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Abstract

Lowering the noise level of short pulse lasers has been a long-standing effort for

decades. Modeling the noise performance plays a crucial role in isolating the

noise sources and reducing them. Modeling to date has either used analytical

or semi-analytical implementation of dynamical methods or Monte Carlo sim-

ulations. The former approach is too simplified to accurately assess the noise

performance in real laser systems, while the latter approach is too computation-

ally slow to optimize the performance as parameters vary over a wide range.

Here, we describe a computational implementation of dynamical methods that

allows us to determine the noise performance of a passively modelocked laser

within minutes on a desktop computer and is faster than Monte Carlo methods

by a factor on the order of 103. We apply this method to characterize a laser

that is locked using a fast saturable absorber—for example, a fiber-based non-

linear polarization rotation—and a laser that is locked using a slow saturable

absorber—for example, a semiconductor saturable absorbing mirror.
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1. Introduction

The search for robust, low-noise short-pulse laser sources has attracted sig-

nificant attention during the last two decades [1, 2, 3, 4, 5]. These sources have

applications to basic physics, astrophysics, environmental sciences, medicine,

metrology, and many other fields [6, 7, 8, 9]. The most challenging design prob-

lems for any resonator—and particularly for short pulse lasers—usually include:

(1) finding a region in the laser’s adjustable parameter space where the laser

operates stably, (2) optimizing the pulse profile within that region, and (3)

lowering the noise levels. Typical design objectives include optimizing the pulse

profiles—such as increasing the pulse energy and decreasing the pulse duration—

and lowering noise sources, which might include relative intensity noise (RIN),

frequency drift, and the pulse timing and phase jitter [10, 11, 12]. Adjustable

parameters will typically include the cavity length, the pump power, and the

amplifier gain, which may be a function of not only the pump power, but also

of the pump wavelength, the material, and the geometry of the gain media [13].

In this paper, we focus on short-pulse lasers, and more particularly on pas-

sively modelocked lasers, which are the short-pulse lasers that produce the short-

est pulses. However, the computational method that we describe here can be

applied to any resonator that can be mathematically modeled at the lowest

order by the nonlinear Schrödinger equation, including microresonators [14].

The Haus modelocking equation (HME) is the simplest and most widely-used

model for passively modelocked lasers [1, 2, 15]. It may be written

∂u

∂T
=

[
− iφ+ ts

∂u

∂t
− l

2
+
g(|u|)

2

(
1 + i

ωoff

ωg

∂

∂t
+

1

2ω2
g

∂2

∂t2

)
− iβ′′

2

∂2

∂t2

+ iγ|u|2 + fsa(u)
]
u+ s(t, T ),

(1)

where u(t, T ) is the complex field envelope, t is the fast retarded time, T is the

slow time of propagation normalized to the round trip time TR, φ is the phase

rotation per unit length per round trip, ts is the shift in t of the pulse centroid

tc =
∫
t′|u|2dt′/

∫
|u|2dt′ per round trip, l is the linear loss coefficient, g(|u|)

is the saturated gain, β′′ is the group velocity dispersion coefficient, γ is the
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Kerr coefficient, ωg is the gain bandwidth, fsa(u) is the saturable absorption,

and s(t, T ) is the noise source. Here, we are effectively assuming a parabolic

gain model whose peak may have an offset with respect to the central frequency

ωoff and has a gain bandwidth ωg, It is common in studies of the HME to set

φ = 0 [1, 16, 17, 18, 19], in which case the phase of the pulse solution rotates

at a constant rate as a function of T . In computational work, it is more useful

to ensure that the solution is stationary, in which case φ 6= 0.

In the HME, it is assumed that the gain response of the medium is much

longer than the round trip time TR, in which case the saturable gain becomes

g(|u|) =
g0

1 + Pav(|u|)/Psat
, (2)

where g0 is the unsaturated gain, Pav(|u|) is the average power, and Psat is

the saturation power. We may write Pav(|u|) =
∫ TR/2

−TR/2
|u(t, T )|2dt/TR. In the

HME, the saturable absorption is fast, i.e., the response to the incoming pulse

is instantaneous, so that

fsa(u) = δ|u|2, (3)

where δ is the fast saturable absorption coefficient.

When the noise term s(t, T ) is neglected in Eq. (1), and we assume that the

parameters satisfy the special relations

δβ′′

γ
=
g(|u0|)

2ω2
g

,

ts = β′′ωoffωg,

g(|u0|)− l = −g(|u0|)
2ω2

g

(γA2
0 − β′′ω2

0),

(4)

then we find that Eq. (1) has the stationary solution [1],

u0(t) = A0sech(t/τ0) exp [−iω0(t− t0) + iθ0] ,

ω0 = ωoffωg,

φ =
1

2
(γA2

0 − β′′ω2
0),

τ0 =
√
|β′′|/γ/A0,

(5)
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where A0 > 0 determines both the amplitude and the duration of the stationary

pulse, while t0 and θ0 are the initial pulse centroid in t and the initial optical

phase. Given the special choice of parameters in Eq. (4), soliton perturbation

theory [20] can be applied to the HME to determine the stability of the sta-

tionary solution [10, 19, 21, 22]. In addition, with the same parameter choice,

the HME can be reduced to two pairs of Gordon processes that describe the

propagation dynamics of the pulse energy, phase, frequency, and central time,

from which the phase jitter, timing jitter, frequency jitter, and energy fluctua-

tion can be calculated analytically [10, 23]. These analytical results have been

widely used to estimate the noise performance of passively modelocked laser

systems.

