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• Fisher information matrix(FIM) is an essential
part in the computation of maximum likelihood
estimation(MLE) as well as in obtaining their
standard errors

• Computation of FIM is resource intensive in some
widely used models such as mixture distributions

• Neerchal and Morel(1993), Raim (2014), and
Raim et. al.(2014) have provided approximations
to the FIM

• In this project, we apply this approximation idea
to a mixture of two Poisson distributions

• A program in C with MPI is designed to test the
performance of our approximation under various
selections of parameter values

PROJECT SUMMARY

X1, . . . , Xn
iid∼ f(x | θθθ),

θθθ = (θ1, . . . , θk) ∈ Θ, x ∈ X

• The likelihood function is

L(θθθ | xxx) =
∏n
i=1 f(xi | θθθ),

where xxx = (x1, . . . , xn) is observed data
• The score function is given by

S(θθθ) = E
{ ∂

∂θθθ
logL(θθθ | xxx)

}
• The Fisher Information matrix(FIM) is:

III(θθθ) =− E
[ ∂2

∂θθθ∂θθθ′
logL(θθθ | xxx)

]
=var

{ ∂

∂θθθ
logL(θθθ | xxx)

}
• The Fisher scoring algorithm of obtaining MLE is

given by:

θ̂θθ
(i+1)

= θ̂̂θ̂θ(i) − [III(θ̂̂θ̂θ(i))]−1S(θ̂̂θ̂θ(i))

BACKGROUND

• The probability function of the mixture of two
Poisson distributions is given by:

p(x;θθθ) = π
λx1e
−λ1

x!
+ (1− π)

λx2e
−λ2

x!

• The log-likelihood function for
xxx = [x1x2 . . . xn]′ is given by:

logL(θθθ | xxx) =

n∑
i=1

log
{
π
λxi

1
e−λ1

xi!
+(1−π)

λxi
2
e−λ2

xi!

}
,

• The score function is given by:

S(θθθ;xxx) =
∂

∂θθθ
logL(θθθ | xxx)

=
∂

∂θθθ

n∑
i=1

log
{
π
λxi

1
e−λ1

xi!
+ (1 − π)

λxi
2
e−λ2

xi!

}

• The true FIM for n = 1:

− E
{ ∂2

∂θθθ∂θθθ′
logL(θθθ | xxx)

}
=var

{
S(θθθ;x)

}
=−

∞∑
x=0

{S(θθθ;x)S′(θθθ;x)}p(x;θθθ)

POISSON MIXTURE MODEL

• Mixture models are very useful in modeling pop-
ulations consisting of two or more distinct sub-
groups but the group labels are not available

• Mixture models are also used, as shown in
Raim(2014), to analyze data from multiple stud-
ies with a common objective but possibly differ-
ent target population (Meta Analysis)

• Mixture models are also useful in modeling count
data exhibiting more variance than accommo-
dated by the binomial or Poisson models, a phe-
nomenon known as overdispersion

WHY CONSIDER THIS MODEL?

• Let’s consider several combinations of values for
the parameters:

λ1, λ2 ∈ {0, 1, 2, . . . , 500}
π ∈ {0.1, 0.2, . . . , 0.5}

• Compute the true FIM, III , by truncation method:

N∑
x=0

[ ∂
∂θi

ln p(x;θθθ)
∂

∂θj
ln p(x;θθθ)

]
p(x;θθθ),

with p(x;θθθ) = π
λx1e
−λ1

x!
+ (1− π)

λx2e
−λ2

x!

where N is a very large number chosen for trun-
cation

• The approximation is given by:

IA =


nπ1

λ1
0 0

0
nπ2

λ2
0

0 0
1

π(1− π)


• Quality of the approximation is measured using

Frobenius norm:

‖IA − I‖F =
√∑3

a=1

∑3
b=1

(IA[a, b] − I[a, b])2

where IA[a, b] and I[a, b] denote the (a, b)th en-
try in the approximate and exact FIM

IMPLEMENTATION DETAILS

The density of a mixture Poisson forλ1 = 3,λ2 = 10 and π = 0.3

The density of a mixture Poisson forλ1 = 3,λ2 = 10 and π = 0.5

EXAMPLES OF POISSON MIXTURE

Below are two sets of 3D plots addressing the rela-
tionship between ‖IA − I‖F and (λ1, λ2) as π in-
creased from 0.1 to 0.5 (top to bottom). The complete
picture of this simulation is displayed, λ ∈ [0, 500]
on the left and λ ∈ [0, 20] and the domain of lambda
is on the right

• The ‖IA − I‖F remains very low and almost
fixed when λ1 and λ2 are far apart

• ‖IA − I‖F increases dramatically once two λ’s
are within certain proximity

• ‖IA − I‖F reaches maximum when λ1 = λ2

• This pattern is not affected by the individual λ
values but rather the closeness of the two λ’s

• The value of π only decreases the maximum value
as π → 0.5, the pattern remains the same

RESULTS

The hardware used in the computational studies is part of the
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