
Benchmarking Parallel K-Means Cloud Type
Clustering from Satellite Data

Carlos Barajas1, Pei Guo2, Lipi Mukherjee3,4, Susan Hoban4, Jianwu Wang2,
Daeho Jin5, Aryya Gangopadhyay2, and Matthias K. Gobbert1

1 Dept. of Mathematics and Statistics, University of Maryland, Baltimore County
2 Dept. of Information Systems, University of Maryland, Baltimore County

3 Dept. of Physics, University of Maryland, Baltimore County
4 Joint Center for Earth Systems Technology, University of Maryland, Baltimore

County
5 GESTAR, USRA and NASA GSFC

{barajasc, peiguo1, lipimuk1, hoban, jianwu, gangopad, gobbert}@umbc.edu,
daeho.jin@nasa.gov

Abstract. The study of clouds, i.e., where they occur and what are their
characteristics, plays a key role in the understanding of climate change.
Clustering is a common machine learning technique used in atmospheric
science to classify cloud types. Many parallelism techniques e.g., MPI,
OpenMP and Spark, could achieve efficient and scalable clustering of
large-scale satellite observation data. In order to understand their differ-
ences, this paper studies and compares three different approaches on par-
allel clustering of satellite observation data. Benchmarking experiments
with K-means clustering are conducted with three parallelism techniques,
namely OpenMP, OpenMP + MPI, and Spark, on a HPC cluster using
up to 16 nodes.

Keywords: Parallel computing · High performance computing · MPI · OpenMP
· Spark· K-means Clustering

1 Introduction

The climate of Earth tends to maintain a balance between the energy reaching
the Earth from the Sun and the energy leaving the Earth to space. This is
also known as Earth’s “radiation budget.” The components of the Earth system
contributing to the radiation budget include Earth’s surface, atmosphere, and
clouds [10, 18]. The study of clouds, including their frequency of occurrence,
location, and characteristics plays a key role in the understanding of climate
change. Thick clouds in the lower atmosphere primarily reflect the incoming
solar radiation and consequently cool the surface of the Earth. However thin
clouds in upper atmosphere easily transmit the incoming solar radiation and
also trap some of the outgoing infrared radiation emitted by the Earth’s surface
and radiate it back downward. This process consequently warms the atmosphere



and surface of the Earth. Usually, the clouds in the upper atmosphere have a
colder cloud top that traps the energy in form of outgoing longwave emission.
As a result of the trapped energy, the temperature of the Earth’s atmosphere
and surface increases until the longwave emission to space is balanced by the
incoming solar shortwave radiation.

Two parameters that are directly related to the heating and cooling effects
of clouds are cloud optical thickness (COT) and cloud top height (CTH) which
is related to cloud top pressure (CTP). COT is a measure of the thickness of
cloud which largely determines the reflection of sunlight, i.e., the cooling effects
of clouds. The thicker the cloud the stronger the reflection. The CTP also plays a
role in the warming of clouds in the thermal infrared region (greenhouse effect).
For example a cloud with high CTP and low COT would result in warming affect
but a cloud with a high CTP and high COT would result in a net 0 or “neutral”
effect. For this reason, the satellite retrievals of the cloud COT and CTP are
often portrayed in a joint histogram of COT and CTP.

We can study these variables using NASA satellite data such as Moder-
ate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO). The clouds can be
studied through atmospheric modelling, where computer simulations are used
in conjunction with field measurements and lab studies to further our under-
standing of cloud physics. In this work we are using MODIS data for five years
(2005-2009), and we employ K-Means clustering to identify the prominent cloud
types.

K-means clustering is a widely applied unsupervised machine learning algo-
rithm. When the input data is large, the computation speed of K-means clus-
tering should be considered. In our study, we applied three different implemen-
tations of parallelized computation of K-means clustering: OpenMP, OpenMP
+ MPI, and Spark. We explain the parallelization and compare the clustering
results and performance of the three implementations. The contributions of this
paper are: 1) implementations of three different parallelization techniques on
K-means clustering 2) using performance comparisons of these three different
parallelized techniques.

