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Abstract: This technical report examines the performance of OpenMPI 1.2.6, MVAPICH2
1.0.3 and MVAPICH 1.0.1 on the UMBC hpc.rs.umbc.edu cluster. This report presents the
bandwidth of MPI_Alltoall, MPI_Allreduce, MPI_Bcast, MPI_Send, MPI_Recv and
MPI_Reduce, as well as the round trip time of MPI_Send/MPI_Recv pairs. Due to recent
hardware issues, this report is restricted to 1 to 12 machine cases. A bad Infiniband card on
node032 ended the study before the planned 16, 24 and 32 machine cases. Additionally, this
paper examines a bug in MVAPICH 1.0.1 that prevents its use for jobs that require more than
seven nodes, as well as other issues in MVAPICH2 and OpenMPI. Lastly, this report explains
the need for load balancing on hpc.rs.umbc.edu.

Introduction

The Message Passing Interface (MPI) is the industry standard for communication between distributed
memory jobs. MPI-based programs execute simultaneously on several machines at once. The various
instances of the program (referred to as processes) communicate by passing messages between each other.
MPI makes this easy by providing subroutines that perform message passing for the program. The MPI
implementation handles the details of the particular underlying communication interface, and algorithms
for efficient communication, allowing scientists and other programmers to worry about matters more
relevant to their work.

MPI supports a number of communication patterns through C, Fortran and C++ application programing
interfaces (APIs; essentially sets of callable functions). Most of these communication patters involve one
process sending a message to all other processes (or receiving a message from all other processes), some
involve communication between only two processes and others involve all processes communicating with
each other simultaneously. Some of the more common MPI functions are the ones benchmarked by this
study:

e MPI_Send, MPI_Recv — MPI_Send sends a single message from one process to another specific
process. MPI_Recv receives the sent message.

e MPI_Bcast — MPI_Bcast sends a message from one process to all other processes.

e MPI_Reduce — MPI_Reduce takes an array of numbers on one process, splits the array up into
several parts and sends each part to a different process. The processes then perform some task on
the data (such as summing it or finding the maximum value). They then send the result back to the
originating process, which combines the results (such as by summing the sums, or getting the
maximum of the maximums).

e MPI_Alltoall — MPI_Alltoall sends a distinct message from every process to every other process.
(That is, if you have n processes, then each one sends n-/ messages — one to each other process.)
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e MPI Allreduce — MPI_Allreduce is somewhat of a combination of MPI_Alltoall and MPI_Reduce.
As in MPI_Reduce, one process provides a list of numbers which is then split up evenly among all
other processors. The processors then work together to perform a single computation on the data,
such as summing the numbers. Unlike MPI_Reduce, the result is not merely sent back to the
originating process. It is also sent to all other processes.

In addition to bandwidth measurements, we also will examine unidirectional latency of MPI_Send and
round trip time of MPI_Send/MPI_Recv pairs. The unidirectional latency measures how long it takes to
tell the MPI implementation to send a message out. The round trip time measures how total time it takes
to send a message out (via MPI_Send) and receive one back again (via MPI_Recv).

Throughout this document, node or machine will refer to one physical computer. Processor or core will
refer to one processor core on one machine. The hApc.rs.umbc.edu cluster is made up of thirty-two nodes,
each with two processor cores. Due to hardware failures, this study is limited to jobs running on twelve
nodes or less.

Methodology

This study uses the Low Level Characterization Benchmark (l//chench) benchmarking suite. It is designed
to benchmark the smallest possible subset of the MPI implementation at a time. It does this through the
use of tight loops surrounded by timers. For example, here is the loop in the MPI_Send/MPI_Recv
bandwidth test:

TIMER START;
for (i=0; i<cnt; i++)
mp send(dest rank, 1, sendbuf, bytes);
mp recv(dest rank, 2, destbuf, 4);
TIMER STOP;

Here, mp_send and mp_recv are llcbench's wrappers around MPI_Send and MPI_Recv, respectively.
TIMER_START and TIMER_STOP are C Preprocessor macros that calculate the current time via the use
of the UNIX clock_gettime function's real time mode, which returns the time in nanoseconds. The single
call to mp_recv ensures that all of the mp_send calls finish before the call to TIMER_STOP. The reason
that works is that the remote process does not call mp_send until after it has called mp_recv cnt times (and
process 0's mp_recv cannot complete until someone has sent data to process 0).

I compiled llcbench using OpenMPI 1.2.6, MVAPICH 1.0.1 and MVAPICH 1.0.3, each with the PGI
compiler and the GCC compiler (six different combinations). I ran the llcbench benchmark suite for all
six combinations on 1, 2, 3, 4, 6, 8 and 12 machines, using 1, 2 and 4 processors per machine.

