64);
3 double* C = (double*)_mm_malloc(sizeof(double)*N*Nld, 64);
4

5 for(int k = 0; k < nIter; k++) {
6

7 dgemm(&tr, &tr, &N, &N, &N, &v, A, &Nld, B, &Nld, &v, C, &N);
8

9 double flopsNow = (2.0*N*N*N+1.0*N*N)*1e-9/(t2-t1);
10 printf("Iteration %d: %.1f GFLOP/s\n", k+1, flopsNow);
11 }
12 _mm_free(A); _mm_free(B); _mm_free(C);
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Compute-Bound, KMP_AFFINITY=compact/balanced

user@host% icpc -o bench-dgemm -mkl -mmic bench-dgemm.cc
user@host% micnativeloadex ./bench-dgemm
Iteration 1: 312.7 GFLOP/s
Iteration 2: 346.5 GFLOP/s
Iteration 3: 348.5 GFLOP/s
Iteration 4: 347.2 GFLOP/s
Iteration 5: 348.3 GFLOP/s

user@host% micnativeloadex ./bench-dgemm -e "KMP_AFFINITY=compact"
Iteration 1: 626.8 GFLOP/s
Iteration 2: 769.1 GFLOP/s
Iteration 3: 769.4 GFLOP/s
Iteration 4: 769.3 GFLOP/s
Iteration 5: 769.4 GFLOP/s
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Other Optimization Topics for Thread Parallelism

Examples found in our 4-day training and in the book:

Avoiding excessive synchronization with reduction

Load balancing across threads

Using thread affinity to partition a multi-socket NUMA system
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§6. Advanced Optimization for the MIC
Architecture

MIC Developer Boot Camp Rev. 11 Advanced Optimization for the MIC Architecture © Colfax International, 2013–2014



Memory Access and Cache Utilization
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Challenges with Memory Access on Xeon Phi

More threads than CPU, same amount of Level-2 cache (~30 MB)

No hardware prefetching from Level-2 to Level-1

High penalty for data page walks

Dynamic memory allocation is serial → greater penalty than CPU
per Amdahl’s law

“Rule of Thumb” for memory optimization: locality of data access in
space and in time.

Spatial locality = data structures (packing, reordering).
Temporal locality = order of operations (e.g., loop tiling).

MIC Developer Boot Camp Rev. 11 Memory Access and Cache Utilization © Colfax International, 2013–2014



Loop Tiling (Blocking)
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Loop Tiling (Blocking)
1 // Plain nested loops
2 for (int i = 0; i < m; i++)
3 for (int j = 0; j < n; j++)
4 compute(a[i], b[j]); // Memory access is unit-stride in j

1 // Tiled nested loops
2 for (int ii = 0; ii < m; ii += TILE)
3 for (int j = 0; j < n; j++)
4 for (int i = ii; i < ii + TILE; i++) //Re-use data for each j with several i
5 compute(a[i], b[j]); // Memory access is unit-stride in j

1 // Doubly tiled nested loops
2 for (int ii = 0; ii < m; ii += TILE)
3 for (int jj = 0; jj < n; jj += TILE)
4 for (int i = ii; i < ii + TILE; i++) //Re-use data for each j with several i
5 for (int j = jj; j < jj + TILE; j++)
6 compute(a[i], b[j]); // Memory access is unit-stride in j
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Optimization Example: In-Place Square Matrix Transposition

1 #pragma omp parallel for
2 for (int i = 0; i < n; i++) { // Distribute across threads
3 for (int j = 0; j < i; j++) { // Employ vector load/stores
4 const double c = A[i*n + j]; // Swap elements
5 A[i*n + j] = A[j*n + i];
6 A[j*n + i] = c;
7 }
8 }

Unoptimized code:

Large-stride memory accesses

Inefficient cache use

Does not reach memory bandwidth limit
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Tiling a Parallel For-Loop (Matrix Transposition)
1 #pragma omp parallel for
2 for (int ii = 0; ii < n; ii += TILE) { // Distribute across threads
3 const int iMax = (n < ii+TILE ? n : ii+TILE); // Adapt to matrix shape
4 for (int jj = 0; jj <= ii; jj += TILE) { // Tile the work
5 for (int i = ii; i < iMax; i++) { // Universal microkernel
6 const int jMax = (i < jj+TILE ? i : jj+TILE); // for whole matrix
7 #pragma loop count avg(TILE) // Vectorization tuning
8 #pragma simd // Vectorization hint
9 for (int j = jj; j<jMax; j++) { // Variable loop count (bad)