2 Background

2.1 Cloud Joint Histograms

COT and CTP are recorded by a satellite from the snapshot of a cloud which
we visualize with the 2-D joint histogram [13]. The International Satellite Cloud
Climatology Project (ISCCP) cloud type is used in order to interpret the his-
togram [17]. With this categorization, it is easy to link the joint histogram data
to real world clouds as shown in Figure 1.

It is natural that multiple cloud types occur in the same 1◦ × 1◦ grid cell.
Consequently individual joint histogram data (representing one time and one
location) has great variability. This is the reason why the concept of “cloud



regime” was created. In short, the cloud regime is the concept representing the
domain mixtures of cloud types.

Fig. 1. Left: Cloud type definitions can be extrapolated using joint histograms where
the joint-histogram is broken up into regions which are blocked according to cloud-
type. Additional information on this technique can be seen in [17]. Right: The joint
histogram of cloud top pressure and cloud top thickness suggesting high frequency of
stratocumulus clouds.

2.2 K-means Clustering

In order to cluster the cloud types based on their properties (COT, CTP) as
shown in Figure 2, we used K-means clustering. The general idea behind K-
means clustering is grouping data according to distance where distance is a
measure of similarity [9].

K-means is an unsupervised clustering algorithm. It starts with choosing k
cluster centers (centroids) in the space representing the data objects. Next each
data object is assigned to a cluster center with the closest Euclidean distance.
After assigning all data to some centroid a new position for the k centroids are
calculated. If the centroids move such that they have a smaller mean distance
the new clusters are kept and the old centroids are discarded. Then the previous
steps of assigning and calculating are repeated until the centroids’ movement is
negligible [14,15].

The K-means algorithm is sensitive to the initialization of randomly selected
cluster centers [9]. To reduce the randomness in the cluster results, it is better to
initialize the centroids as sparse as possible. To get stable clustering results, the
algorithm can be made to run multiple times, and the within-cluster-variance
and Euclidean distance can be used as clustering criteria.

3 Implementation Details

We have three different approaches to K-means clustering in this section. Two
were our own implementations and one was provided by Dr. Jin as a baseline to
be improved and compared against. Our source code can be found on GitHub [6].



Fig. 2. The cloud regime (CR) centroids of daily ISCCP joint histograms. The cloud
fraction (CF) of each regime, the sum of 42 bin values, is also provided. When bin
values are larger than 10%, they are explicitly colored [13].

3.1 OpenMP based Implementation

Our initial baseline for improvement was code provided to us by Dr. Jin which
uses Python for pre-processing and post-processing of data while leveraging
OpenMP enabled FORTRAN for computationally heavy tasks such as the K-
means clustering algorithm. The bindings were generated using f2py. We refer
to this approach as the OpenMP approach.

The code takes in a binary data file that is a n × 42 multi-dimensional ar-
ray where the n dimension is the total number of histograms to be used for
the K-means algorithm whereas 42 is the number of cloud fraction bins within
each histogram. Concisely each row is one joint histogram. The binary data is
produced using level 3 MODIS data that is provided in the HDF format. The
binary format is more compact on disk and is loaded directly into an array us-
ing NumPy. Note that each joint histogram(s) is a data point in the K-means
clustering algorithm and will be referred frequently as “record” or “records”.

As is typical of OpenMP code the number of threads is set a priori with
the environment variable OMP_NUM_THREADS. First Python calculates the k = 10
initial centroids for K-means clustering using the same idea as the k-means++

initialization algorithm. This attempts to make the initial centroids sparse so
that they can each encompass the largest amount of data with minimal, if any,
overlap. The first iteration uses the initial centroids as a 0th iteration. All data
and the previous iteration’s centroids are then passed to the first FORTRAN
subroutine, assign_and_get_new_sum, which determines a new centroid and
computes the Euclidean distance of each record from the new centroids. The
newly generated centroids and respective distances are returned to Python from
FORTRAN as two NumPy arrays. To prevent performance loss that comes with



using Python, NumPy’s array vectorization is used to compute the mean dis-
tances. A vectorized check is implemented with NumPy to determine if the mean
distances of the new centroids are superior to the previous iteration’s centroids.
The centroid set with the best mean distances is kept for the next iteration. This
process continues until either the maximum number of iterations is reached, 40,
or the mean distance between the previous iteration’s centroids and the newly
computed centroids is smaller than the given threshold of 0.125 which was pro-
vided by Dr. Jin. Once a stopping criterion has been met the final centroids are
written to disk in a binary format so that may be post-processed at a later time.
A Python script then reads in these binary centroids to produce the several joint
histograms seen in Figure 2.