Results

The results are split into three sections. The first section discusses the latency and two process
communication bandwidth (the good news). The second section discusses the multiprocess
communication bandwidth (the bad news). The last section discusses the critical bug in MVAPICH 1.0.3
and other MPI-related issues.

Two Process Communication

The two process communication methods analyzed here use the MPI_Send and MPI_Recv commands to
send messages between the rank O process and the rank n-1 process, where 7 is the number of processes.



The first result I will present here is the latency and round trip time — two aspects of the same benchmark.
The latency benchmark calls MPI_Send five thousand times and calculates the average time taken by an
MPI_Send call. That benchmark can be deceptive since the MPI implementation has the freedom to store
multiple MPI_Send messages and send them all at once in a single communication.

Latency and Round Trip Time

The roundtrip benchmark does not have that problem. It calls MPI_Send followed by MPI_Recv,
repeating that pair of calls five thousand times. It then calculates the average time taken by a pair of calls.
In order for the MPI_Recv to succeed, the remote process must have received and acknowledged the
MPI_Send. That ensures that the MPI implementation cannot simply cache five thousand MPI_Send calls
and send them all at once. The results of the round trip benchmark do not vary noticably between MPI
implementations, machine counts or processor per node variations. OpenMPI displays slightly better
performance in the latency benchmark for small message sizes, indicating that it does a better job of
caching multiple messages before sending them (see Figure 1).
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Figure 1: The round trip performance (left) is measured in transactions per second. It starts at a rate of
90,000 to 115,000 transactions per second, which corresponds to a round trip time of about 10
microseconds — equivalent to a unidirectional latency of only 5 microseconds. The round trip time
remains quite fast until around 1 kB messages, when it begins to drop off roughly linearly with the
message size. There are no noticeable differences between the different MPI implementations. There are
also no differences between different numbers of processors per node (not shown). The latency (right)
displays similar behavior, except that OpenMPI has about half of the latency of MVAPICH2 for small
message sizes. Note that the latency benchmark, unlike the round trip benchmark, allows the MPI
implementation to cache several MPI_Send calls before sending the messages. Thus the latency
benchmark indicates that OpenMPI does a better job of caching MPI_Sends than MVAPICH2 does.



Bandwidth: Unidirectional and Bidirectional

The next type of benchmark is two process bandwidth benchmarks. The llcbench suite contains

unidirectional and bidirectional two process bandwidth benchmarks. The unidirectional bandwidth

benchmark calls MPI_Send many times, followed by a single MPI_Recv (to ensure that the MPI

implementation actually sends all of the MPI_Send messages). It then reports the average bandwidth in
kB/s. The bidirectional bandwidth benchmark calls MPI_Send once, then MPI_Recv once, and repeats
the pair thousands of times. It then reports the average bandwidth. In the unidirectional bandwidth
benchmarks, MVAPICH?2 consistently outperforms OpenMPI by a factor of two to four for message sizes

of less than 10 kB. In the bidirectional bandwidth benchmark, the two have approximately equal
performance (Figure 2).
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Figure 2: The unidirectional bandwidth performance
(above) of MVAPICH? is about two to four times that of
OpenMPI (note the logarithmic axes). Note the large
decrease in performance around 10 kB in both
MVAPICH?2 and OpenMPI. After that performance
drop, the two are roughly equal. MVAPICH2 and
OpenMPI are roughly tied when it comes to the
bidirectional bandwidth performance (right) and there is
no noticeable performance drop at 10 kB. The results do
not vary much with the number of processors per
machine or the number of machines (not shown), which
is expected: this is a two process communication test.

10

10°

10°

10*

10°

kB/sec. first process

Unidirectional Bandwidth of MPI_Send

OpenMPI1 8 n 1 ppn
OpenMPI 8 n 2 ppn
OpenMPI 8 n 4 ppn
MVAPICH2 8 n 1 ppn|}
MVAPICH2 8 n 2 ppn
MVAPICH2 8 n 4 ppn

10°

10° 10 10 10°
Message Size in Bytes
- Bidirectional Bandwidth of MPI_Bcast
10
10° /b/ !
A
/
5 /
10
OpenMPI 8 n 1 ppn
4 OpenMPI1 8 n 2 ppn
10 OpenMPI 8 n 4 ppn
MVAPICH2 8 n 1 ppn
MVAPICH2 8 n 2 ppn
MVAPICH2 8 n 4 ppn
10° ' :

10°

10°

10* 10° 10°

Message Size in Bytes



Multiprocess Benchmarks

The next class of benchmarks examine the bandwidth of MPI_Allreduce, MPI_Alltoall, MPI_Bcast,
MPI_Reduce. All four of those MPI calls communicate between all processes in the MPI program, unlike
MPI_Send and MPI_Recv. As with MPI_Send and MPI_Recv, llcbench calculates the bandwidth in terms
of the number of bytes per second sent out from process 0. However, in these benchmarks, I convert the
bandwidth to kB/s for the whole machine by dividing llcbench's bandwidth result by the number of
processors used per node.

