
LONG-TIME SIMULATIONS ON HIGH RESOLUTION MESHES TO
MODEL CALCIUM WAVES IN A HEART CELL∗

MATTHIAS K. GOBBERT†

Abstract. A model for the flow of calcium in an atrial heart cell is given by a system of time-
dependent reaction-diffusion equations coupled by non-linear reaction terms. Calcium ions enter
into the cell at release units distributed throughout the cell. At each position, the probability for
calcium to be released increases along with the concentration of calcium, thus creating a feedback
loop of waves re-generating themselves repeatedly. To validate the model, simulations on the time
scale of several completed waves and on the spatial scale of the entire cell are desirable. This requires
long-time studies on spatial meshes that need to have a high resolution to resolve the positions of
the calcium release units throughout the entire cell. high resolution meshes needed to resolve the
We detail the development of a special-purpose numerical method and parallel implementation for
this problem. Parallel performance studies demonstrate the scalability of the implementation on a
distributed-memory cluster. Convergence studies verify convergence to analytical expectations and
confirm the appropriateness of all method parameters. Application studies on the desired time and
length scales confirm that the model exhibits the desired feedback mechanism for calcium currents
through the release units at suitable high levels, but the long-time studies demonstrate that more
calcium may accumulate in the cell eventually than is physically reasonable.

Key words. reaction-diffusion equation, non-smooth data, finite element method, matrix-free
implementation, cluster computing

AMS subject classifications. 35K57, 65F10, 65M60, 65Y05, 92C45

1. Introduction. Diffusion waves of calcium ions in an atrial heart cell are part
of the normal functioning of the heart, but can also trigger arrhythmias (irregular
heart beat) [7, 8, 9]. See these sources as well as the appendix in [5] for more references
to background material. The model for the calcium flow is given by a system of
coupled, time-dependent reaction-diffusion equations

(1.1)
∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
+ a(i) u(i) = r(i) +

(
− Jpump + Jleak + JSR

)
δi0 + f (i)

for the concentrations u(i)(x, t) of the ns chemical species i = 0, 1, . . . , ns − 1 as
functions of space x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin. In the application problem,
(1.1) is coupled with no flow boundary conditions, and the concentrations at the initial
time are given.

The time and space derivatives on the left-hand side of (1.1) model the dif-
fusive transport of each chemical species with diffusivities given by the diagonal,
positive definite matrices D(i) ∈ R3×3, i = 0, 1, . . . , ns − 1. The reaction terms
r(i) ≡ r(i)(u(0), . . . , u(ns−1)) on the right-hand side are in general non-linear functions
of all species and couple all reaction-diffusion equations in (1.1). In the application
problem, crucial effects related to the calcium species labeled with index i = 0 are
contained in the right-hand side terms associated with the the Kronecker delta func-
tion δi0 (defined as δij = 0 for all i 6= j and δij = 1 for i = j). In (1.1), the
application problem is combined with additional terms a(i)u(i) with constant a(i) ≥ 0
and given function f (i) ≡ f (i)(x, t) that incorporates the scalar linear test problem

∗The author acknowledges partial support from National Science Foundation under grant DMS–
0215373 for the computational hardware used in the numerical studies.

†Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250, U.S.A. (gobbert@math.umbc.edu)

1

2 Matthias K. Gobbert

ut − ∇ · (D∇u) + au = f(x, t) in the formulation. This combined formulation of
the problems allows to switch the code from one problem to the other by turning
off terms and is useful in testing to ensure correctness of the code and associated
post-processing routines.

The domain Ω ⊂ R3 denotes the interior of the cell and is chosen as (−6.4, 6.4)×
(−6.4, 6.4) × (−32.0, 32.0) in units of µm. Clearly, a rectangular shape is not the
shape of a real cell, but this simple choice reflects the interest of this work that
focuses on validating and tuning of the coefficients in the model, rather than on a
realistic geometric representation. Specifically, all functions r(i), Jpump, JSR, etc.
contain parameters, many of which cannot be measured directly but are obtained
indirectly from measurements of other observations. So, before using the model with
these coefficients as a predictive tool, it needs to be validated against experiments.
That is, our task is to demonstrate that the model and its computer implementation
are capable of replicating the phenomena observed in the laboratory. In this context, it
is sufficient to approximate the shape of the cell. But in turn, what has to be achieved
for the present purpose is (i) to be able to compute to final times comparable to the
laboratory scales and (ii) to do this with a domain that has a realistic size comparable
to a real cell. Specifically, a final time on the order of 1000 ms is our goal, because it
will allow enough time for waves to self-organize and for several waves of calcium to
traverse the cell, and a domain with one long dimension of 64 µm and a cross-section
of 12.8 × 12.8 µm2 is a good representation of the scale and the fundamental shape
of a cell in this context [7, 8, 9].

The practical problem is now to enable these simulations to complete within a
reasonable amount of wall clock time on actually available computational resources.
Thus, we set out to choose a numerical method that is mathematically appropriate
for the problem and takes advantage of any special structure of the problem for its
efficiency, while still representing the salient features of the problem and keeping the
goals of the simulations in mind, and to implement this method efficiently. This paper
presents an approach to this problem in this spirit that uses the properties of the
application problem to design an efficient special-purpose code for reaction-diffusion
equations of the form (1.1) on a domain of rectangular shape such as Ω above. Since
our code and its parallelization are new, we also demonstrate how to gain confidence
in its efficacy by parallel performance studies and its accuracy by convergence studies,
before applying it to the application problem.