3.2 OpenMP and MPI based Implementation

Our first approach uses Cython, Python, OpenMP, and MPI. The total number
of records rt are split as evenly as possible between the p MPI processes such that
no process has more than one record compared to any other process. Whereas
OpenMP is used in hot computational C loops for increased parallelism. We
refer to this approach as OpenMP + MPI.

The load balancing scheme for MPI and OpenMP is discussed on a per
node basis as follows. The environment variable OMP_NUM_THREADS is set a priori
to run time. The Intel OpenMP environment variable KMP_AFFINITY is set to
scatter so that threads are distributed as evenly as possible among the cores.
Given our HPC testbed the cores per node c = 16 in conjunction with some
number of processes per node pn the number of threads per MPI process is com-
puted by tp = c/pn. This balancing system allows for all node resources to be
used, even if pn < c.

Before any K-means calculations begin, each MPI process determines its own
process rank and the total number of processes running. The processes use the
total number of records and total number of processes to determine their local
number of records rl as rl = rt/p. In the event that the total number of records
cannot be evenly distributed, the remaining records will be distributed such
that no processes have more than one record compared to any other process.
Then each process reads in its respective records from the same binary data as
mentioned in Section 3.1. This means that each process knows only of its own
records and no data is duplicated across the processes.

First the initial centroids are calculated as mentioned in Section 3.1. All
data and the previous iteration’s centroids are passed to the Cython def func-
tion assign_and_get_new_sum , which calls the cdef functions calculate_cl

and calculate_outsum. The deterministic behavior of K-means promises that
the new cluster produced by calculate_cl is the same on every process. The
Euclidean distance computation is where the parallelism plays a role. Figure 3
represents just one of the k many centroids where p = 2. Process 0 and Process 1
compute the Euclidean distance from their respective records to the centroid in-
dependently of each other. Then the mean distance for all records to the centroid
would be computed using a MPI_Allreduce followed by a local division by rt.



Fig. 3. The general idea for parallelization over a large data set with the repeated
calculation. Each black dot is a record and the colored lines tell which process would
be handling that Euclidean distance from the current center of the cluster.

OpenMP is implemented with a pragma omp parallel for around the record
distance calculation loop. Thus the most expensive computation of the K-means
algorithm is sped up by splitting rt into rl with MPI and multi-threading the
record distance calculation with OpenMP.

In the code these distances and clusters are returned from Cython to Python
as two NumPy arrays. In actuality the processes collectively compute a global
mean distance for each cluster using a MPI.allreduce in Python. While the MPI
command could have taken place inside the Cython code the idea is to keep the
same data transaction style as the FORTRAN code. The MPI call happens
in Python rather than Cython. All processes have the same newly calculated
centroids, previous iteration’s centroids, and respective mean distances to the
centroids. So all processes make the same choice on which set of centroids have
the better mean distances and discard the other. The stopping criterion and
post-processing is the same as in Section 3.1.

3.3 Spark based Implementation

Our second approach is implemented in Python using Apache Spark’s scalable
machine learning library Spark MLib and the associated API. We utilized Spark
2.3.0 and the built-in K-means algorithm for the cloud regime [1, 2]. There are
four steps in our applied Spark machine learning workflow: load our data, extract
the features, train the model, and evaluate the results.

First we load our data into a Spark DataFrame which is organized as a
distributed collection of data by name columns [4]. Upon the creation of the
DataFrame it is apparent that our data contained 42 columns which are the
bins of the joint histogram. We extracted the 42 features and assembled a fea-
tures vector in preparation for the clustering. In the clustering process, we set
k = 10. We changed set the Spark variable max.iteration to 40 to make sure
that a sufficient number of iterations occurred before the algorithm stopped [3].
We also tried to set larger iteration limits such as 2000, but the run time and
clustering result remained similar. So we concluded that 40 iterations are enough
in our case. We executed the program many times and output the silhouette with
squared Euclidean distance to make sure that our result was relatively stable [14].