The performance of MPI_Reduce (Figure 3) and MPI_Allreduce (Figure 4) is reasonable. MPI_Alltoall
(Figure 5) suffers serious performance problems, while MPI_Bcast (Figure 6) displays similar
performance to MPI_Reduce and MPI_Allreduce.

MPI_Reduce Bandwidth Per Machine

In the MPI_Reduce benchmark, process 0 assembles an array of MPI_INT values and instructs the
processes in the MPI program to collectively sum the array. The message size reported in Figure 3 is the
total size of that array. There are no guarantees made about the algorithm the MPI implementation will
use to divide up the array among the available processes — the only guarantee is that the processes will
collectively sum the data.
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Figure 3: MVAPICH?2 outperforms OpenMPI by about a factor of three for small message sizes.
MVAPICH?2's bandwidth drops abruptly by a factor of two to five at messages around 3 kB in size. A
similar drop is visible in the OpenMPI performance when using four or eight nodes (right) though that
feature is not present in the one and two processor per machine. cases (not shown). One important result
to take away from this is that MPI_Reduce's performance is very poor for messages less than 1 kB in size
for both OpenMPI and MVAPICH2.



MPI_Allreduce Bandwidth Per Machine

MPI_Allreduce works much like MPI_Reduce — process O creates an array of MPI_INT values and orders
the collection of processors to sum the results. Unlike MPI_Reduce, MPI_Allreduce forwards the results
of that sum to all processors. The performance of MPI_Allreduce is decent, though there are some ranges
of message sizes over which OpenMPI performs far more poorly than MVAPICH?2.
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Figure 4: MVAPICH2's MPI_Allreduce performance
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MPI_Alltoall Bandwidth Per Machine

MPI_Alltoall sends a distinct message from each process to each other process. The MPI implementation
is free to distribute these messages by any algorithm it wishes. Unlike the past benchmarks, the results

here are very disappointing. Over a large range of message sizes, MVAPICH2 and OpenMPI
MPI_Alltoall bandwidth is atrocious nearly to the point of being useless.
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MPI_Bcast Bandwidth Per Machine

MPI_Bcast broadcasts a message from process 0 to all other processes. As with the other calls, there are
no guarantees about how the message will get to its destinations. The llcbench suite calculates MPI_Bcast
bandwidth by running MPI_Bcast five thousand times, and then MPI_Recv once for each process whose
rank is greater than zero (to ensure that the broadcasts complete rather than being cached somewhere). 1
then multiply the bandwidth by the number of processors used per machine to calculate the total
bandwidth of the first machine.
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Figure 6: For large numbers of processors, Performance of MP|_Bcast
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Other MPI Issues

MVAPICH 1.0.1

You may have wondered about the conspicuous absence of MVAPICH 1.0.1, which was prominently
featured in the abstract of this technical report. MVAPICH 1.0.1 has a critical bug causing it to crash the
user's program if he, she or it uses MPI_Bcast to communicate between eight or more machines (cluster
nodes — not processes). This bug is a known bug that has already been fixed in a developmental branch of
MVAPICH 1.0.1 as of August 21, 2008 (possibly earlier). Due to this bug, I did not test MVAPICH 1.0.1.

MVAPICH2 1.0.3

This MPI implementation displays reasonable performance in most cases and it does not have the critical
bug that MVAPICH 1.0.1 has. It appears at first glance to be the best choice for an MPI implementation,
however there are significant issues with MVAPICH?2:

1. MVAPICH has no mpirun script. Thus users must call the low-level mpdboot, mpiexec and
mpdallexit functions directly. The mpiexec function has an especially confusing argument parsing
routine that requires certain arguments to appear in a certain order. In addition, the user must set
up a ~/.mpd.conf file in their home directory. This process is overly complex and unnecessarily so.
It will likely confuse many users.

2. Dr. Gobbert has noticed that MVAPICH?2 does not recover gracefully from a crashed program,
unlike OpenMPI which happily exits when your program crashes. This has led to MVAPICH?2
jobs getting stuck in the queue.