There are two difficulties with this approach. The first is that the expression

for fsa(u) in Eq. (3) is too simple to be realistic, and it predicts that the pulse

solution is only stable in a small region in the parameter space, which is contrary

to experimental results [19, 24, 25]. More complex models that predict larger

regions of stability and that better match the experiments have been studied [26,

27, 28, 29, 30, 31, 32, 33]. However, with the exception of the work in [33], all

this work relies on solving Eq. (1) using evolutionary methods, which can be

computationally inefficient and can lead to ambiguous results. Second, even

given the expression for fsa(u), there is no reason to expect that the special

parameter relation in Eq. (4) is valid. In fact, short-pulse lasers vary widely—

using different types of gain media, saturable absorbers, and cavity designs.

There is a need for computational tools that are sufficiently powerful to be able

to cope with the broad range of short-pulse laser designs.

Typical theoretical studies solve the evolution equations starting from com-

putational noise or some other initial conditions and allow the solution to evolve

until it either settles down to a stationary or periodically-stationary state or fails

to settle down after a long evolution time [34, 35]. This approach can be am-

biguous, since it is often not clear how long it is necessary to wait for a pulse

to settle down, and the computation time required to evolve to steady state ap-

proaches infinity in principle when the system parameters approach a stability
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boundary. In prior work, we developed boundary tracking algorithms that are

based on dynamical systems theory. These algorithms are a set of computational

methods that allow one to rapidly obtain the pulse profile and determine the

regions of stable operation in a large parameter space [33, 36]. We previously

referred these methods as “spectral methods” in [37]. Here, we use the name

“dynamical methods” to avoid possible confusion when evaluating the Fourier

spectrum using this method.

Despite the importance of characterizing the noise in short-pulse lasers, there

have been relatively few computational studies of their noise performance. The

computational studies that have been carried out use Monte Carlo simulations

in which the evolution equations are repeatedly solved with different noise re-

alizations [23, 38, 39, 40]. Convergence of this procedure is slow, and it is too

computationally intensive to be used for systematic optimization.

In this paper, we extend the work in [37] to study the noise performance of

short-pulse lasers using dynamical methods. Here, for the first time, we describe

in detail the computational procedure and quantitatively compare the compu-

tational performance of our dynamical method to Monte Carlo simulations.

The remainder of this article is organized as follows. We present a general

description of the system equations and the dynamical method in Sec. 2. We

present our computational efficiency tests in Sec. 3. We conclude this article in

Sec. 4.

2. The Dynamical Method

In this section, we describe the framework of the dynamical method.

In the laser systems that we are considering, the evolution of the pulse

envelope can be described by a nonlinear equation that has the form

∂u(t, T )

∂T
= F̂ [u(t, T ), u∗(t, T )] + s(t, T ), (6)

where F̂ (u, u∗) is a nonlinear function of the wave envelope u and its complex

conjugate u∗. In nearly all cases, the variable u∗ appears with one power less
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than u in each term of F . That is the case for Eq. (1) as well as for the models

of fast saturable absorption that were considered in [33]. It is also implicitly

the case for the model of a slow saturable absorber—such as a semiconductor

saturable absorbing mirror (SESAM)—that we will consider. In this model, we

have

fsa(u) = −ρ
2
nu (7)

in Eq. (1), where ρ denotes the saturable loss coefficient, and n(t, T ) is the

fraction of the population in the lower level of a two-level system and is given

by the solution of the equation

∂n(t)

∂t
=

1− n
TA

− |u(t)|2
wA

n, n

(
−TR

2

)
= 0, (8)

where TA and wA denote the response time and the saturation energy of the

absorber.

We assume here that a stationary solution to Eq. (6) in the absence of

noise u0(t) has been found. We previously described computational procedures

that allow us to rapidly find stationary solutions as system parameters vary

and determine their stability [36]. To determine the stability, it is necessary

to consider an extended system. Writing the complex conjugate equation of

Eq. (6) as ∂u∗/∂T = F ∗, we may write the linearized equation

∂∆u

∂T
= L∆u + s, (9)

where

∆u =

∆u

∆ū

 , L =

L11 L12

L21 L22

 , s =

 s
s∗

 , (10)

where L11 = δF/δu, L12 = δF/δu∗, L21 = δF ∗/δu, and L22 = δF ∗/δu∗ are

functional derivatives.

We see that if ∆ū = ∆u∗ at any time T , then ∆ū = ∆u∗ at all times T .

We next consider the spectrum of the operator L that is given by solving the
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eigenvalue equation

L∆u = λ∆u. (11)

If any eigenvalue has a positive real part, then the system is unstable.

In any practical laser system, the noise s(t, T ) is a small perturbation. In-

deed, it is typically so small that it is necessary to artificially increase it in

order to obtain reliable results from Monte Carlo simulations [27]. The essence

of our method is that the amplitudes of the spectral components—the solutions

to Eq. (11)—obey simple Langevin equations that can be solved for all times

T . The means and variances of these amplitudes can then easily be found. Af-

ter expanding the statistical quantities of interest such as the phase jitter, the

timing jitter, and the energy fluctuation as a linear sum of these amplitudes, we

obtain the means and variances of these statistical quantities.

2.1. Descretization

When we descretize the time domain t for computation, we use an evenly

spaced grid of N points in t, whose spacing we denote as ∆t, where ∆t = Tw/N

and Tw is the duration of the computational time window.

