Long-time Simulation of Advection-Diffusion-Reaction System using FEM and FVM on Hybrid CPU/GPU Nodes

Xuan Huang and Matthias K. Gobbert, Department of Mathematics and Statistics, University of Maryland, Baltimore County High Performance Computing Facility, www.umbc.edu/hpcf

Background

Calcium induced calcium release (CICR) in a heart cell can be modeled by a system of coupled time-dependent advectiondiffusion-reaction equations:

$$u_t^{(i)} - \nabla \cdot \left(D^{(i)} \nabla u^{(i)} \right) + \beta^{(i)} \cdot \left(\nabla u^{(i)} \right) = q^{(i)}$$

for the concentrations $u^{(i)}(\mathbf{x},t)$, $i = 1, \ldots, n_s$, of the n_s reactive species

for all points $\mathbf{x} \in \Omega \subset \mathbb{R}^d$ (d = 1, 2, 3) and time $0 < t \leq t_{fin}$. The right hand sides $q^{(i)}$, $i = 1, \ldots, n_s$, are given by

$$q^{(i)} = r^{(i)}(u^{(1)}, \dots, u^{(n_s)}) + s^{(i)}(u^{(i)}, \mathbf{x}, t) + f^{(i)}(\mathbf{x}, t)$$

- diffusivity matrices $D^{(i)} \in \mathbb{R}^{d \times d}$ diagonal positive definite
- constant advection vector $\boldsymbol{\beta}^{(i)} \in \mathbb{R}^d$,
- linear source term $f^{(i)}(\mathbf{x},t)$ for test problems
- non-linear reaction terms $r^{(i)}$ couples all PDEs
- application term $s^{(1)}(u^{(1)}, \mathbf{x}, t)$ associated with calcium, $s^{(i)} \equiv 0$ for i > 1
- Key term JSR in $s^{(1)}$ models superposition of CRU injection at all $\hat{\mathbf{x}} \in \Omega_s$ as point sources:

$$J_{\mathsf{SR}}(u^{(1)}, \mathbf{x}, t) = \sum_{\hat{\mathbf{x}} \in \Omega_s} g \, S_{\hat{\mathbf{x}}}(u^{(1)}, t) \, \delta(\mathbf{x} - \hat{\mathbf{x}})$$

Numerical Methods

Two method of line approaches:

- Spatial discritization using Finite Elements, take advantage of the regular shape of the domain Ω and use a uniform mesh of 3-D brick elements.
- Using Finite Volume method, integrate equations over each control volume, using numerical flux functions to approximate diffusive and advective fluxes.

Summary of other numerical methods:

- Time stepping for a large system of stiff ODEs, fully implicit with automatic step size (and order for NDFk) selection: $1 \le k \le 5$,
- Non-linear solver: Newton method with analytical Jacobian
- Linear solver: iterative Krylov subspace method family (specifically BiCGSTAB) with matrix-free products for all system matrices and their transposes

$N_x \times N_y \times N_z$	DOF	number of	memory us
		time steps	predicted (
$32 \times 32 \times 128$	421,443	58,416	
$64 \times 64 \times 256$	3,257,475	73,123	
$128 \times 128 \times 512$	25,610,499	89,088	

GPUTECHNOLOGY CONFERENCE

GPU in	HH:MM:SS and		
6-core node.			
$\times 256$	$128 \times 128 \times 512$		
	42:07:19		
.33)	25:09:06 (1.67)		
.83)	13:46:41 (3.06)		
.13)	13:25:47 (3.14)		
.52)	07:47:28 (5.41)		
.17)́	07:19:21 (5.75)		
.04)́	04:41:47 (8.97)		
GPU in	HH:MM:SS and		
5-core node.			
$\times 256$	$128 \times 128 \times 512$		
	28:13:32		
.19)	16:22:51 (1.72)		
.60)	08:58:16 (3.15)		
.91)	08:39:43 (3.26)		
.21)	05:03:27 (5.58)		
.76)	04:45:01 (5.94)		
.61)	03:05:28 (9.13)		