3. As with OpenMPI, the bandwidth of MVAPICH2's MPI_Alltoall is horrible.

OpenMPI

OpenMPI is filled with features, and is quite easy to use but is substantially slower than MVAPICH?2 in a
number of cases. The MPI_Bcast performance is two to four times slower for messages less than about 10
kB in size. The MPI_Allreduce performance is ten to thirty times slower until around 30 kB messages.
The MPI_Reduce performance is up to four times slower for messages less than 300 bytes in size. The
unidirectional MPI_Send bandwidth is around one third that of MVAPICH for messages less than 8 kB in
size. OpenMPI's bandwidth is littered with sudden performance drops at various message sizes —
performance drops that are not present in the MVAPICH?2 results (with the notable exception of
MPI_Alltoall). This suggests that OpenMPI may simply be misconfigured.

Fortunately, OpenMPI is configurable at runtime by the user through various flags to mpirun. The
OpenMPI project FAQ provides a number of suggestions about how to improve bandwidth:

http://www.open-mpi.org/fag/?category=openfabrics

That link also provides suggestions as to how system administrators can configure switches and other
hardware to improve Infiniband performance.

Lack of Load Balancing

The hpc.rs.umbc.edu cluster is currently set up to launch jobs on the highest-numbered cluster nodes first.
The first node listed in the user's job list is the highest-numbered node. That is going to wear down the
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higher-numbered nodes sooner than the lower-numbered ones. It will have an especially large impact on
node032's Infiniband card, due to the nature of MPI programs. The first machine in the machine file gets
MPI process 0. That process performs more message passing than the other processes since it tends to be
the root of multiprocess communications such as MPI_Bcast, MPI_Alltoall, MPI_Reduce and
MPI_Allreduce. Indeed, twice now node032 has crashed during benchmarking, and the second time the
Infiniband card failed before the rest of the machine. To make matters worse, the PBS queuing system is
unable to end a job cleanly if it cannot contact the job launching demon on the job's initial node (the node
on which the user's gsub script runs). That means any 32-node jobs that are running when node032 has
crashed will tie up the entire cluster until a system administrator can restart the relevant demons.

It appears that hpc.rs.umbc.edu is using MAUI, which includes the MOAB scheduler. According to the
administrator's documentation for the MOAB scheduler, there is no load balancing. The “load balancing”
page in the manual states that the scheduler only lets you mark nodes as available or unavailable — you
cannot prioritize them. Marking a node as available or unavailable is considered a “load balancing”
feature since, on machines that run several jobs at a time, you can mark a machine as unavailable if it has
too many jobs running. That doesn't help load-balance a cluster — it only keeps a node from running more
jobs than it has processors. Unfortunately, standard OpenPBS doesn't include any real load balancing
either.

One possible solution to this problem is to simply reorder the node list once a week or so. There is no way
to tell the pbs_server demon to re-read its node list file — one can only achieve that effect by killing and
restarting the pbs_server demon. A possible solution to this problem is to create a script that will watch
the PBS queue and the terminals on the head node, wait for a time when the queue and terminals are all
idle, and then restart the pbs_server demon with a new node list. The ideal solution would be a new
scheduling algorithm, possibly as part of a commercial queuing system such as the commercial version of
PBS or IBM's LoadLeveler.

Conclusions and Future Work

Unfortunately, there are no good MPI implementations to chose from on the hpc.rs.umbc.edu cluster at
this point. The best performer is MVAPICH2 1.0.3. The easiest to use is OpenMPI, but it preforms much
more poorly than MVAPICH?2 1.0.3. MVAPICH 1.0.1 is not usable at this time due to a bug that causes
the user's program to crash if he or she uses MPI_Bcast between eight or more machines. Both
MVAPICH?2 and OpenMPI have extremely poor, bordering on useless, MPI_Alltoall performance between
message sizes of 10 to 10,000 bytes.

Due to a failure of the Infiniband card on node032, I have temporarily suspended these benchmarks. The
reason node032 1is critical is that PBS refuses to kill a job if the job's initial node (the one running one's
gsub script) goes down. Due to the lack of load balancing, node032 is nearly always the initial node.
Thus, if any of my jobs crash, they tie up most or all of the cluster until a system administrator can restart
the pbs server. I hope to continue later on if the hardware becomes more reliable.

In the future, if MVAPICH 1.0.1 is fixed, I may re-run the benchmarks with that MPI implementation.
The limited benchmarks I've run for MVAPICH 1.0.1 (using one to six machines) have shown that its
performance is nearly the same as MVAPICH?2 1.0.3. I also intend to test OpenMPI and MVAPICH?2 all
the way up to 32 nodes, and I will re-test OpenMPI while tuning its performance.
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