An interesting contrast to our approach can be seen in [8], in which the general-
purpose code MPSalsa (www.cs.sandia.gov/CRF/MPSalsa) from Sandia National
Laboratories is used to approach the same application problem. This code is de-
signed for much more general problems with additional phenomena (such as heat and
mass transfer, etc.) and uses unstructured finite element meshes, thus is potentially
much more flexible in representing geometries. It will become apparent in the com-
parisons below that our choices of numerical methods are remarkable analogous, such
as a low-order finite element method in space, fully implicit time stepping, Newton
solver, and use of a Krylov subspace method as linear solver, but with certain in-
teresting differences: One key difference is our use of a variable-order time stepping
method with automatic step size control that decreases the step size when warranted
to control transients in time as well as allows the step size to become large when pos-
sible. Another difference is our taking advantage of the fixed-in-time mesh to develop
a completely matrix-free implementation of the method, including of the Jacobian in
the Newton method, which is thus always up-to-date and exact without additional

Long-Time Simulations on High Resolution Meshes 3

computational cost. These key differences permit us to compute to significantly larger
final times within reasonable wall clock time on finer meshes and for larger domains
than the studies reported in [8].

The following section 2 introduces the application problem in more detail and
highlights the numerical challenges that need to be addressed. Section 3 explains
the choices for the components of our numerical method in detail and discusses some
comparisons with the simulations in [8]. Section 4 presents results in four sections:
Parallel performance studies in section 4.1 demonstrate that we can solve problems
of the desired size efficiently on a distributed-memory cluster. Sections 4.2 and 4.3
present convergence studies for the numerical with smooth and non-smooth source
terms, respectively, to validate the method, its implementation, and our choice of
numerical parameters. Finally, section 4.4 shows long-time simulations for two cases,
one in which no calcium waves self-organize and one in which two waves self-organize
and traverse the domain. Movies of the results are available at the author’s website
www.math.umbc.edu/~gobbert/calcium.html. Our conclusions are summarized in
section 5.

2. The application problem.

2.1. The model of the spark mechanism. The key term of the model is
the function JSR(u(0),x, t) in the equation for the calcium concentration (labeled as
species i = 0) in (1.1) that describes the release of calcium at the calcium release
units (CRUs), referred to as spark events [7, 9]. On the scale of a cell, the CRUs
appear as discrete points distributed uniformly throughout the cell. Specifically, we
take the arrangement of the CRUs as a three-dimensional lattice with spacings of
∆xs = ∆ys = 0.8 µm in the x- and y-dimensions and of ∆zs = 2.0 µm in the z-
dimension of the cell with no CRUs on the boundary of the cell [9, p. 105]. These and
all other coefficient values and their units are collected in Table 2.1. For our domain
of Ω = (−6.4, 6.4) × (−6.4, 6.4) × (−32.0, 32.0) with length units of µm, this means
that the CRUs form a 15 × 15 × 31 lattice with a total of 6,975 CRUs in the cell.
It is immediately clear that one of the challenges for simulations of the calcium flow
throughout a complete cell is the need for a numerical mesh that resolves this lattice
of points, where the sources of calcium are located.

The release of calcium concentration at each CRU is modeled as a point source
on the scale of the cell, mathematically represented as a Dirac delta function δ(x− x̂)
for a CRU located at x̂ [7, p. 89]. The Dirac delta function is understood here in a
three-dimensional sense for short, that is, δ(x− x̂) = δ(x− x̂) δ(y− ŷ) δ(z− ẑ), where
we also use x = (x, y, z) and x̂ = (x̂, ŷ, ẑ). The amount of calcium released into the
cell is given by the flux density σ, that is,

∫
Ω

σ δ(x − x̂) dx = σ, by the definition of
the delta function, gives the amount of calcium released into the cell in 1 ms. The
effect of a CRU switching on and off is incorporated by an indicator function in time.
More specifically, let the set Ωs = {x̂ ∈ Ω | x̂ is a CRU} denote the set of all CRU
locations. Then [8, p. 96]

(2.1) JSR(u(0),x, t) =
∑
x̂∈Ωs

σ Sx̂(u(0), t) δ(x− x̂)

is the superposition of the release of calcium at all CRUs. Since the Dirac delta
function is a highly non-smooth term, one critical question for the numerical method
is whether its spatial discretization converges.

The indicator function Sx̂(u(0), t) in each term of the sum in (2.1) houses the
stochastic aspect of the sparking mechanism of the CRU at x̂. The model allows the

4 Matthias K. Gobbert

CRU to open with probability

(2.2) Jprob(u(0)) =
Pmax (u(0))nprob

(Kprob)nprob + (u(0))nprob

as a function of the local calcium concentration u(0) [9, p. 104]. This probabilistic
model is checked at the so-called spark times that are every unit in time ∆ts = 1 ms
apart. If a CRU opens at a time t = t̂, it stays open for a duration topen = 5 ms, that
is, mathematically the indicator function Sx̂ is set to 1 for t ∈ [t̂, t̂ + topen]. Notice
that expected effect of this setup is that the calcium released at one CRU diffuses to a
neighboring CRU, whose probability for opening increases with the increased calcium
concentration. If the calcium concentration then reaches a third CRU and it opens,
the effect is that of a wave forming throughout the cell [9]. After a CRU closes again,
it cannot release calcium again for a time period tclosed = 100 ms. Therefore, calcium
waves through the cell are separated in time by approximately 100 ms. We see that
to simulate a sequence of repeated calcium waves, we need to be able to calculate for
long times, such as, up to the final time tfin = 1000 ms.