The results of the clustering are dumped in a binary format and post-processed
using the same Python script in Section 3.1.

4 Results

In this section three different aspects of the results are highlighted. Code valid-
ity is for testing whether parallelism is implemented correctly. Computation may
proceed successfully but the application results could be incorrect. To check the
validity of our two implementations we compare our results against the results
that are produced by the provided implementation. Performance contains wall-
clock times with various environment conditions as cataloged in their respective
sections for each of the code implementations. Cross-comparison compares all
implementations to one another in both qualitative and quantitative measures.

The experiments are conducted on the UMBC High Performance Computing
Facility (HPCF) hpcf.umbc.edu. Each node used in our experiments has two
eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory. These
nodes are connected by a high-speed quad-data rate (QDR) InfiniBand network.

4.1 Code Validity

When parallelism is involved, we commonly assume that there has to be some nu-
merical drawback. For example, if parallelism is implemented incorrectly, round-
ing errors can occur, images can degrade in quality, and values that serial code
correctly computes are now no longer within an acceptable margin of error. Any
code which produces incorrect results in order to improve performance cannot
be accepted as correct code. Each of the implementations were run using the
same initial parameters in order to mimic the run environment of the OpenMP
approach. Additionally all the of the implementations were post-processed us-
ing the same Python script so that the images are comparable qualitatively and
quantitatively.

First consider Figure 4. The OpenMP and OpenMP + MPI joint histograms
are identical in their order, shape, and colorings. Since the algorithms in the
OpenMP approach were recoded line by line in the OpenMP + MPI approach
using Cython, it makes sense that the results should be identical. The only fun-
damental difference between the two coding schema was the major ordering of
the data and record splitting via MPI. More importantly, the OpenMP approach
and the OpenMP + MPI both used the same Python functions to calculate the
initial centroids. The underlying numerical differences between each of the results
is inevitable as there is no promise that the FORTRAN compiler and the C com-
piler will make the same sort of optimizations. Thus the FLOP round off error
is most certainly different between each of the three implementations. However
the accuracy of COT and CTP need only be accurate within 10−3 for the results
to be consider good enough in the scope of the problem. The post-processing
script only uses decimals on the order of 10−2. Beyond the quantitative results
produced, the qualitative results are seen as the more important use of the joint

hpcf.umbc.edu


OpenMP Open + MPI Spark

Fig. 4. Post-processed joint histogram results of the k-means final stable clusters for
all three implementations. The images are qualitatively identical

histogram model as discussed in [13]. This means that the scale, color, shape,
and ordering of the histograms play an integral role in determining the accuracy
of the implementation compared to the original.

While the implementations are fundamentally different the underlying al-
gorithm is still the K-means clustering algorithm with sparse initialization of
the first set of centroids. Even though the Spark code uses open-source libraries
rather than personally coded algorithms the qualitative results are identical to
the OpenMP approach which was programmed from scratch. The numerical val-
ues between each of the post-processed results are functionally identical and as
stated qualitatively identical as well.

The major difference is the approach of parallelism. Spark’s parallelism uses
a completely different methodology than the the typical operation of one com-
pute node with OpenMP enabled code. Additionally Spark’s data handling is
vastly different than the OpenMP+MPI code, yet the results are the same.
These differences are irrelevant because the application results computed by all
approaches are the within acceptable margins. Therefore both of the alternative
implementations can be regarded as accurate parallelized representations of the
OpenMP approach, as they show no signs of result degradation.

4.2 Performance

Table 1. OpenMP wall clock results with total number of threads used in HH:MM:SS.

Threads 1 2 4 8 16

Wall clock 00:14:59 00:07:10 00:03:47 00:02:58 00:02:38

OpenMP Table 1 presents the recorded times for the varying number of OpenMP
threads in the OpenMP approach. Clearly as we use more threads the time im-



proves slightly but there appears to be bottleneck. Even though we’re using 16
threads (see the final column) the time is not 16 times faster. We can use the
best speed possible from these results as a baseline to compare other results
to. There is a clear improvement in the timings as we increase the number of
threads used. This indicated that the OpenMP parallelism is having a positive
on the performance. However as the number of threads double the timing is not
halved. This then implies that the implementation has a bottleneck beyond the
OpenMP components. Thus the 1-node, 1-process-per-node, 16-thread timing in
Table 1 shall be the timing that all other timings are compared too.