Issues related to choosing ∆t and N as well as discretizing the operator L to

ensure the accuracy of the solution have been discussed in [36]. Here, in order to

ensure reasonable accuracy, we choose Tw so that it is approximately 100 times

the duration of the modelocked pulse, and we choose N ≥ 1024. We always

choose Tw and N sufficiently large so that the visible impact on any plotted

result is negligible.

In analytical studies of the stability and noise performance of passively mod-

elocked lasers, it is usual to choose an infinite domain in the fast time t, in which

case the spectrum of L has both continuous components (essential spectrum) as

well as discrete components (point spectrum) [20, 36, 41]. In real-world lasers,

the actual domain is periodic in the round trip time TR, and in computational

work, it is usual to study a time domain Tw that is small compared to TR, so
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that Tw � TR. As a consequence, the computational problem only has a point

spectrum.

Once the system has been discretized, both ∆u(t) and ∆ū(t) become N -

dimensional vectors in which ∆ul = u(tl) and ∆ūl = ū(tl), l = 1, 2, · · · , N . The

vector ∆u in Eq. (9) becomes a 2N -dimensional vector ∆u in which the first N

elements correspond to ∆ul, l = 1, 2, · · · , N and the last N elements correspond

to ∆ūl, l = 1, 2, · · · , N , i.e., ∆u = [∆u1,∆u2, · · · ,∆uN ,∆ū1,∆ū2, · · · ,∆ūN ]T ,

where T denotes the transpose. The operator L becomes a 2N×2N matrix [36].

2.2. Spectral Decomposition

We will denote a set of independent eigenvectors as ej = [ej , ēj ]
T , where

T denotes the transpose and ejl = ej(tl) and ējl = ēj(tl), so that each eigen-

vector ej is a 2N -dimensional vector. In all the laser problems that we have

considered, the set of eigenvectors ej is complete, i.e., there are 2N independent

eigenvectors, which span the 2N -dimensional complex vector space upon which

L operates [42], so that we may decompose any ∆u as

∆u =

2N∑
j=1

cjej , (12)

where the cj are complex constants. We find that if λj is an eigenvalue, then so

is λ′j = λ∗j and if ej = [ej , ēj ]
T , then the eigenvector corresponding to λ′j = λ∗j

is given by e′j = [ē∗j , e
∗
j ]
T [37]. In general ēj 6= e∗j . However, when λj is real,

then we find ēj = e∗j .

In order to find the cj , given ∆u, we must define an inner product. For

any two given vectors p and q in the 2N -dimensional space, the natural inner

product becomes

N∑
j=0

(
p∗jqj + p̄j q̄

∗
j

)
∆t = pHq∆t, (13)

where pH is a 2N -dimensional row vector whose elements are complex conju-

gates of the vector p.
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We will denote the dual eigenvectors of the matrix L as êj . These are equal

to the eigenvectors of L†, the complex conjugate transpose of L. The dual

eigenvectors are normalized so that

êHj ek∆t = δjk, (14)

where δjk is the Krönecker delta-function. We now find that

cj = êHj ∆u. (15)

Since L 6= L†, so that L is not self-adjoint, it is NOT generally the case that

êHj êk∆t = δjk.

2.3. Noise Evolution

In this paper, we will consider white noise sources for which

〈s(t, T )s∗(t′, T ′)〉 = Dδ(t− t′)δ(T − T ′), (16)

where 〈·〉 denotes the emsemble average, and D is the diffusion coefficient. We

also have 〈s(t, T )s(t′, T ′)〉 = 〈s∗(t, T )s∗(t′, T ′)〉 = 0. More complex noise source

can be built up using Eq. (16) as a starting point [43]. After discretization in t,

Eq. (16) becomes

〈sl(T )s∗m(T ′)〉 = 〈s(tl, T )s∗(tm, T
′)〉 =

D

∆t
δlmδ(T − T ′), (17)

where sl = s(tl), and the 2N -dimensional vector s becomes s = [s, s̄]T , where

s̄l = s∗l .

After discretization, we can write the 2N -dimensional vector s at any slow

time T as

s(T ) =

2N∑
j=1

sj(T )ej , (18)

so that sj(T ) = êHj s(T ). We now find

〈sj(T )s∗k(T ′)〉 = (D∆t) êHj êkδ(T − T ′) = Djkδ(T − T ′), (19)

where we note Dkj = D∗jk.
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In the presence of noise, we find that the amplitudes of the spectral compo-

nents of ∆u that are defined in Eq. (12) evolve according to the simple Langevin

equation

dcj
dT

= λjcj + sj , (20)

where we note that Re(λj) ≤ 0 in order for the modelocked pulse to be stable.

Since we start from a stationary solution, we now have 〈cj(T = 0)〉 = 0.

