Maya is the 240-node supercomputer in the UMBC High Performance Computing Facility (www.umbc.edu/hpcf).

- The 72 newest nodes have two eight-core Intel E5-2650v2 Ivy Bridge CPUs, making a single node capable of running 16 processes/threads simultaneously.

The nodes are connected by a high-performance quad-data rate (QDR) InfiniBand interconnect.

⇒ The new hardware requires testing and benchmarking to give insight into its full potential.

We report here on the High Performance Conjugate Gradient (HPCG) Benchmark developed by Sandia National Laboratories.

The HPCG benchmark solves the Poisson equation $-\Delta u = f$ on a three-dimensional domain $\Omega \subset \mathbb{R}^3$. A discretization on a global grid with resolution $N_x \times N_y \times N_z$ with a 27-point stencil at each grid point generates a system of linear equations with a large, sparse, highly structured system matrix. This is more relevant to many applications than the dense system matrix of the LINPACK benchmark.

The benchmark utilizes a preconditioned conjugate gradient method to iteratively solve the system.

The HPCG benchmark uses a 3-D grid of $P = p_x \times p_y \times p_z$ parallel MPI processes. We consider $P = 1, 8, 64, 512$ in our experiments.

Each process hosts a local subgrid of size $n_x \times n_y \times n_z$. Thus, $N_x = n_x p_x$, $N_y = n_y p_y$, and $N_z = n_z p_z$ and the total number of unknowns $N_x \times N_y \times N_z$ scales with the number of processes. For $P = 512$ processes, the global grid ranges from millions to billions of unknowns:

<table>
<thead>
<tr>
<th>$n_x \times n_y \times n_z$</th>
<th>$N_x \times N_y \times N_z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 × 16 × 16</td>
<td>2,097,152</td>
</tr>
<tr>
<td>32 × 32 × 32</td>
<td>16,777,216</td>
</tr>
<tr>
<td>64 × 64 × 64</td>
<td>134,217,728</td>
</tr>
<tr>
<td>128 × 128 × 128</td>
<td>1,073,741,824</td>
</tr>
</tbody>
</table>

- Larger problems allow for better performance, as calculation time dominates communication time.

- Increasing the number of threads per MPI process may increase computational throughput as delays in memory access are masked by process switching.

- Optimal performance is achieved using all 16 cores per node, whether via MPI processes or via OpenMP multi-threading.

Acknowledgments

- REU Site: www.umbc.edu/hpcreu
- NSF, NSA, UMBC, HPCF, CIRC

References

- Sandia HPCG Benchmark: https://software.sandia.gov/hpcg/

- For complete details and additional tests of Maya, see report HPCF–2014–14 at www.umbc.edu/hpcf > Publications.