
“Target” data (Re ≈ 5.5)
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Recovered data (γu = 1, γp = 10−3, β = 10−5)
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Case study: Optimal control of fluids
Optimal control problem constrained by the Navier-Stokes equations:

minimize γu
2 ||u− ud||

2 +
γp
2 ||p− pd||

2 + β
2 ||f ||

2

subj. to −ν∆u + (u · ∇)u +∇p = f ,

div u = 0 , u|Ω = 0

(4)

•Newton-Krylov method: fk+1 = fk −Gh(fk)−1∇Ĵh(fk) .

•At each Newton iteration use multigrid preconditioned CG to solve: Gh(fk)δfk = ∇Ĵh(fk).

• For a fixed force f , let u = U(f ), p = P(f ); define L = L(f ) by

L
[
v
q

]
def
=

[
ν∆v + (v · ∇)u + (u · ∇)v +∇q

∇ · v

]
.

•Define E(v, q) = v and I(f ) = (f, 0).

•Gradient formula:

∇J(f ) = E(L∗)−1
[
gu(u− ud)
gp(p− pd)

]
︸ ︷︷ ︸

zf

+βf .

•Given zf define the linear operator

Dv = (v · ∇)zf + (∇ · v)zf −∇Tv · zf .
•Hessian operator:

G(f ) = E(L∗)−1
[
D + guI
gpI

]
L−1I + βI .

• Two-grid preconditioner for the Hessian at each Newton iteration:

Th(fk) = G2h(π2hfk)π2h + β(I − π2h) (5)

Theorem 2 (2013) Let f ∈ Uad ∩Xh, γu = 1, γp = 0. If standard finite element approximations

||(U − Uh)f || ≤ Ch2||f ||, ||(P − Ph)f || ≤ Ch||f ||

hold, and under standard regularity assumptions,

||(Gh(u)− Th(u))v|| ≤ Ch2||v|| ∀v ∈ Xh ,

with C independent of h.

Numerical results:

•Use f1(x, y) = g if y > 0.9, 0 otherwise f2(x, y) = 0 to generate velocity-pressure data (ud, pd) to
resemble lid-driven cavity.

• Samples of comparison of iteration counts and runtimes for multigrid vs. unpreconditioned CG
g = 1, Re ≈ 0.55.

h 2−5 2−6 2−7 2−8

gp = 0, β = 10−4 (velocity control only)
# cg its 40, 46 40, 39 41, 44 41, 36
tcg (s) 35.58 179.66 1196.67 7386.29

# mg its (n0 = 16) 5, 5 5, 4 3, 3 2, 2
tmg (s) 98.47 135.93 324.46 1283.44
gp = 0, β = 10−5 (velocity control only)

# cg its 96, 113 96, 97 96, 104 96, 89
tcg (s) 105.48 518.83 2789.97 17294.9

# mg its (n0 = 16) 10, 10 10, 9 5, 5 3, 3
tmg (s) 95.65 164.41 408.62 1577.79

gp = 10−2, β = 10−4 (pressure/velocity control)
# cg its 47, 51 49, 53 47, 57, 21 48, 55
tcg (s) 40.76 220.40 1527.53 9641.7

# mg its (n0 = 16) 9, 9 9, 9 9, 9, 6 12, 13
tmg (s) 104.01 162.58 724.42 3684.8

Overview
Optimization problems constrained by partial differential equations (PDEs) is a research area to which
the scientific and engineering communities have devoted an increased level of effort over the last
decade. The computational revolution of the last twenty years has fostered not only high-resolution
numerical computations based on PDE models, but also a shift from model based simulation to model
based design. The latter translates into the question of solving optimization problems with PDEs
acting as equality constraints in order to identify initial and/or boundary values, material properties,
sources, and other parameters for which the PDE models behave in a desired way. However, just
growth in computing power is insufficient for tackling PDE-constrained optimization problems at the
same extreme scales at which the PDEs themselves can be solved: although current computing capa-
bilities allow, in principle, for the numerical solution of PDEs with 10–100 billion unknowns, solving
PDE-constrained optimization problems of comparable size still requires significant algorithmic de-
velopment.

The objectives of this project are to develop, analyze, and implement efficient multigrid methods for
solving large-scale optimization problems constrained by PDEs, with particular focus on the linear
algebraic aspects of the solvers. Applications include optimal design of manufacturing processes,
history matching for petroleum reservoir simulations, data assimilation for weather prediction,
to name only a few.

Why multigrid?
Originating in the 1960s with work on numerical PDEs, the multigrid paradigm is that the solution
process of a PDE-related numerical computation can be significantly accelerated by using multiple res-
olutions/discretizations of the PDE. The embodiment of the paradigm is strongly problem-dependent.
The study of multigrid methods for optimization problems has increased since the early 2000s and this
research area developed in several, non-equivalent directions.

Abstract formulation:
minimize J(y, u) = 1

2||y − yd||
2
L2(Ω)

+ R(u, y),

subj. to u ∈ Uad ⊂ U, y ∈ Yad ⊂ Y = L2(Ω),

e(y, u) = 0 .

(1)

• Uad and Yad – sets of admissible controls resp. states (convex, closed, non-empty).

• Ex.: Uad = {u ∈ U : u ≤ u ≤ u}, Yad = {y ∈ Y : y ≤ y ≤ y}.
• Equality constraint e(y, u) = 0 is a well-posed PDE, i.e., for all u ∈ U there is a unique y ∈ Y

(depending continuously on u), so that

e(y, u) = 0, K(u)
def
= y .

Basic multigrid mechanism: linear PDE, no control or state constraints

•Assume K is a linear smoothing operator (e.g., solution operator of elliptic PDE) and formulate the
optimization problem in reduced formminimize Ĵ(u) = 1

2||K(u)− yd||2L2(Ω)
+ β

2 ||Lu||
2,

subj. to u ∈ Uad ⊂ U, L = I or ∇ .
(2)

•Discretization of problem (2) is equivalent to the regularized normal equations

Ghu
def
= (βI + K∗hKh)u = K∗hπhyd .

• Two-grid preconditioner:

Th = G2hπ2h + β(I − π2h), T−1
h = G−1

2h π2h + β−1(I − π2h) . (3)

Theorem 1 (2004) For h sufficiently small and u ∈ Vh

1− Ch
p

β
≤
〈
(Th)−1u, u

〉〈
(Gh)−1u, u

〉 ≤ 1 + C
hp

β
,

where p is the order of the discrete method.

Model problems of interest:

• PDE-constraints of interest:
– Stationary: linear and semilinear elliptic equations, stationary fluid flows (see the case study)
– Time-dependent: parabolic equations, non-stationary fluid flows (Navier-Stokes), hyperbolic equa-

tions (shallow-water equations), chaotic dynamical systems
– Stochastic PDEs

•Controls of interest:
– Distributed controls (forcing, material properties)
– Boundary controls
– Initial values (for time-dependent problems)

•Regularization of interest: classical L2, square-variation regularization (to enforce smooth con-
trols), L1-regularization (to enforce sparsity)

Special Challenges:

• Inequality constraints and L1-regularization require non-smooth optimization methods, interior
point methods.

•Nonlinear and time-dependent PDE-constraints are notoriously challenging in a large-scale context.

•Hyperbolic PDEs give rise to non-smooth solution operators K.
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