The covariances, which can be obtained by integrating Eq. (20) using the

method of stochastic differential equations [44], become

〈cj(T )c∗k(T )〉 = − Djk

λj + λ∗k

[
1− e(λj+λ∗

k)T2

]
, (21)

where we assume that the covariances are zero at T = 0. In the special case

when λj = λk = 0, we obtain

〈cj(T )c∗k(T )〉 = DjkT. (22)

In the long-time limit as T →∞, Eq. (21) becomes

〈cj(T )c∗k(T )〉 = − Djk

λj + λ∗k
. (23)

The corresponding two-time correlation function as T →∞ is giving by [44]

Rjk(τ) = − Djk

λj + λ∗k

[
eλ

∗
kτΘ(τ) + e−λjτΘ(−τ)

]
, (24)

where Θ(τ) is the Heaviside step function that equals zero when τ < 0, 1/2

when τ = 0, and 1 when τ > 0. The corresponding power spectral density is

given by the Fourier transform of Rjk(τ),

Sjk(f) =
Djk

(λj − 2iπf) (λ∗k + 2iπf)
, (25)

Using Eqs. (21)–(23), it is possible to compute quantities of statistical interest

such as the timing jitter and the phase jitter. Using Eqs. (24) and (25) it is

then possible to calculate the power spectral densities of these quantities.
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2.4. Noise Impact on Statistical Quantities of Interest

Given a statistical of interest, ∆x(T ), we begin by writing it as an inner

product of an appropriate vector hx and the perturbation ∆u(T ),

∆x(T ) = hHx ∆u(T )∆t, (26)

Some examples follow:

1. Energy jitter ∆w(T ):

The energy jitter is given by

∆w(T ) =

∫ TR/2

−TR/2

dt
[
|u(t, T )|2 − |u0(t)|2

]
=

∫ TR/2

−TR/2

dt [u0(t)∆u∗(t, T ) + u∗0(t)∆u(t, T )] ,

which becomes after discretization

∆w(T ) =

N∑
l=1

∆t [u0(tl)∆u
∗(tl, T ) + u∗0(tl)∆u(tl, T )]

= hHw∆u(T )∆t

(27)

where hw = [u0, u
∗
0]T .

2. Frequency jitter ∆fc(T ) [45]:

We can calculate the change in the central frequency as

∆fc(T ) =
1

2iw0

∫ TR/2

−TR/2

dt

[
∂u∗0
∂t

∆u(t, T )− ∂u0

∂t
∆u∗(t, T )

]
, (28)

which after discretization becomes

∆fc(T ) = hHfc∆u(T )∆t, (29)

where hfc = (i/w0) [Dtu0,Dtu
∗
0]
T

, where Dt is a first-order differentiation

matrix, which we obtain by using the Fourier transform to compute u0 in

the frequency domain, multiplying by the frequency, and then computing

the inverse Fourier transform [46].
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3. Timing and phase jitter:

The central time of a modelocked pulse is given by

∆tc =
1

w0

∫ TR/2

−TR/2

dt t
[
u∗0(t)∆u(t, T ) + u0(t)∆u∗(t, T )

]
, (30)

which after discretization becomes

∆tc = hHt ∆u(T )∆t, (31)

where ht = (1/w0)[tu0, tu
∗
0]T .

From the timing jitter, we can define a phase jitter,

∆ψ = 2π∆tc/TR, (32)

which corresponds to the phase jitter that is observed at radio frequencies

after an optical signal is detected in a photodetector. In most experimental

work, this quantity is simply referred to as the phase jitter. Paschotta [27]

refers to it as the timing phase jitter to avoid confusion with the optical

phase jitter, and we will do the same.

In general, for any vector hx, we can write

hx =

2N∑
j=1

hxj êj , (33)

and combined with Eq. (26), the corresponding statistical quantity can be writ-

ten as

∆x(T ) = ∆t

 2N∑
j=1

hxj êj

H
2N∑
k=0

ck(T )ek =

2N∑
j=1

h∗xjcj(T ), (34)

where the hxj can be derived using

hxj = eHj hx∆t. (35)

Following Eqs. (25) and (34), we can now calculate the power spectral density

of ∆x(T ),

Sx(f) =

2N∑
j=1

2N∑
k=1

h∗xjhxkSjk(f) =

2N∑
j=1

2N∑
k=1

h∗xjhxkDjk

(λj − 2iπf) (λ∗k + 2iπf)
, (36)
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in which we require hxl = 0 when λl = 0.

Defining δcj = dcj/dT , we have

d∆x

dT
= δx(T ) =

2N∑
j=0

h∗xjδcj(T ), (37)

which approximates the change in ∆x(T ) from one round trip to the next, since

all statistical quantities of interest change slowly compared to the repetition

time. The power spectral density of δx(T ) becomes

Sδx(f) = (2πf)2Sx(f). (38)

The formalism in Eqs. (36) and (38) includes the contribution of the eigenvectors

that correspond to the continuous spectrum, whose effects were neglected in [47].

3. Noise Level Evaluation and Computational Efficiency Tests

Here, we compare the results of the Haus-Mecozzi method [10], the Monte

Carlo method [23], and the dynamical method that we have described in Sec. 2.

The statistical quantities that we will study are the energy jitter ∆w(T ) =

w(T ) − w0, the frequency jitter ∆fc(T ) = fc(T ) − f0, and the timing phase

jitter ∆tc = tc(T ) − tc0, where w0, f0, and tc0 are the unperturbed energy,

central frequency, and the central time of the modelocked pulse. We first give

a brief review of the three methods that we will compare. We then apply all

three methods to the widely-used Haus modelocking equation (HME) and an

averaged model of a SESAM fiber laser [48]. We show that the dynamical

method provides significantly better agreement with the Monte Carlo method

than does the Haus-Mecozzi method. We further show that the dynamical

method is several orders of magnitude more computationally efficient than the

Monte Carlo method, where our metrics are the computational time and the

memory (RAM) and storage usage.