The experimentally obtained coefficient σ models the amount of calcium released
at one CRU [7, 9]. It is a function of the calcium current ISR by σ = ISR/(2F),
where F denotes the Faraday constant. The range of ISR from 10 to 20 pA is “back-
calculated from the size of sparks” [8, p. 96]. This quantity has crucial influence on
whether calcium waves self-organize or not because it determines how much calcium
is released into the cell at one CRU, σ, which via diffusion raises the value of Jprob

in (2.2) at nearby CRUs and thus influences strongly whether they open or not. One
interesting validation for this model of calcium waves is to consider the extreme values
of this range for ISR and observe whether calcium waves self-organize.

In summary, there are several key challenges for the numerical method and its
implementation: The spatial discretization needs to resolve the cell domain with a fine
mesh and we need to ensure its convergence in the face of the Dirac delta functions
as highly non-smooth source terms. The time discretization needs to ensure small
error when CRUs are switched on and off and needs to be efficient enough to allow
long-time simulations within reasonable wall clock times.

2.2. The other terms of the application problem. The model for the cal-
cium flow involves in addition to calcium C, labeled as species i = 0, additionally an
endogenous calcium buffer F(1), labeled i = 1, and a fluorescent indicator dye F(2),
labeled i = 2. The reversible binding/unbinding of the indicator and buffer species
are modeled by the reaction model for the ns = 3 species [7]

(2.3) F(i) + C
 G(i), for i = 1, . . . , ns − 1,

where F(i) denotes the free molecules of species i, C denotes the calcium species,
and G(i) the molecules of species i that are bound with C. The reaction model,
together with the no flow boundary conditions, assures the conservation of the total
concentrations of F(i) and G(i) together at a value ui [7] that is determined by the
initial conditions. With u(i) denoting the concentration of F(i), the concentration of
G(i) is then ui − u(i). And with u(0) as concentration of C, the reaction rates are

(2.4) R(i) = −k+
i u(0)u(i) + k−i

(
ui − u(i)

)
for i = 1, . . . , ns − 1.

Long-Time Simulations on High Resolution Meshes 5

Table 2.1
Coefficients of the three-species application problem. The unit M is short for mol / L (moles

per liter).

Domains in space and time
Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0)
0 ≤ t ≤ tfin with tfin = 1000

Reaction-diffusion equation (1.1)
D(0) = diag(0.15, 0.15, 0.30) µm2 / ms
D(1) = diag(0.01, 0.01, 0.02) µm2 / ms
D(2) = diag(0.00, 0.00, 0.00) µm2 / ms
a(i) = 0, f (i) ≡ 0 for all i

u
(0)
ini = 0.1 µM, u

(1)
ini = 111.8182 µM, u

(2)
ini = 45.9184 µM

CRU coefficients, (2.1), and (2.2)
∆xs = 0.8 µm, ∆ys = 0.8 µm, ∆zs = 2.0 µm

σ =
{

51.8213655 µM µm3 / ms for ISR = 10 pA
103.6430533 µM µm3 / ms for ISR = 20 pA

F = 96,485.3 C / mol Faraday constant
Pmax = 0.3 / ms, Kprob = 15.0 µM, nprob = 1.6
∆ts = 1. ms, topen = 5.0 ms, tclosed = 100.0 ms

Reaction terms (2.4)
k+
1 = 0.08 / (µM ms), k−1 = 0.09 / ms, u1 = 50.0 µM

k+
2 = 0.10 / (µM ms), k−2 = 0.10 / ms, u2 = 123.0 µM

Pump and leak terms (2.6)
Vpump = 0.2 µM / ms, Kpump = 0.184 µM, npump = 4
Jleak = 0.016048418 µM / ms

The reaction terms r(i) in the unified notation of (1.1) are then for all species

(2.5) r(i)(u(0), . . . , u(ns−1)) :=

ns−1∑
j=1

R(j)(u(0), u(j)), for i = 0,

R(i)(u(0), u(i)), for i = 1, . . . , ns − 1.

These reaction terms introduce non-linearity into the problem and constitute the
coupling between the equations in (1.1).

Finally, calcium also leaves the cell through the non-linear drain term [7, p. 89]

(2.6) Jpump(u(0)) =
Vpump (u(0))npump

(Kpump)npump + (u(0))npump
.

At rest, that is, for the calcium concentration u(0) = 0.1 µM, the constant source
term Jleak balances the pump term such that Jleak = Jpump(u(0)) [7, p. 89]. (In [8,
p. 96], there is a typo in the sign of the pump term; cf. the original source [7, p. 89].)
The rest concentration u(0) = 0.1 µM is chosen as the initial condition for the calcium
concentration, and the initial conditions for the other reactive species are computed
such that r(i) = 0 for all reactions.