Table 2. OpenMP + MPI wall clock results with Nodes and Processes Per Node in
HH:MM:SS.

Nodes 1 2 4 8

1 ppn 00:01:01 00:00:34 00:00:17 00:00:08
2 ppn 00:01:23 00:00:41 00:00:20 00:00:11
4 ppn 00:01:50 00:00:54 00:00:28 00:00:16
8 ppn 00:02:42 00:01:22 00:00:45 00:00:29

16 ppn 00:04:47 00:02:32 00:01:29 00:01:07

OpenMP + MPI The MPI results in Table 2 show that as the number of
processes per node increase the performance decreases. Consider the 8 node
column of the table. As the number of processes per node increase the times
gradually worsen at an increasing rate until the timing from eight processes per
node to sixteen processes per node doubles. This same behavior is consistent
for all node columns. Thus we can say that there is an optimal load balancing
issue that must be addressed. The most optimal way to take advantage of all
cores on a node in this case is to use the minimal amount of MPI processes and
maximum number of threads per process. This cuts down on the communication
required between processes and allows for a collection of nodes to be used mainly
for threads. These threads are lightweight and require no intercommunication
of data to function. For all rows as the number of nodes used increases the
performance also increases which is the expected strong scalability outcome.

The data set fits comfortably within the total memory capacity available.
Meaning that there is less memory contention and one process per node performs
more optimally than expected. On dual socket nodes the minimal number of
processes required for optimal performance of memory bound code has been
concluded to be two processes per node. This allows one process and its respective
threads to be placed on their own processor [5,16]. Once larger data sets approach
the node memory limit of ≈ 62GB MPI should start to demonstrate a clear
performance improvement as the communication time becomes a small player in
the overall timing results.
Spark Table 3 is the run time table of our Spark implementation. In Table 3
by increasing nodes from 1 to 4 our spark program wallclock time decreases
significantly from 9 minutes to less than 3 minutes. However when scaling up
from 4 nodes to 8 nodes, the timings do not change significantly, despite the



continued decrease from just under 3 minutes to around 2 minutes. The reason
is that during most of the run time Spark is working on loading data into the
Spark DataFrame. The actual calculating time of the centroids in Spark with 4
nodes is around 7 seconds, and with 8 nodes, it is only 4 seconds. We conclude
that performance did not improve much by increasing the number of nodes. This
is because the size the data set (3 GB) is not big enough to make a significant
difference and there’s an overhead when loading the data into the DataFrame.

Table 3. Spark wall clock results with total number of nodes used in HH:MM:SS.

Nodes 1 2 4 8

Wall clock 00:09:03 00:06:16 00:02:51 00:02:09

4.3 Cross Comparison

Implementation Comparisons The first step in implementing MPI was to
convert the FORTRAN code into C code to maintain high performance and ease
the MPI parallelization. MPI is better equipped to handle C’s native ordering
(row major). In constrast CPython API is rather terse and unwieldy. Thus when
trying to implement a simple interface a great deal of boilerplate code has to be
written. The use of Cython removes a large amount of the API complexities be-
cause Cython will automatically generate the CPython API compatible C code
from the Cython code and properly optimize for C-like performance. Fortunately
the Cython handler is an executable that comes bundled with a modern NumPy
distribution at or beyond 1.14+. The Cython handler converts the Cython code
into C using the CPython API. The generated C code is compiled to a dynam-
ically linked library which can be imported directly into Python. This process
is similar to how f2py works for the original FORTRAN implementation. One
benefit is that Cython allows any C function to be used inside the Cython code.
The major benefit is that Cython also allows for C speed memory accesses via
Memoryviews. A Memoryview provides a closer interface to the heap than NumPy
arrays. This allows the block of memory controlled by the NumPy array to be
changed as if it were created using malloc. With all these tools in place the
FORTRAN code was converted line by line into Cython code and all original
NumPy arrays were converted into row-major format so that they are compat-
ible with the C-style arrays that MPI prefers. Importantly Cython allows for
easy integration of OpenMP into the cdef functions, which means that portions
of the code needed to be refactored into cdef and def portions [7].