3.1. Calculation Methods

We first review the three methods we use to calculate the noise impact on the

statistical quantities of interest. These are: (1) the Haus Mecozzi method, which
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is analytical, (2) the Monte Carlo simulation method, which repeatedly solves

the evolution equations with different noise realizations, and (3) the dynamical

methods that we described in Sec. 2.

3.1.1. The Haus-Mecozzi Method

The Haus modelocking equation (HME) is the simplest and most widely used

model for modelocked laser systems. We have presented the HME in Eqs. (1)–

(5). In their analytical method, Haus and Mecozzi begin by assuming that the

modelocked pulse u0(t) has a hyperbolic-secant pulse shape and—like the soliton

solutions for the noinlinear Schrödinger equation—is completely characterized

by four parameters: the pulse energy and its central time, central phase, and

central frequency. They next apply soliton perturbation theory to calculate the

phase evolution in the presence of noise, and they show that the evolution of

the pulse energy fluctuation ∆w, the central phase fluctuation ∆θ, the central

frequency fluctuation ∆fc, and the central time fluctuation ∆tc are governed

by four stochastic differential equations [10, 27],

d∆w/dT = rw∆w + sw,

d∆θ/dT = rθ∆w + sθ,

d∆fc/dT = rf∆fc + sf ,

d∆tc/dT = rt∆fc + st,

(39)

where the growth/decay coefficients are all real quantities,

rw = 2δA2
0 − g1w0 + 2g1A

2
0/
(
6ω2

gτ0
)
,

rθ = γA2
0/w0,

rf = −gsat/
(
3ω2

gτ
2
0

)
,

rt = β′′,

(40)

and for which g1 = g2
sat/(g0PsatTR), gsat = g(|u0(t)|), and w0 = 2A2

0τ0 is

the energy of the modelocked pulse. The diffusion coefficients are defined as

xiv



〈sx(T ), s∗x(T ′)〉 = Dxδ(T − T ′) for x = w, θ, f, t,

Dw = 2w0D,

Dθ = 2D(1 + π2/12)/ (3w0) ,

Df = 2D/
(
3w0τ

2
0

)
.

Dt = π2τ2
0D/ (6w0) ,

(41)

where D is defined in Eqs. (16) and (17). These four quantities ∆w, ∆θ, ∆fc,

and ∆tc correspond to the magnitudes of the four discrete eigenmodes in the

spectrum of the linearized Haus-Mecozzi model [10]. We note that ∆θ corre-

sponds to the optical phase jitter, which is rarely measured.

The stochastic differential equations in Eq. (39) can be solved analytically.

The variances of ∆w(T ), ∆fc(T ), and ∆tc(T ) become

σ2
w(T ) =

〈
|∆w(T )|2

〉
= −Dw(1− e2rwT )/(2rw)

T→∞−−−−→ −Dw/(2rw),

σ2
fc(T ) =

〈
|∆fc(T )|2

〉
= −Df (1− e2rfT )/(2rf )

T→∞−−−−→ −Df/(2rf ),

σ2
tc(T ) =

〈
|∆tc(T )|2

〉
= (r2

tDf/r
2
f +Dt)T + 2r2

tDt(1− erfT )/r3
f

− r2
fDt(1− e2rfT )/(2r3

f )
T→∞−−−−→ DtT + (1/3)Dfr

2
fT

3,

(42)

which indicates that the variances of energy and the frequency will remain

constrained as T →∞, while the variance of the central time is unbounded. In

experiments, the timing phase jitter is defined by the central time drift between

two consecutive round trips [27], which we approximate as δtc = d∆tc/dT .

The Langevin equations that we introduced in Eq. (20) and the variances

of the statistical quantities that we introduced in Eq. (23) effectively generalize

Eqs. (39) and (42) to any modelocked pulse waveform and any governing equa-

tion that has the form of Eq. (6). The power spectral densities for ∆w, ∆fc,

and ∆ψ [10, 27] are

Sw(f) =
Dw

r2
w + (2πf)2

,

Sfc(f) =
Df

r2
f + (2πf)2

,

Sψ(f) =
Sδtc(f)

(TRf)2
=

r2
tDf

(TRf)2
[
r2
f + (2πf)2

] +
Dt

(TRf)2
.

(43)
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3.1.2. The Monte Carlo Simulation Method

For a given set of parameters, we carry out a large number of Monte Carlo

simulation runs with independent noise realizations. In each simulation run,

we solve the laser evolution equation, Eq. (1), using a variant of the split-step

method [49]. We use the local error to adjust the propagation step sizes [50].

We use Nmc to denote the number of simulation runs, and we use NR to denote

the number of round trips in each run. For a given statistical quantity ∆x(T ),

we obtain a time series ∆x[k] = ∆x(kTR), k = 1, 2, · · · , NR.

We finally evaluate the power spectrum of a given time series ∆x[k] using

the discrete-time Fourier transform and the ensemble average over all the runs,

S̄h(f) =
1

NmcNR

Nmc∑
n=1

|DTFT {∆x[k]}|2 , (44)

where in this study we set Nmc = 600, and NR = 12000.

3.1.3. The Dynamical Method

In Sec. 2, we have described the derivation and the implementation of the

dynamical method.

3.2. Application to Modelocked Systems

We now compare the three different methods that we summarized in Sec. 3.1.

