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MOTIVATION
Cost-effectiveness analysis is an integral part of health technology assessment, and addresses the question
of whether a new treatment or other health care intervention offers good value for the money.
Cost is typically expressed in monetary terms, and the effectiveness is measured using variables such as
survival time, Disability-Adjusted Life Years (DALYs), Quality-Adjusted Life Years (QALYs), et.
While evaluating treatments regarding their costs and health benefits, traditionally only population averages
are compared. We wish to perform cost-effectiveness analysis, as it applies to the entire population. We
propose to develop criteria that can bring out features not captured by the usual summary measures based
on means; in particular, criteria involving medians, percentiles etc. This will enable us to answer questions
such as: for a significant percentage of the population, is the increase in cost too large compared to the
effectiveness gain? Statistical tolerance limits will be used to investigate such issues.

INTRODUCTION AND MOTIVATION

• Consider the scenario where two treatments are compared using two groups of patients. Let Cji (Eji )
denote the cost (effect) of subject i in the jth group, i = 1, 2, ..., nj , j = 1, 2

• Traditional cost-effectiveness analysis is based on Incremental Cost-Effectiveness Ratio (ICER) and
Incremental Net Benefit (INB)
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µjC (µjE ) : mean of cost (effect) in the jth group
λ : Willingness-to-Pay amount

• ICER and INB are population parameters. The corresponding random variables are:
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BACKGROUND

Bivariate Normal
• Typically costs follow a log-normal distribution. However, the normal distribution is also used in prac-

tice.
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SETUP

The median of YICER could be drastically different from the value of ICER. In other words, the traditional ICER could be unrepresentative of the
population.
In order to see this, consider the Lognormal-normal case with the following parameter values:
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The following histogram shows the distribution of YICER , along with the median and the true value of ICER. Clearly, the ICER is unrepresentative of
the distribution.

MEDIAN AND THE ICER

• Tolerance limits are computed using random sample

• Lower tolerance limit,L, for YINB : Pdata[P (YINB ≥ L|data) ≥ p] = 1− α

• Upper tolerance limit,U , for YICER: Pdata[P (YICER ≤ U|data) ≥ p] = 1− α

We consider non-parametric tolerance limits based on order statistics [1]

• LetX = (X1, ..., XN ) be a sample from a distribution and (X(1), ..., X(N)) the corresponding
order statistics

• Wantm such that PX(m)
[PX(X ≥ X(m)) ≥ p] = 1− α

• X(m) is the intented lower tolerance

• m is defined as the largest integer such that
P (W ≥ N −m + 1|N, 1− p) ≥ 1− α

whereW ∼ Bin(N, 1− p)
• Similarly an upper tolerance limit can be defined

[1]Krishnamoorthy, K. and Mathew, T. (2009). Statistical Tolerance Regions: Theory, Applications, and Computa-
tion.Wiley, J. and Sons.

ONE-SIDED TOLERANCE LIMIT

Samples are not directly available from the distributions of YICER and YINB , so we proceed as follows:

• Generate pairs
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by parametric bootstrap, i = 1, 2, ..., B1

• Compute Y ∗ICER,i , Y
∗

INB,i , i = 1, 2, ..., B1

• Use the order statistics based on Y ∗ICER,i and Y ∗INB,i to obtain tolerance limits

Coverage probabilities of the resulting tolerance limits are not satisfactory

• Use bootstrap calibration to improve the coverage

• UseB2 second level bootstrap samples

A flow chart for the Bootstrap Calibration algorithm

PARAMETRIC BOOTSTRAP WITH CALIBRATION

Bivariate Normal
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One-sided lower tolerance limit for INB:
n1 = n2 = 50, 150, µ11 = 500, 525 and ρ = −0.5, 0.1

Lognormal-Normal
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One-sided lower tolerance limit for INB:
n1 = n2 = 50, 150, µ11 = 8, 10 and ρ = −0.5, 0.1

First level bootstrap sample size B1 = 5000, second level bootstrap sample size B2 = 1000, number
of simulation runsB0 = 1000.

SIMULATIONS

Bivariate Normal with p = 0.9 and 1 − α = 0.95
n µ11 ρ INB ICER

coverage coverage
50 500 -0.5 0.9585 0.9545
50 525 -0.5 0.9470 0.9630
150 500 -0.5 0.9535 0.9595
150 525 -0.5 0.9480 0.9575
50 500 0.1 0.9505 0.9505
50 525 0.1 0.9455 0.9560
150 500 0.1 0.9500 0.9595
150 525 0.1 0.9560 0.9555

Lognormal-Normal with p = 0.9 and 1 − α = 0.95
n µ11 ρ INB ICER

coverage coverage
50 6 -0.5 0.9450 0.9440
50 8 -0.5 0.9430 0.9450
150 6 -0.5 0.9445 0.9505
150 8 -0.5 0.9515 0.9500
50 6 0.1 0.9525 0.9465
50 8 0.1 0.9475 0.9370
150 6 0.1 0.9485 0.9440
150 8 0.1 0.9475 0.9390

RESULTS

Canadian Implant Defibrilator Study (CIDS)[2]

Implant Cardioverter Defibrillator (ICD) vs. Amiodarone (Amd) in reducing the risk of death in survivors
of Ventricular Tachycardia (VT).
nICD = 212 subjects, nAmd = 218 subjects, λ = 100000
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Point Estimates:

∆̂c = 48225, ∆̂e = 0.15, ÎNB = λ∆̂e − ∆̂c, ÎCER =
∆̂c

∆̂e
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Using Fieller’s theorem
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• 95% Lower Confidence Limit for INB:−75785.45

• 95% Upper Confidence Limit for ICER: 83737.26

Tolerance Limits
• p = 0.9, 1− α = 0.95 Lower Tolerance limit for YINB: −63846.16

• p = 0.9, 1− α = 0.95 Upper Tolerance limit for YICER: 898636.2

• p = 0.03, 1− α = 0.95 Lower Tolerance limit for YINB: 103.9

• p = 0.2, 1− α = 0.95 Upper Tolerance limit for YICER: −127004.8

Conclusions
• 90% or more of individual INB values fall above: −63846.16

• 90% or more of individual ICER values fall below 898636.2

• Even though the average INB has a negative lower limit, at least 3% of the values are positive
• Even though the average ICER has a positive upper limit, at least 20% of the values are negative

• This shows that the traditional ICER analysis is inadequate for cost-effectiveness analysis

[2] Willan, A.R. and Briggs, A.H.(2006). Statistical analysis of cost-effectiveness data. Wiley:Chichester, UK.

EXAMPLE

The hardware used in the computational studies is part of the UMBC High Performance Computing Facil-
ity (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program
(grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant no. DMS–0821311),
with additional substantial support from the University of Maryland, Baltimore County (UMBC). See
www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.
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