Lastly mpi4py is used to integrate MPI into the Python portion. Since
Cython handles the computation efficiently, MPI was only tasked with chop-
ping the data into smaller portions and sharing minor amounts of data. An
MPI.allreduce is used for reducing integers and simple datatypes. Whereas we
used MPI.Allreduce for reducing NumPy arrays efficiently.

The Spark code is so fundamentally different from the other two implemen-
tations, a comparison would just be reiterating the implementation described in
Section 3.3.



Wall Timings All but the bottom left three timings in Table 2 are better than
the best timing in Table 1. Consider the best timing from the OpenMP approach.
This OpenMP timing is 2× as fast as the slowest single node performance time
for the MPI enabled code. However this timing takes twice as long as the fastest
single node performance time. The 1 node 1 process per node timings in Table 2
use the same amount of resources as the best timing in Table 1. This indicates
that the benefits of Cython, rather than MPI, are to thank for the jump in
performance. By enabling MPI and using 8 nodes we get a mere 8 second run
time. This is 18× faster than the OpenMP performance time and approximately
7.5× faster than the single node OpenMP + MPI code.

Consider the timings in Table 3 compared to the timings in Table 1. Observe
the single node performance of Spark in this case the OpenMP approach is 3.4×
faster than the Spark approach. It is not until Spark uses 8 full nodes before it
is able to compete with the single node performance of OpenMP. Even then it
is only 1.2× faster.

The main reason for the under performance of Spark is that the data set
is very small and the communication time and initial overhead of Spark far
outweigh the actual computation needed to solve the problem. Similarly as we
increase the number of MPI processes it is clear that the communication time is a
large price to pay despite very minimal amounts of communication. The problem
size is small enough that communication still plays a big role in performance
timings and OpenMP + MPI has the least amount of overheard when using
only one process per node is used which is why this row of timings dwarf all
other results.

5 Related Work

The reasons for running benchmarks vary considerably. One may wish to test
the capability of new hardware as seen in [5]. The idea of transcoding a problem
into multiple languages and use different underbelly computation code is com-
monplace in the sphere of development. Even on the exact hardware we utilized
for our implementations, there have been several transcoding performance stud-
ies. For example: the performance of numerical solvers in Julia, R, and Matlab
which is found in [16]. In [12], K-means clustering is used as a comparison of
other machine learning techniques on Hadoop using their benchmarking suite Hi-
Bench. OpenMP applications and K-means clustering are tested in [8]. Another
benchmarking work on parallel computing among different parallel programming
approaches includes Hadoop, Spark, and Hive database. This proved that differ-
ent programming methods could cause more than 100 times difference in running
speed [11]. However there are no specific combinations that reflect our language
choice and application problem.



6 Conclusions

Both parallel implementations managed to correctly compute the same clusters
as the original code. Only OpenMP + MPI implementation managed to outper-
form the original code with the same amount of resources at its disposal. Only
OpenMP + MPI managed to outperform the original implementation when us-
ing more resources than the original code was capable of using.

However, the demonstration of increased performance of both parallel imple-
mentations was severely limited by the lack of data. Spark is designed to handle
data on the TB scale, yet we only used 3 GB. These results are not indicative
of what would happen given 20+ GB of data. In our Spark application, we basi-
cally use only its default level of parallelism. By configuring higher parallel level
to load data, or upload data to HDFS might improve the speed of our Spark
program. Moreover, Spark application utilizes Python, and the programming in
Python itself is slower than programming in FORTRAN and C. So we cannot
conclude that Spark is an inferior implementation in this current stage. We only
can conclude that it might need more tuning work to make it optimized and
competitive.

When MPI scaled is scaled to multiple nodes always the performance always
proved. One point is that when MPI is run with multiple nodes using one process
per node the total number of threads increase proportionally. However when
the number of processes increased beyond one process per node, performance
decreased indicating that the data set is also too small for MPI communication.
Ordinarily this would be a smaller price to pay for increased parallelism but was
not in our case.