In Secs. 2 and 3.1.1, we formulated the dynamical method and the Haus-Mecozzi

method in terms of the normalized frequency. In order to plot the noise spectrum

in terms of the physical frequency fphys, we substitute

f = fphysTR. (45)

3.2.1. The Haus Modelocking Equation

We first perform a comparison of the computational efficiency of these three

methods with the HME [10], given in Eqs. (1)–(5), and setting

D = g(|u0|)hν0TR, (46)
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where h is Planck’s constant, and ν0 is the central frequency of the optical field.

The computations are carried out using Matlab R© on a desktop workstation,

Dell R© Precision Tower 7910 which uses an Intel R© Xeon(R) CPU E5-2630 v4

with 10 cores. The system memory is 16 GB. The operation system is Ubuntu

16.04 LTS. Matlab R© uses about 500 MB when it is started without running any

programs. We use the parameters from [27] and show them in Table 1.

Parameter Value Parameter Value Parameter Value

TR 10 ns g0 0.603 ωg 20 T rad/s

γ 1/MW ν0 282 THz l 0.0563

PsatTR 2 nJ β′′ −0.003 ps2 δ 0.046/MW

w0 20 nJ A0 182.5
√

W τ0 0.3 ps

Table 1: The parameters we use to evaluate the noise levels. These parameters are the same

as in [27].

We propagate the laser system for 15000 round trips and we observe that

the statistical properties of the noise-related quantities—the pulse energy, the

central frequency, and the rate of change of the round trip time—appear sta-

tionary after 3000 round trips. The propagation of the variances of ∆w, ∆fc,

and ∆tc are shown in Fig. 1. The variances of ∆w and ∆fc eventually reach

an asymptote, while the variance of ∆tc grows indefinitely, which agrees with

Eq. (42).

In Fig. 2 we show the power spectral densities that we obtain. All spec-

tra are single-sided spectra [27]. In Fig. 2(a) we plot the energy noise as

10 log10

[
Sw(f)/w2

0

]
. the frequency noise as 10 log10

[
Sfc(f)/ν2

0

]
, and the phase

noise as 10 log10 [Sψ(f)] which is consistent with Fig. 1 in [27]. For all three

power spectral densities, the agreements of the three methods is excellent.

In Fig. 2, we plot the spectrum from 1 Hz to 108 Hz. The Haus-Mecozzi

method produces analytical predictions and thus can be used at any frequency
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Figure 1: Comparison between the Haus-Mecozzi and Monte Carlo methods, where σ2
w(T ),

σ2
fc

(T ), and σ2
tc

(T ) are propagation-dependent variances of the pulse energy w, central fre-

quency fc, and the central time tc. The results of the Haus-Mecozzi method are from Eq. (42).

resolution. The dynamical method can also be used at any frequency resolution.

When evaluating the noise spectrum in the Monte Carlo method, we assign

Nmc = 600 and NR = 12000, which enables us to show the frequency range

from about 8 kHz to 50 kHz. Any increase in the frequency resolution greatly230

increases the computational load when using the Monte Carlo method, which

imposes a practical limit on the frequency resolution that can be obtained.

The time and memory cost performances of the Monte Carlo method and the

dynamical method are summarized in Table 2. We achieve a good agreement

with the Haus-Mecozzi and the dynamical methods when we use the Monte235

Carlo method with 600 simulations. The total CPU time cost is about (784×6 =
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Fig. 3. The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo approach, the Haus-Mecozzi formulae,

and the spectral method. The agreements are excellent, and the results in (c) agrees with

Fig. 1 in [2].

lytical predictions and thus can easily cover any frequency resolution. The spectral methods

can also cover a equally fine frequency resolution due to its compact form. When evaluating

the noise spectrum in Monte Carlo approach, we assign Nmc = 600 and NR = 12000, which

enables us to show the frequency range from about 8 kHz to 50 kHz. Any increment of fre-

quency resolution will greatly increase the computational load when using the Monte Carlo

approach, which might poses a limit of its usage due to limited computational resources. We

can see a more detailed comparison by performing a computational efficiency study.

The time and memory cost performance is summarized in Table. 3. We achieve a good

agreement with the other two approaches using Monte Carlo method with 600 runs. The

total CPU time cost is about (784 × 6 = 4704) sec, which is about 1 hour and 18 min.

The memory usage per core (2870/6 ≈ 478) MB, which is less than the case of a single run

19

Figure 2: The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo, Haus-Mecozzi, and dynamical methods.

The agreement is excellent and the results in (c) agree with Fig. 1 in [27].

Carlo method with 600 simulations. The total CPU time cost is about (784×6 =

4704) sec, which is about 1 hour and 18 min. The memory usage per core

(2870/6 ≈ 478) MB, which is less than that for a single run (535 MB) because

the overhead of parallel computing is spread when more nodes are used. More

memory might be required if a finer discretization of u(t, T ) in both t and

T is needed. The storage usage is low (less than 1 GB) in the Monte Carlo

simulations since we only save the pulse parameters, fc, w, and tc, instead of

xix



Method # of cores Time cost Memory usage Storage usage

A single run 1 7.8 s 535 MB 1.1 MB

600 runs 6 784 s 2.87 GB 245.8 MB

Dynamical 1 < 3 sec 967 MB 141.5 MB

Table 2: Comparison of the computational efficiency of the Monte Carlo and dynamical

methods for evaluating the noise performance of the Haus modelocking equation. We integrate

the system for 15000 round trips on each simulation run of the Monte Carlo method. The

tests are coded in Matlab R© which have a memory overhead of 500 MB that is included in the

memory usage.

saving the pulse profile for each iteration.