3. The numerical method. The problem (1.1), for which a numerical method
needs to be developed, is a system of reaction-diffusion equations coupled through the

6 Matthias K. Gobbert

non-linear reaction terms. We use a method of lines approach to develop a special-
purpose code that can handle the Dirac delta functions in (2.1) and that s suitable
for long-time simulations on the desired fine meshes.

3.1. Spatial discretization. Recall that Ω = (−X, X) × (−Y, Y) × (−Z,Z)
with X = Y = 6.4 and Z = 32.0 has a regular shape and that the calcium release
units (CRUs) at which the Dirac delta functions are centered form a regular lattice
Ωs inside the domain Ω with spacings of ∆xs, ∆ys, ∆zs between the CRUs in the
three coordinate directions. We take advantage of this structure by using a uniform
numerical mesh Ωh ⊂ Ω with mesh spacings ∆x, ∆y, ∆z chosen such that Ωh includes
the CRU locations as mesh points, that is, we have Ωs ⊂ Ωh ⊂ Ω by design. More
specifically, the mesh has Nx ×Ny ×Nz brick-shaped elements and thus there are a
total of N = NxNyNz nodes in the mesh. For a problem with ns = 3 chemical species
as in the application problem, there will be neq = nsN = 3N degrees of freedom
(DOF) to be solved for in each time step. Table 3.1 lists several resolutions that
we will use in the following and their associated number of nodes N and degrees of
freedom neq. The simulations shown in section 4.4 in fact use the 64× 64× 256 mesh
and have thus ‘only’ over 3 million DOFs. But the finer meshes are crucial to study
the convergence of the spatial discretization and the reference solution in sections 4.2
and 4.3 in fact used the 256×256×1024 mesh, albeit in a single-species run, so having
as DOFs the nodes N of “only” nearly 68 million listed in the table.

Table 3.1
A finite element mesh with Nx ×Ny ×Nz elements has N = (Nx + 1)(Ny + 1)(Nz + 1) nodes

and neq = nsN = 3N degrees of freedom (DOF) for the application problem with ns = 3 species.

Nx ×Ny ×Nz N neq = DOF
16× 16× 64 18,785 56,355

32× 32× 128 140,481 421,443
64× 64× 256 1,085,825 3,257,475

128× 128× 512 8,536,833 25,610,499
256× 256× 1024 67,700,225 203,100,675

The need to discretize the Dirac delta functions in (2.1) motivates the use of the
finite element method (FEM), because the weak formulation of the FEM is obtained
by integrating (1.1) over Ω, which is well-defined for the Dirac delta functions in JSR.
We choose nodal FEM basis functions ϕk(x), 0 ≤ k < N , that satisfy ϕk(x`) = δk`

for all nodes x` ∈ Ωh. Using ϕk as test function in the weak formulation allows for
an explicit evaluation of the the JSR term in the discretization and we find

(3.1) Σk :=
∫

Ω

JSR ϕk dx = σ
∑
x̂∈Ωs

Sx̂

∫
Ω

δ(x− x̂) ϕk(x) dx = σ
∑
x̂∈Ωs

Sx̂ ϕk(x̂).

Since x̂ ∈ Ωs ⊂ Ωh by construction of the mesh, x̂ is a node and we obtain ϕk(x̂) = 1
if and only if x̂ = xk. Moreover, Sx̂(u(0), t) = 1 if the CRU at x̂ is open and 0
otherwise, so Σk = σ if xk is a CRU and it is open, and 0 otherwise.

The discretization of the other terms in (1.1) is standard, see, e.g., [11, 16] for
general information, and see [5] for the concrete derivation of all terms. Let u(i)

k (t) ≈
u(i)(xk, t) denote the approximation to the true solution at node xk ∈ Ωh at time
t, then the finite element solution is denoted by uh(x, t) =

∑
k u(i)

k (t)ϕk(x). The
methods of lines approach yields the semi-discrete problem in vector form for u(i) =

Long-Time Simulations on High Resolution Meshes 7

(u(i)
k) for i = 0, 1, . . . , ns − 1

(3.2) M̂
du(i)

dt
= −(K(i) + M (i)

a)u(i) + r(i) + δi0 (jpl + Σ) + f (i).

Here, K(i) denotes the stiffness matrix, M̂ is the lumped mass matrix (which is the
same for all species) [16], and M

(i)
a is mass matrix involving the constant a(i) (and is

thus species dependent). The remaining vector terms come from the discretization of
their corresponding terms in (1.1), with Σ from above and the pump and leak terms
combined in jpl.

The error in the finite element solution uh(·, t) of the semi-discrete problem (3.2)
is measured in the L2(Ω)-norm. Under standard assumptions [11, 16], it has the form

(3.3) ‖uh(·, t)− u(·, t)‖
L2(Ω)

≤ C hq, as h → 0,

where q > 0 for convergence and C denotes a generic constant of moderate size
independent of the maximum mesh spacing h := max{∆x,∆y, ∆z}. To guarantee
the optimal convergence order of q = 2 in (3.3) for linear FEM basis functions, the
source terms of (1.1) need to lie in the function space L2(Ω), which is not the case due
to the Dirac delta functions in JSR. In [5], we have in the past argued heuristically and
demonstrated computationally that convergence does hold for linear basis functions
also in this case, with a convergence order of q = 0.5. Notice that we cannot expect
better convergence for higher-order elements, which explains our use of the low-order
linear finite elements.