In the future we would like to test these parallel implementations with much
larger data sets. We propose that both Spark and MPI will have significant
increases in performance beyond the original code once scaled up to 20+ GB.

Acknowledgment

This work is supported by NSF grant OAC–1730250 and NASA grant 80NSSC17K0366.
The hardware used, the UMBC HPCF, is supported by NSF grants (CNS–
0821258, CNS–1228778, and OAC–1726023) and the SCREMS program (DMS–
0821311), with additional substantial support from UMBC.

References

1. Apache Software Foundation. Apache spark – unified analytics engine for big data.
https://spark.apache.org/. Accessed: 2018-06-15.

2. Apache Software Foundation. MLlib | Apache Spark. https://spark.apache.

org/mllib/. Accessed: 2018-06-15.
3. Apache Software Foundation. Spark mllib python api docs. https:

//spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark\

.ml.clustering.KMeans. Accessed: 2018-06-15.

https://spark.apache.org/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark\.ml.clustering.KMeans
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark\.ml.clustering.KMeans
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark\.ml.clustering.KMeans


4. Apache Software Foundation. Spark sql, dataframes and datasets guide. https://
spark.apache.org/docs/2.3.0/sql-programming-guide.html. Accessed: 2018-
06-15.

5. Kritesh Arora, Carlos Barajas, and Matthias K. Gobbert. Parallel performance
studies for an elliptic test problem on the Stampede2 cluster and comparison of
networks. Technical Report HPCF–2018–10, UMBC High Performance Computing
Facility, University of Maryland, Baltimore County, 2018.

6. Carlos Barajas, Pei Guo, Lipi Mukherjee, and Jin Daeho. https://github.com/

big-data-lab-umbc/cybertraining/tree/master/year-1-projects/team-2.
Source Code.

7. S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython:
The best of both worlds. Computing in Science Engineering, 13(2):31 –39, March–
April 2011.

8. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 44–54, Oct 2009.

9. J. Fauld. Unsupervised learning: Association rule learning and clustering, March
2018.

10. Steve Graham. https://earthobservatory.nasa.gov/Features/Clouds/?src=

share, March 1999.
11. Pei Guo, Jianwu Wang, and Zhiyuan Chen. A comparison of big data application

programming approaches: A travel companion case study. 2017 IEEE International
Conference on Big Data (Big Data), pages 2869–2878, 2017.

12. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark
suite: Characterization of the mapreduce-based data analysis. In 2010 IEEE 26th
International Conference on Data Engineering Workshops (ICDEW 2010), pages
41–51, March 2010.

13. Daeho Jin, Lazaros Oreopoulos, and Dongmin Lee. Regime-based evaluation of
cloudiness in cmip5 models. Climate Dynamics, 48(1):89–112, Jan 2017.

14. J. Macqueen. Some methods for classification and analysis of multivariate observa-
tions. In In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, 1967.

15. Polytechnic University of Milan. A Tutorial on Clustering Algorithms k-means clus-
tering. https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

kmeans.html. Accessed: 2018-06-15.
16. Sai K. Popuri and Matthias K. Gobbert. A comparative evaluation of Matlab,

Octave, R, and Julia on Maya. Technical Report HPCF–2017–3, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2017.

17. William B. Rossow and Robert A. Schiffer. Advances in understanding clouds from
isccp. Bulletin of the American Meteorological Society, 80(11):2261–2288, 1999.

18. J. M. Wallace. Atmospheric science: An introductory survey. Academic Press,
1977.

https://spark.apache.org/docs/2.3.0/sql-programming-guide.html
https://spark.apache.org/docs/2.3.0/sql-programming-guide.html
https://github.com/big-data-lab-umbc/cybertraining/tree/master/year-1-projects/team-2
https://github.com/big-data-lab-umbc/cybertraining/tree/master/year-1-projects/team-2
https://earthobservatory.nasa.gov/Features/Clouds/?src=share
https://earthobservatory.nasa.gov/Features/Clouds/?src=share
https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

	Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 