The dynamical method has a far greater computational efficiency than does

the Monte Carlo method. The dynamical method is able to cover a larger

frequency range than does the Monte Carlo method in less than 3 sec of com-

putational time. In the example shown here, we calculated 80 frequencies from

1 Hz to 80 Hz. The dynamical method uses more memory in a single core than

does the Monte Carlo method, but the total memory use is still less than 1 GB.

3.2.2. The SESAM Laser

Next, we consider a case when there is no known analytical solution. Here,

we model a laser with a semiconductor saturable absorption mirror (SESAM),

in which saturable absorber responds slowly compared to the time duration of

the modelocked pulse [22] Typical time scales are picoseconds for the response

time of the SESAM and 100–200 femtoseconds for the pulse duration, as we

show in Table 3 [51]. The central wavelength of the output pulse is 1564 nm.

The system can be described using Eqs. (1), (2), (7), (8) and (46).

In Fig. 3, we show the evolution of the variances of ∆w, ∆fc, and ∆tc. To

compute the variances using the Haus-Mecozzi method, we use the stationary

pulse parameters that we obtained computationally by propagating the evolu-

tion equations. We see that the Haus-Mecozzi method provides a good predic-

xx



Parameter Value Parameter Value Parameter Value

TR 3.33 ns wA 157 pJ Psat 9.01 mW

g0 7.74 ρ 0.0726 β′′ −0.0144 ps2

ωg 30 ps−1 TA 2.00 ps γ 0.00111 W−1

l 1.05

A0 25.2
√

W τ0 143 fs w0 0.182 nJ

Table 3: The values of parameters we use in Eqs. (1), (2, (7), and (8). The stationary pulse

parameters A0, τ0, and w0 are obtained computationally and thus are separated from the

rest.

tion for the variances of the energy ∆w and and the frequency ∆fc. However,

the Haus-Mecozzi model underestimates the variance of the central time ∆tc by

a factor of 300, as shown in Fig. 3.

In Fig. 4, we show the power spectral densities of ∆w, ∆fc, and ∆tc that

we derived using these three methods. Both the Haus-Mecozzi method and the

dynamical method yield good agreement for the background noise level with

the Monte Carlo simulations. However, the Haus-Mecozzi method completely

misses the sideband that is present in each of the power spectral densities. We

have shown in prior work [52] that the output power spectrum of the SESAM

fiber laser features a sideband that is located between 15 MHz to 20 MHz as the

pump power changes. In the Monte Carlo simulations, the sideband appears in

all three power spectral densities, as shown in Fig. 4. The dynamical method is

able to predict the height of the sidebands successfully. Hence, the dynamical

method provides an accurate calculation of the noise levels for a wider group of

modelocked lasers than does the Haus Mecozzi method.

We observe that the Monte Carlo results consistently overestimate the noise

level at higher frequencies, which is due to aliasing. We have defined the output

signals of the laser cavity as a continuous-time random process. However, in
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Figure 3: Comparison between the Haus-Mecozzi and Monte Carlo methods for the SESAM

fiber laser, where σ2
w(T ), σ2

fc
(T ), and σ2

tc
(T ) are propagation-dependent variances of the

pulse energy fluctuation ∆w, central frequency ∆fc, and the central time ∆tc. We obtain

the Haus-Mecozzi method results by substituting the computational stationary pulse solution

parameters from Table 3 into Eq. (42).

signal of the laser is recorded once per round trip, which sets an upper limit

equal to the Nyquist frequency, which equals 1/(2TR) = 150 MHz. However,

our noise source is wide-band. As a result, noise with frequencies higher than

150 MHz will leak into our evaluation band and cause the evaluated noise level

to rise. The Monte Carlo results will converge to the noise level that is obtained285

using the dynamical method when we record more times during one round trip,

which increases the memory and post-processing load.

We again carry out a computational efficiency test, and we show the results

in Table 4. Here, the Monte Carlo experiments are carried out using Matlab R©
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pulse energy fluctuation ∆w, central frequency ∆fc, and the central time ∆tc. We obtain

the Haus-Mecozzi method results by substituting the computational stationary pulse solution

parameters from Table 3 into Eq. (42).

order to calculate the discrete-time Fourier transform, as in Eq. (44), the output

signal of the laser is recorded once per round trip, which sets an upper limit

equal to the Nyquist frequency, which equals 1/(2TR) = 150 MHz. However,

our noise source is wide-band. As a result, noise with frequencies higher than

150 MHz will leak into our evaluation band and cause the evaluated noise level

to rise. The Monte Carlo results will converge to the noise level that is obtained

using the dynamical method when we record more times during one round trip,

which increases the memory and post-processing load.

xxii



w2
 (

pJ
2
)

0 5 10 15
Roundtrips (×1000)

σ
2 ∆
w

(1
0−

4
n
J

2
)

0

4

8

12

f2
 (

T
H

z
2
)

0 5 10 15
Roundtrips (×1000)

σ
2 ∆
f
c

(G
H

z2
)

0

10

20

0 5 10 15
Roundtrips (×1000)

σ
2 ∆
t c

(p
s2

)

10−8

10−6

10−4

10−2

Fig. 4. The comparison between the Haus-Mecozzi predictions and the Monte Carlo results

for the SESAM fiber laser, where σ∆w, σ∆fc , and σδtc are time-dependent variances of the

pulse energy w, central frequency fc, and the central time tc (or equivilently, the roundtrip

time). The results from Haus-Mecozzi predictions are derived from Eqs. (6) and (13) using

the computational stationary pulse solution.