The simulations in [8] use the same finite elements, but on an unstructured mesh
of tetrahedra and hexahedra with about 200,000 DOFs. A small difference is that
their domain is of cylindrical shape with a diameter slightly smaller than our x-y-
cross-section. The significant difference is that their domain is really a cross-section
of the cell, encompassing only two x-y-planes of CRUs [8, pp. 96–97]. They take
advantage of the unstructured mesh by using a higher mesh resolution at and around
the points where the CRUs are located. However, extensive studies using COMSOL
Multiphysics (formerly FEMLAB; www.comsol.com) indicate that the FEM converges
also our regular meshes [3], using potentially unnecessary high resolution away from
the CRUs.

3.2. Time discretization. The next step in the method of lines approach is
the time discretization for (3.2), which becomes a standard initial value problem with
mass matrix M (ode)y′(t) = f (ode)(t, y), if the unknown vectors u(i)(t) for all species
are concatenated into one vector y(t) of unknowns. This is one large problem of
neq = nsN non-linear ordinary differential equations (ODEs). For reaction-diffusion
equations with second-order spatial derivatives, the time step restrictions due to the
CFL condition are generally considered too severe to allow for explicit time stepping
methods. One might also try various splitting methods that decouple the ODEs and
solve the ODEs for only one species u(i)(t) at a time. In [5], we tried a very simple
splitting method by lagging the reaction terms in time, which also makes each smaller
ODE system linear for this application problem. It turns out that this approach has
degraded stability properties and might also not conserve mass as well as desired. In
the terminology of [12], which reports extensive tests of time stepping methods for
problems of the type considered here, a “fully implicit and balanced” is preferable,
in which the ODE system is discretized fully implicitly (and thus does not decouple
by species) and the discretization has all reaction terms at the same time. The same

8 Matthias K. Gobbert

applies to the pump and leak terms, however, the CRU term JSR is necessarily taken
explicitly to implement its probabilistic model.

The reaction-diffusion problem (1.1) is very smooth as such, hence when using
an implicit time stepping, we expect to be able to take fairly large time steps most
of the time. However, the JSR term in (2.1) also includes the Sx̂ functions at all
CRUs that may switch between 0 and 1 or vice versa at the spark times. At these
times, a small time step will be necessary to enable the non-linear and linear solvers to
converge and also to control the ODE error reasonably. Therefore, to reach the very
large final times desired, we must adopt some variable time stepping strategy with
automatic error control. It is understood that the theory behind any error control will
probably not be rigorously valid at the spark times due to the discontinuities in the
source terms. One approach would be to simply set ∆t to a small value manually at
these times. We are not using any special strategy at the moment, because the error
control appears to overcome the spark times successfully without it. We must now
expect that the computer code to be developed will be quite complex. With this the
case anyway, we decided to also implement a variable-order scheme with automatic
selection of the ODE method order. Concretely, we use the numerical differentiation
formulas (NDFk) with method order 1 ≤ k ≤ 5 from [14], which are generalizations
of the well-known BDFk methods, that are the basis of MATLAB’s ode15s function
(www.mathworks.com).

We use relative and absolute tolerances of 10−6 and 10−8, respectively, on the
relative and absolute error estimators of the ODE method. In the application studies
in section 4.4, the steps vary widely in size, with small steps on the order of 10−4

immediately after CRUs open or close; the time steps increase steadily afterwards up
to 10−1, when the next spark time is usually reached. This high variation in step
size allows the solver to reach the desired final time of 1000 ms in under 60,000 time
steps. The most interesting observation regarding the ODE solver is that the average
method order is about 3, with typical orders ranging from 2 to 4. This shows that
we are definitely profiting significantly from the variable order method, as compared
to using fixed order methods such as implicit Euler or the trapezoidal rule in time.
This is the case in [8], where the trapezoidal rule with a fixed step size of 0.01 takes
10,000 steps to reach the final time of 100 ms.

3.3. The non-linear solver. One price of the fully implicit time discretization
is that we have to solve the fully coupled non-linear system of nsN equations that
arises from discretizing (3.2) in time. We choose the Newton method and follow the
control structure for managing error control and convergence in MATLAB’s ode15s
function. It is here that we profit from the strategy of using a relatively simple spatial
discretization on a uniform mesh, because we are able to compute analytically all
matrices in (3.2) [5]. We use this here to supply an analytic Jacobian to the Newton
method. Since the matrix-vector products in the linear solver are implemented in
matrix-free form, this Jacobian is automatically evaluated at the current step without
any additional cost.

A classical problem encountered when solving reaction-diffusion equations numer-
ically is the problem maintaining the non-negativity of the numerically computed con-
centrations. Clearly, they should be non-negative physically. Also, it can be rigorously
established that the unique true solution to the problem (1.1) along with its bound-
ary and initial conditions is non-negative [6]. In combination with a suitable spatial
discretization, such as ours, it can be shown that an implicit Euler time discretization
admits a non-negative solution [6]. Notice however that it is well-understood that

Long-Time Simulations on High Resolution Meshes 9

despite this fact, the Newton method does not necessarily find this non-negative so-
lution, even when started with the non-negative solution at the previous time step as
initial guess [6, 13].