10 const double c = A[i*n + j]; // Swap elements
11 A[i*n + j] = A[j*n + i];
12 A[j*n + i] = c;
13 } } } }

Better (but not optimal) solution:
Loop tiling to improve locality of data access
Not enough outer loop iterations to keep 240 threads busy
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Further Optimization of Matrix Transposition

Multi-versioned inner loop for
diagonal, edges and body

Tuning pragma to enforce
non-temporal stores

Expand parallel iteration space
occupy all threads

Control data alignment

OpenMP thread affinity for
bandwidth optimization
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Further Optimization: Code Snippet
1 #pragma omp parallel
2 {
3 #pragma omp for schedule(guided)
4 for (int k = 0; k < nTilesParallel; k++) { // Bulk of calculations here
5 const int ii = plan[HEADER_OFFSET + 2*k + 0]*TILE; // Planned order
6 const int jj = plan[HEADER_OFFSET + 2*k + 1]*TILE; // of operations
7 for (int j = jj; j < jj+TILE; j++) { // Simplified main microkernel
8 #pragma simd // Vectorization hint
9 #pragma vector nontemporal // Cache traffic hint

10 for (int i = ii; i < ii+TILE; i++) { // Constant loop count (good)
11 const double c = A[i*n + j]; // Swap elements
12 A[i*n + j] = A[j*n + i];
13 A[j*n + i] = c;
14 } } }
15 // Transposing the tiles along the main diagonal and edges...
16 // ...

Longer code but still in the C language; works for CPU and MIC
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Arithmetic Intensity and Roofline Model

Theoretical estimates, Intel Xeon Phi coprocessor

Arithmetic Performance =60×1.0× (512/64)×2 = 960 GFLOP/s.

Memory Bandwidth =η×6.0×8×2×4 = η×384 GB/s,

Peak performance for:

60-core Intel Xeon Phi

clocked at 1.0 GHz

512-bit SIMD registers

64-bit floating-point numbers

fused multiply-add

The peak memory bandwidth:

η≈ 0.5 – practical efficiency

6.0 GT/s (Transfers)

8 memory controllers

2 channels in each

4 bytes per channel
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Arithmetic Intensity and Roofline Model

Theoretical estimates, Intel Xeon Phi coprocessor

Arithmetic Performance =60×1.0× (512/64)×2 = 960 GFLOP/s.

Memory Bandwidth =η×6.0×8×2×4 = η×384 GB/s,

To saturate Arithmetic and Logic Units (ALUs):
384/8 = 48 billion floating-point numbers per second should be delivered from
memory to the cores (double precision)

960/48 = 20 floating-point operations (multiplication/addition) must be performed on
every number fetched from the main memory
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Arithmetic Intensity and Roofline Model

Theoretical estimates, 2x 8-core Intel Xeon E5 processors at 3.0 GHz

Arithmetic Performace =2 sockets ×8×3.0× (256/64)×2 = 384 GFLOP/s,

Memory Bandwidth =2 sockets ×η×6.4×8 = η×102 GB/s,

Peak performance for:

16 Intel Xeon cores

clocked at 3.0 GHz

256-bit SIMD registers

64-bit floating-point numbers

2 ALUs

The peak memory bandwidth:

η≈ 0.5 – practical efficiency

6.4 GT/s (Transfers)

8 bytes per transfer

MIC Developer Boot Camp Rev. 11 Memory Access and Cache Utilization © Colfax International, 2013–2014



Arithmetic Intensity and Roofline Model

Theoretical estimates, 2x 8-core Intel Xeon E5 processors at 3.0 GHz

Arithmetic Performace =2 sockets ×8×3.0× (256/64)×2 = 384 GFLOP/s,

Memory Bandwidth =2 sockets ×η×6.4×8 = η×102 GB/s,

To saturate Arithmetic and Logic Units (ALUs):
102/8 ≈ 13 billion floating-point numbers per second should be delivered from
memory to the cores (double precision)

384/13 = 30 floating-point operations (multiplication/addition) must be performed on
every number fetched from the main memory
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Arithmetic Intensity and Roofline Model
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Other Topics on Memory Traffic Optimization

Discussions found in our 4-day training and in the book:

Recursive cache-oblivious algorithms

Cross-procedural loop fusion

Software prefetching
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Data Persistence and PCIe Traffic
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Memory Retention Between Offloads
1 // Allocate arrays on coprocessor during the first iteration;
2 // retain allocated memory for subsequent iterations
3 #pragma offload target(mic:0) \
4 in(data: length(size) alloc_if(k==0) free_if(k==nTrials-1) align(64))
5 {
6 // offloaded code here...
7 }