(a)

S
w

(f
)

(d
B

c/
H

z)

−174

−170

−166

−162

(b)

S
f
c
(f

)
(d

B
c/

H
z)

−200

−190

−180

−170

(b)

0 10 20 30 40 50

Frequency (MHz)

S
ψ

(f
)

(d
B

c/
H

z)

−240

−200

−160

Fig. 5. The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo approach, the Haus-Mecozzi formulae,

and the spectral method. The agreements are excellent, and the results in (c) agrees with

Fig. 1 in [2].

22

Figure 4: The power spectral density of (a) the energy jitter, (b) the frequency jitter, and

(c) the timing phase jitter that we obtain from the Monte Carlo method, the Haus-Mecozzi

method, and the dynamical method.

We again carry out a computational efficiency test, and we show the results

in Table 4. Here, the Monte Carlo experiments are carried out using Matlab R©
and 512 cores on a cluster [53]. The CPUs are all quad-core Intel Nehalem

X5560 processors (2.8 GHz, 8 MB cache) with 3 GB per core on average. All

nodes are running Red Hat Enterprise Linux 6.4. We propagate the pulse for

15000 rountrips, and we only save the data for the pulse parameters instead of

the entire pulse. The entire computation requires about 20 min and uses 256
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Method # of cores Time cost Memory usage Storage usage

256 runs 256 20 min 314 MB/process 1.7 MB/process

Dynamical 1 < 4 min 900 MB 144 MB

Table 4: Comparison of the computational efficiency of the Monte Carlo and dynamical

methods for evaluating the noise performance of the SESAM modelocking model. We integrate

the system for 2 × 105 round trips in each simulation run of the Monte Carlo method.

computing cores. Each simulation takes more than 300 MB on each computing

core, and we saved 1.7 MB of data on the hard drive.

By comparison, the dynamical method is carried out on the same desk work-

station as in Sec. 3.2.1: a Dell R© Precision Tower 7910 that uses an Intel R©
Xeon(R) CPU E5-2630 v4, which includes 10 cores. From solving for the sta-

tionary solution to obtaining the power spectral density, the computational cost

is less than 4 min and uses very reasonable memory and storage. Again, the im-

provement in the computing efficiency is large. Compared to the Monte Carlo

simulation method, the dynamical method requires only 1/1280 of the CPU

time, 1/90 of the memory, and 1/3 of the storage space.

4. Conclusions

Over the last three decades, short-pulse lasers—and more particularly pas-

sively modelocked lasers—have been the subject of continued experimental in-

terest. Robust and low-noise passively modelocked lasers are the key component

in frequency combs. As passively modelocked lasers have become more complex,

the Haus-Mecozzi method has become increasingly inadequate to analyze the

noise performance of these lasers. As one example, we studied a SESAM fiber

laser and showed that this method greatly underestimates the noise level. By

contrast, Monte Carlo simulations can yield accurate results, and this method is

intuitive and easy to implement. However, it requires large computing resources,

which makes its use for parameter optimization difficult.
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Based on dynamical systems theory, we have developed a dynamical method

that makes it possible to calculate the noise levels accurately and rapidly. As

we have shown in our examples, it is as accurate as Monte Carlo simulations,

and is about three orders of magnitude faster computationally in our examples,

while requiring less memory and storage. Therefore, this dynamical method is a

powerful tool that can play a useful role in optimizing the design of short-pulse

lasers.

Appendix: Numerical Implementation

When using modern-day scripting languages such as Matlab R© and Python,

it is more computationally efficient to carry out calculations using matrix oper-

ations. Here, we describe how to construct Eq. (36) using matrix operations.

We have discussed the computational discretization in Sec. 4 in [36]. We use

N to denote the number of points in the computational time window Tw; we

use j to denote the row indices; and we use k to denote the column indices.

We begin by introducing the eigenvalue matrices E and Ê,

E =


| | · · · |

e1 e2 · · · e2N

| | · · · |

 , Ê =


| | · · · |

ê1 ê2 · · · ê2N

| | · · · |

 , (47)

normalized so that ÊHE∆t = I2N , where I2N is the identity matrix, which we

use to define the matrix

D = (D∆t) ÊH Ê, (48)

where D is defined in Eqs. (16) and (46). We next define the matrix

H = h∗eh
T
e , (49)

where h∗e is the element-wise complex conjugate of he and he is defined in

Eq. (35),

he = EHhx∆t. (50)
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Finally, we define the matrix

Ω(f) =



µ1 µ1 · · · µ1

µ2 µ2 · · · µ2

...
...

...
...

µ2N µ2N · · · µ2N


, (51)

where µj = λj − 2iπf .

We can now express Eq. (36) in matrix form as

Sx(f) =

2N∑
j=1

2N∑
k=1

Ajk(f), (52)

in which the matrix A(f) is given by

A(f) = D� H�
[
Ω(f)� ΩH(f)

]
, (53)

where � and � represent element-wise matrix multiplication and devision, re-

spectively, and all matrices are 2N × 2N square matrices.

As an example, the Matlab R© code that calculates the power spectral density

of the timing phase jitter, shown in Fig. 4(c), is available at

http://photonics.umbc.edu/software.html
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