Techniques such as clipping, in which negative solution components are set to
0, clearly degrade mass conservation properties, because these corrections add mass
whenever they increase a component from a negative value to zero. Recently, MAT-
LAB has introduced a non-negativity preserving feature in its ode15s function, dis-
cussed in [15]. Its idea is to modify the right-hand side function of the ODE problem
(3.2) such that it returns 0 instead of any negative slope; the intention is to have the
solution “follow the constraint” [15]. Both these techniques are applied on the level of
the ODE solver, though. This means that the Newton steps themselves can still have
negative components. This can be a problem, for instance, if the right-hand side func-
tion of the ODE involves square roots or other expressions that become invalid even
for small negative values. Therefore, we have developed a line-search strategy for the
Newton step. If a negative solution component is encountered in a full Newton step, it
determines the smaller step size necessary to ensure non-negativity of all components
[4]. This strategy is also applied to the computation of the initial guess, which thus
can still be based on the predictor formula usually used in the NDFk methods [14],
as opposed to having to use the solution at the previous time step. Analogously to
MATLAB’s strategy, our approach is free of cost if all components are non-negative
and only of modest cost otherwise. We note that we have run studies with and with-
out non-negativity preservation and found that it is not crucial for this application
problem, as none of the coefficient functions becomes invalid and the solution in fact
recovers on its own from negative components. We use a relatively tight tolerance of
10−8 in the Newton solver, but it still converges typically within 2 steps on average
due to the tight ODE tolerance and the good initial guess thus available. This agrees
with the observations in [8], where also 1 to 2 Newton steps are reported; it is not
clear what type of Jacobian this method used.

3.4. The linear solver. At each Newton step, we need to solve a linear system
of equations, also of size neq = nsN . Here, we profit again from the fact that we are
able to compute analytically all matrices in (3.2), because this enables a matrix-free
implementation of products of vectors with any of these matrices, which is all that is
needed for each iteration of the Krylov subspace methods. Based on a decision tree
in [1, p. 321] (non-symmetric system matrix, with matrix transpose available) and
backed up by tests of various Krylov subspace methods in MATLAB, we choose the
quasi minimum residual (QMR) method for our non-symmetric problem. We usually
use a tolerance of 10−3 on the relative residual and a stagnation tolerance of 10−14

for the linear solver.
We do not use any pre-conditioning at this point, because a matrix-free pre-

conditioner that avoids parallel communications was not readily apparent. This is
probably not a significant problem, since the tests show that the linear solver tends to
converge within fewer than 4 iterations on average due to the tight ODE and Newton
tolerances enforced. This compares reasonably to the results reported in [8], where a
GMRES method, with an approximate incomplete LU preconditioner on each parallel
subdomain, took fewer than 10 iterations.

3.5. Parallel implementation. Parallel computing is a crucial ingredient to
our code for two reasons: (i) It enables the simulations on the fine meshes listed in
Table 3.1 and (ii) it speeds up the computations sufficiently to enable simulations up to
large final times within a manageable amount of wall clock time. The code is written

10 Matthias K. Gobbert

in C with MPI commands for the parallel communications for maximum portability.
We split the domain Ω into non-overlapping subdomains, with one on each of the
P parallel processes, by cutting in the long dimension of Ω. This choice makes the
x-y-planes of nodes whose values need to be exchanged between neighboring processes
as small as possible, i.e., is the optimal decomposition in a graph partitioning sense.
Our code is capable of using any number of parallel processors. The communications
between neighbors occur in each matrix-vector product and are implemented by non-
blocking MPI_Isend/MPI_Irecv commands. These have proven to be faster than
blocking communication commands on our system, but not faster than other MPI
point-to-point communication commands available. MPI_Allreduce commands are
needed for all norm computations as well as for various diagnostic quantities such as
minimum and maximum values of the solutions. The wall clock times are measured
using MPI_Barrier and MPI_Wtime in sequence.

One interesting issue is the implementation of the random number generator.
We use the genrand() function that generates a sequence of uniformly distributed
pseudo-random numbers [10]. We use this function on Process 0 only to avoid any
dependence of the simulation result on the number of parallel processes used. Then,
MPI_Bcast, MPI_Scatterv, and MPI_Gatherv commands are involved in setting up
the vector Σ in (3.2).

The simulations reported below were performed on the Beowulf cluster kali in the
Department of Mathematics and Statistics at the University of Maryland, Baltimore
County. This distributed-memory cluster has 32 compute nodes with two 2.0 GHz
Intel Xeon CPUs and 1 GB of memory. One of the compute nodes also serves as
storage node and is connected to a 0.5 TB RAID array. The compute nodes are
connected by a Myrinet interconnect as well as by a fast ethernet for file serving. An
additional management and user node connects the cluster to the outside network.
The cluster runs the Linux RedHat EL3 operating system, and the Intel compiler suite
is used for this code. See www.math.umbc.edu/~gobbert/kali for more information.
For the application studies, we typically use approximately 16 dual-processor nodes.
For the simulations up to tfin = 1000 ms in section 4.4, the code ran about 4 hours for
the 32×32×128 mesh and about 40 hours for the 64×64×256 mesh. These times are
comparable to the times in the range of 12 to 36 hours reported in [8] for simulations
up to the 100 ms, using from 4 to 16 dual-processor nodes, whose processor speeds
range from 1 to 3 GHz.