Data transfer across the PCIe bus rate is 6 GB/s

To allocate memory on the coprocessor – 0.5 GB/s

The memory allocation operation is serial and therefore slow

Memory retention reduces the latency by a factor of 10x

For smaller arrays, the effect is even more dramatic
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Offload Latency With and Without Memory/Data Retention
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Memory Alignment and TLB Page Size Control
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MPI Applications on Clusters with Coprocessors
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MPI: Fabrics
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MPI Fabric Selection: Ethernet and InfiniBand
Ethernet+TCP between coprocessors slower than the hardware limit
InfiniBand approaches the hardware limit from CPU to coprocessors

4B 64B 1kB
Message Size

0

100

200

300

400

500

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
0.00

0.02

0.04

0.06

0.08

0.10

0.12

B
a
n
d
w

id
th

 [
G

B
/S

] CPU - remote CPU
CPU - mic0
mic0 - mic1
CPU - remote mic0
mic0 - remote mic0

http://research.colfaxinternational.com/

4B 64B 1kB
Message Size

0

5

10

15

La
te

n
cy

 [
µ
s]

1kB 1MB 1GB
Message Size

0

1

2

3

4

5

6

7

B
a
n
d
w

id
th

 [
G

B
/S

] CPU - remote CPU
CPU - mic0
CPU - remote mic0
CPU - remote mic2

http://research.colfaxinternational.com/

MIC Developer Boot Camp Rev. 11 MPI: Fabrics © Colfax International, 2013–2014



MPI Fabric Selection: Ethernet and InfiniBand

InfiniBand requires additional
software on top of MPSS

Environment variable
I_MPI_FABRICS
More information in white
paper

RDMA
Device
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MPI Fabric Selection: Intra-Device Fabric

Part of CCL: virtual interface ibscif for communication between
coprocessors within a system

Default Combination: I_MPI_FABRICS=shm:dapl
shm provides better latency, dapl – greater bandwidth
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Communication Efficiency with Symmetric Clustering

MPI communication between
CPU and coprocessors as
efficient as offload

Peer-to-peer communication
not uniform, but better than
with Gigabit Ethernet
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White paper with details:
http://research.colfaxinternational.com/post/2014/03/11/InfiniBand-for-MIC.aspx
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Process Parallelism: MPI Optimization Strategies

Dynamic scheduling

Load balancing

Communication-efficient algorithms

OpenMP/MPI hybrid
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The Monte Carlo Method of Computing the Number π
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The Monte Carlo Method of Computing the Number π
1 #include <mkl_vsl.h>
2 const long BLOCK_SIZE=4096;
3

4 // Random number generator from MKL
5 VSLStreamStatePtr stream;
6 vslNewStream( &stream, VSL_BRNG_MT19937, seed );
7

8 for (long j = 0; j < nBlocks; j++) {
9 vsRngUniform( 0, stream, BLOCK_SIZE*2, r, 0.0f, 1.0f );

10 for (i = 0; i < BLOCK_SIZE; i++) {
11 const float x = r[i];
12 const float y = r[i+BLOCK_SIZE];
13 if (x*x + y*y < 1.0f) dUnderCurve++;
14 }
15 }
16 const double pi = (double)dUnderCurve / (double)iter * 4.0
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The Monte Carlo Method of Computing the Number π
1 int rank, nRanks, trial;
2 MPI_Init(&argc, &argv);
3 MPI_Comm_size(MPI_COMM_WORLD, &nRanks);
4 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
5

6 const double blocksPerProc = (double)nBlocks / (double)nRanks;
7 const long myFirstBlock = (long)(blocksPerProc*rank);
8 const long myLastBlock = (long)(blocksPerProc*(rank+1));
9

10 RunMonteCarlo(myFirstBlock, myLastBlock, stream, dUC);
11 // Compute pi
12 MPI_Reduce(&dUC, &UnderCurveSum, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
13 if (rank==0)
14 const double pi = (double)UnderCurveSum / (double) iter * 4.0 ;
15

16 MPI_Barrier(MPI_COMM_WORLD);
17 MPI_Finalize();
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The Monte Carlo Method of Computing the Number π
Host, coprocessor, heterogeneous
user@host% mpirun -np 32 -host localhost ./pi_mpi
Time, s: 0.84
user@host% mpirun -np 240 -host mic0 ~/pi_mpi
Time, s: 0.44
user@host% mpirun -np 32 -host localhost ./pi_mpi : -np 240 -host mic0 ~/pi_mpi
Time, s: 0.36

Coprocessor is 1.9x faster than the host system
Thost ≈ 0.84 seconds, TPhi ≈ 0.44 seconds
Expect Tboth = 1/(1/0.84+1/0.44) ≈ 0.29 seconds
Tmeasured ≈ 0.36 seconds, which is 25% worse than expected. Why?
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Using Intel Trace Analyzer and Collector

CPU finishes its share of work faster than coporocessors.
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Load Balancing with Static Scheduling
Solution: assign more work to CPU ranks.
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Load Balancing with Static Scheduling
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Dynamic and Guided Scheduling

An alternative, self-tuning way to balance the load on a
heterogeneous system is “boss-worker” scheduling

One MPI process is designated as “boss”, others as “workers”

Boss assigns tasks to workers as they complete previous tasks

Intel MPI uses pinning by default. The boss worker may have to be
unpinned.

Dynamic scheduling may have a significant communication
overhead

Reduce overhead with guided scheduling (gradually decreasing task
size) and hybrid OpenMP+MPI solutions to have fewer ranks
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Guided Scheduling
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Performance of Heterogeneous Hybrid Monte Carlo Calculation of π with Guided Scheduling

Single-threaded MPI processes
4 OpenMP threads per MPI process
16 OpenMP threads per MPI process
One 32-threaded MPI process on host,
one 240-threaded process on coprocessor
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Hybrid MPI+OpenMP
Using OpenMP inside of MPI processes

Pure MPI:

Hybrid OpenMP+MPI:

Reduces the memory
footprint

Decreases the number of MPI
ranks, which reduces
communication

May incur thread
synchronization overhead

Optimal number of threads in
MPI processes must be
established empirically
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Hybrid MPI+OpenMP

Common usage model: each MPI process is multi-threaded

Use I_MPI_PIN_DOMAIN=openmp
Set OMP_NUM_THREADS for each MPI process. The MPI runtime will
pin processes accordingly.

For MPI calls from multiple MPI threads, extra caution; use -mt_mpi
More information in the MPI Reference Manual
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MPI Fabric Selection

Environment variable I_MPI_FABRICS
For inter-node communication: tcp, dapl
For intra-node communication: tcp, dapl, shm
Combination: I_MPI_FABRICS=shm:dapl
TCP is configured in MPSS by default. DAPL requires installing
OFED for MIC.

Virtual infiniband interface ibscif for communication between
coprocessors within a system.

More information in the MPI Reference Manual
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§7. Conclusion
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Course Recap
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Programming Models for Xeon Phi Coprocessors

1 Native coprocessor applications
Ï Compile with -mmic
Ï Run with micnativeloadex or scp+ssh
Ï The way to go for MPI applications without offload

2 Explicit offload
Ï Functions, global variables require __attribute__((target(mic)))
Ï Initiate offload, data marshalling with #pragma offload
Ï Only bitwise-copyable data can be shared

3 Clusters and multiple coprocessors
Ï #pragma offload target(mic:i)
Ï Use threads to offload to multiple coprocessors
Ï Run native MPI applications
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Optimization Checklist

1 Scalar optimization

2 Vectorization

3 Scale above 100 threads

4 Arithmetically intensive or bandwidth-limited

5 Efficient cooperation between the host and the coprocessor(s)
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Double Rewards of MIC Programming

From the book “Parallel Programming and Optimization with Intel Xeon
Phi Coprocessors” by Colfax:
It is not trivial to achieve good performance with Intel Xeon Phi coprocessors,
especially when one compares it to the performance of modern Intel Xeon processors
with the Sandy Bridge architecture. The new truth that HPC programmers must learn
is: if a parallel code does not perform fast on Intel Xeon Phi coprocessors, it probably is
not doing very well on Intel Xeon processors, either. The flip side of this truth is that
when developers invest time and effort into optimizing for the many-core
architecture, they also reap performance benefits on multi-core processors.
Book page: http://www.colfax-intl.com/nd/xeonphi/book.aspx
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Double Rewards of MIC Programming
From the article “An Overview of Programming for Intel Xeon processors
and Intel Xeon Phi coprocessors” by James Reinders
The single most important lesson from working with Intel Xeon Phi coprocessors is
this: the best way to prepare for Intel Xeon Phi coprocessors is to fully exploit the
performance that an application can get on Intel Xeon processors first.
. . .
The experiences of users of Intel Xeon Phi coprocessors . . . point out one challenge:
the temptation to stop tuning before the best performance is reached. . . . There ain’t
no such thing as a free lunch! The hidden bonus is the “transforming- and-tuning”
double advantage of programming investments for Intel Xeon Phi coprocessors that
generally applies directly to any general-purpose processor as well. This greatly
enhances the preservation of any investment to tune working code by applying to
other processors and offering more forward scaling to future systems.