4. Results. The numerical results are presented in four sections. The results in
section 4.1 analyze first what size of problem the parallel code will be able to solve and
that it does so efficiently. This is used in the following sections 4.2 and 4.3 because to
compute the reference solution on the finest mesh requires the parallel code. These
sections summarize results from convergence studies to confirm that the numerical
method is reliable, for a linear test problem with a smooth source term in section 4.2
and with a single non-smooth Dirac delta function in section 4.3. Finally, section 4.4
presents two representative long time simulations of the full application problem up
to the large final time tfin = 1000 that show that our method allows for the thorough
investigation of the given model.

4.1. Parallel Performance Results. The first purpose of parallel computing
is to enable the solution of larger problems. To demonstrate this ability, Table 4.1 (a)
estimates the amount of memory in MB required to solve the application problem
with ns = 3 species on the meshes listed in Table 3.1 that lists the degrees of freedom
neq for each mesh. Table 4.1 (a) is based on a count of the variables with major

Long-Time Simulations on High Resolution Meshes 11

Table 4.1
Memory usage in MB per process for the application problem with ns = 3 species. The storage

requirements are 8 auxiliary vectors for the QMR method and 13 additional vectors for the ODE
solver, each of length neq.

(a) Predicted memory usage in MB per process
P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64

16× 16× 64 9 5 2 1 1 < 1 < 1
32× 32× 128 68 34 17 8 4 2 1
64× 64× 256 522 261 130 65 33 16 8

128× 128× 512 4103 2052 1026 513 256 128 64
256× 256× 1024 32540 16270 8135 4068 2034 1017 508

(b) Observed memory usage using dedicated nodes
P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64

16× 16× 64 11 27 25 23 23 22 N/A
32× 32× 128 71 57 40 31 27 25 N/A
64× 64× 256 523 283 153 91 57 41 N/A

128× 128× 512 N/A N/A N/A 541 285 157 N/A
(c) Observed memory usage using non-dedicated nodes

P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64
16× 16× 64 11 8 27 25 25 24 N/A

32× 32× 128 71 39 42 33 29 27 26
64× 64× 256 523 267 155 93 60 43 35

128× 128× 512 N/A N/A N/A N/A 287 159 98

memory usage in the code. This count reveals that the QMR method uses 8 auxiliary
vectors and that (our implementation of) the ODE solver requires 8 + K additional
vectors, re-using as many of the QMR auxiliary vectors as possible. Here, 1 ≤ K ≤ 5
denotes a chosen maximum method order for the NDFk, 1 ≤ k ≤ K, method, which is
commonly K = 5; we use this value, as well, but it has turned out that the application
problem only uses orders up to 4, so we could save a little memory here by selecting
K smaller. Each vector has length neq = nsN specified in Table 3.1. With 8 B per
double-precision number, we obtain the total amount of memory needed for each mesh
resolution in the P = 1 processor column of Table 4.1 (a). We note that resolutions
finer than 64 × 64 × 256 cannot be accommodated on a single node. This memory
gets divided into the P processors as shown in the following columns.

Tables 4.1 (b) and (c) list the memory in MB per process actually used by the
code for each case, as observed by monitoring the output of the Linux utility top
during the program execution. Table 4.1 (b) considers the case of ‘dedicated’ nodes,
that is, only one CPU per node is used with the second one idling. This dedicates the
full memory of each node available for the simulation and avoids any contention for
resources of the node among the 2 CPUs, but is also wasteful in the sense that half
of the CPUs reserved by the scheduler for the job are idling. Table 4.1 (c) shows the
memory usage observed in the case of ‘non-dedicated’ nodes, that is, with both CPUs
on each node being used. Thus, the two CPUs do not have dedicated memory, but
rather share the memory of the node and might also suffer from resource contention,
e.g., for the use of the single Myrinet port on the node, of the memory or cache, and
of the bus that connects both CPUs to all components of the node. The results in
Tables 4.1 (b) and (c) are in agreement with the predictions in Table 4.1 (a), with a
modest amount of baseline usage associated probably with the use of MPI functions;

12 Matthias K. Gobbert

(a) Speedup (b) Efficiency

(c) Speedup (d) Efficiency

Fig. 4.1. (a) Observed speedup and (b) observed efficiency up to 32 processors using dedicated
nodes (only one CPU per node used). (c) Observed speedup and (d) observed efficiency up to
64 processors using non-dedicated nodes (both CPUs per node used). Notice the different scales on
the axes.

notice the much smaller overhead for the P = 1 cases. These considerations indicate
problems of which size we will be able to attack and it gives confidence in the proper
understanding of the code’s memory usage.