Full article here
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Additional Resources: Reading, Guides, Support

MIC Developer Boot Camp Rev. 11 Additional Resources: Reading, Guides, Support © Colfax International, 2013–2014



Reference Guides

Intel C++ Compiler 14.0 User and Reference Guide

Intel VTune Amplifier XE User’s Guide

Intel Trace Analyzer and Collector Reference Gude

Intel MPI Library for Linux* OS Reference Manual

Intel Math Kernel Library Reference Manual

Intel Software Documentation Library

MPI Routines on the ANL Web Site

OpenMP Specifications
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Intel’s Top 10 List
1 Download programming books: “Intel Xeon Phi Coprocessor High

Performance Programming” by Jeffers & Reinders, and “Parallel
Programming and Optimization with Intel Xeon Phi Coprocessors”
by Colfax.

2 Watch the parallel programming webinar
3 Bookmark and browse the mic-developer website
4 Bookmark and browse the two developer support forums: “Intel

MIC Architecture” and “Threading on Intel Parallel Architectures”.
5 Consult the “Quick Start” guide to prepare your system for first use,

learn about tools, and get C/C++ and Fortran-based programs up
and running

Link to TOP10 List for Starter Kit Developers
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Intel’s Top 10 List (continued)

6 Try your hand at the beginning lab exercises
7 Try your hand at the beginner/intermediate real world app exercises
8 Browse the case studies webpage to view examples from many

segments
9 Begin optimizing your application(s); consult your programming

books, the ISA reference manual, and the support forums for
assistance.

10 Hone your skills by watching more advanced video workshops

Link to TOP10 List for Starter Kit Developers
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Intel Xeon Phi Starter Kit
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Intel Xeon Phi Starter Kit
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Intel Xeon Phi Starter Kit
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Intel Xeon Phi Starter Kit
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Workstations with Intel Xeon Phi Coprocessors (Jan 2014)

http://www.colfax-intl.com/nd/xeonphi/workstations.aspx
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Servers with Intel Xeon Phi Coprocessors (Jan 2014)

http://www.colfax-intl.com/nd/xeonphi/servers.aspx
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Research and Consulting

http://research.colfaxinternational.com/
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Research and Consulting
Colfax offers consulting services for Enterprises, Research Labs, and
Universities. We can help you to:

Optimize your existing application to take advantage of all levels of
hardware parallelism

Future-proof for upcoming innovations in computing solutions.

Accelerate your application using coprocessor technologies.

Investigate the potential system configurations that satisfy your
cost, power and performance requirements.

Take a deep dive to develop a novel approach.

For more details, contact us at phi@colfax-intl.com to discuss what we
can do together
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Intel® Xeon Phi™ Coprocessor
Remote Access and System Loaner Programs

Intel-supported options for Academia:

 Manycore Testing Lab through SSG (more info)

 Intel Science & Technology Center (ISTC) and Intel 
Collaborative Research Institutes (ICRI) programs 
through Intel Labs (more info)

 Texas Advanced Computing Center (TACC) and 
National Institute for Computational Sciences (NICS) 
both offer allocations through the NSF XSEDE 
program (more info)

Colfax Code Treadmill:

 Seven-day, 24/7 remote access to a personal HPC 
server at Colfax with training materials, Intel® 
Xeon® processors, Intel® Xeon Phi™ coprocessors 
and software development tools 

 More Information:  HERE

Intel Demo Depot:

 Contact your local Intel sales representative for 
requesting an Intel® Xeon Phi™ coprocessor-based 
system

Colfax Loaner Program:

 30-day access to a loaner system, complete with 
Colfax hardware and software programming 
support

 More information please send email to :  
phi@colfax-intl.com

Remote Access Systems Loaner Programs

Please contact your  Intel BDM or local OEM 
representative for more remote access and 

system loaner options
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software.intel.com/xeon-phi-starter-kit

Go parallel today with a 
fully-configured 

system starting below $5K*

3120A

5110P

OR

Other brands and names are the property of their respective owners.
*Pricing and starter kit configurations will vary.  See software.intel.com/xeon-phi-starter-kit and provider websites for full details and disclaimers.  Stated currency 
is US Dollars.

Intel® Xeon Phi™ Coprocessor Starter Kits



Thank you for tuning in,
and

have a wonderful journey
to the Parallel World!
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