The second purpose of parallel computing is to solve a problem of a given size
faster. Ideally, a run using P processors should be P times as fast as the 1-processor
run. To quantify this, we first need to time the code. In the context of a true parallel
code that inherently includes the need for the processors to communicate with each
other, the correct measure of time is wall clock time TP when using P processors,
because it includes both the calculation time associated with arithmetic and similar
operations that are local to a CPU and the communication time associated with
the sending and receiving of messages between the parallel processes. The speedup
defined as SP := T1/TP quantifies how much faster the P -processor run is over the
1-processor one; for the 256×256×1024 mesh, the definition of speedup is modified to
SP := 8T8/TP , since the 8-processor case is the first one to fit in memory. The optimal
value of SP is P . Thus, by plotting SP vs. P , one can get a visual impression how
fast the actual performance deteriorates from the ideal one. Figure 4.1 (a) shows the
speedup observed for simulations with up to 32 dedicated nodes, as described above.
We see that the scalability of the code is excellent and gets better as the size of the
problem increases. For the finest mesh, the results plotted are better than optimal by

Long-Time Simulations on High Resolution Meshes 13

a small margin. We believe that this reflects the slight variability of timing results.
Another way to quantify how close the speedup SP is to its optimal value P is to plot
efficiency EP = SP /P vs. P , as shown in Figure 4.1 (b). Even though the data is
essentially the same as in the previous plot, efficiency plots are very useful to bring
out whether there is any abrupt deterioration of the parallel performance for small
values of P , where a speedup plot is too cluttered to see. In this case, there is no
noticeable deterioration in that area; rather, the efficiency decreases slowly, but is at
very respectable levels of over 80% throughout for all meshes but the coarsest one.

Figures 4.1 (c) and (d) contain the speedup and efficiency plots for the studies with
non-dedicated nodes associated with Table 4.1 (c). The speedup is nearly as good up
to 32 processors as for the dedicated nodes; notice the scale on the axes here. However,
the efficiency plot clearly brings out an abrupt deterioration of performance, as we
go from 1 processor to 2 processors; this is the value of the efficiency plot, because
this effect is not readily visible in the speedup plot. This effect is caused by the code
running on both CPUs on one node competing for the node’s resources, in particular
the single bus connecting both CPUs to memory. We have been able to reproduce
this effect by running two completely independent serial jobs running on one node,
so we conclude that the problem is not associated with the Myrinet interconnect.
This effect is quite typical on commodity clusters because the two CPUs on one node
indeed share all other components on the node with each other. One might think
now that therefore it would be best to use always only one CPU per node, and this
is true when comparing runs using the same total number of CPUs. But in practice,
a user can reserve nodes from the scheduler, and then a run using both CPUs per
node will use twice as many CPUs and be faster than one that only uses one CPU
per node, though not necessarily twice as fast. Hence, unless the memory of a node
cannot accommodate a run with using both CPUs, one should use both CPUs when
available. The parallel runs in the following sections use this approach.

4.2. Scalar test problem with smooth source term. We first consider
briefly the scalar linear test problem ut − ∇ · (∇u) = 0, already used to test an
earlier version of this code [2], obtained from (1.1) by setting ns = 1 to get a
scalar problem and then D = 1, a = 0, f ≡ 0, and all application-related func-
tions to 0. We consider this problem on the same domain as the application problem
Ω = (−X, X)×(−Y, Y)×(−Z,Z) with X = Y = 6.4 and Z = 32.0. This test problem
also continues to use the no flow boundary conditions of the application problem. The
initial condition is specified in agreement with the chosen true solution

u(x, y, z, t) =
1 + cos(λxx) e−Dxλ2

xt

2
1 + cos(λyy) e−Dyλ2

yt

2
1 + cos(λzz) e−Dzλ2

zt

2

using the notation λx = x/X, λy = y/Y , λz = z/Z and the notation x = (x, y, z) ∈ Ω.

The finite element solution for this problem using linear basis functions satisfies
(3.3) with q = 2 at every point in time t. Therefore, we expect the L2-error of the
numerical solution against the true solution to decrease by a factor 4, whenever the
mesh spacings ∆x, ∆y, ∆z are halved. This is born out by the results in Table 4.2 (a)
at three representative times t = 2, 3, 4. Notice that this confirms that the ODE
tolerances are chosen small enough for the spatial error to dominate. To formally
estimate the convergence order q in (3.3) from numerically observed errors, one can

14 Matthias K. Gobbert

Table 4.2
Convergence study for scalar test problem with smooth source term.

(a) Error on Ω against true solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 4.0121e-02 5.6277e-02 7.0185e-02
32× 32× 128 1.0100e-02 (1.990) 1.4148e-02 (1.992) 1.7650e-02 (1.992)
64× 64× 256 2.5074e-03 (2.010) 3.5055e-03 (2.013) 4.3869e-03 (2.008)

128× 128× 512 6.0012e-04 (2.063) 8.3361e-04 (2.072) 1.0591e-03 (2.050)
(b) Error on Ω against reference solution (estimated convergence order)

t = 2 t = 3 t = 4
16× 16× 64 3.9999e-02 5.6112e-02 6.9959e-02

32× 32× 128 9.9770e-03 (2.0033) 1.3984e-02 (2.0046) 1.7424e-02 (2.0054)
64× 64× 256 2.3849e-03 (2.0647) 3.3408e-03 (2.0655) 4.1608e-03 (2.0661)

128× 128× 512 4.7750e-04 (2.3204) 6.6881e-04 (2.3205) 8.3285e-04 (2.3207)

use the estimation formula

(4.1) q(est) = log2

(
‖u2h(·, t)− u(·, t)‖

L2(Ω)

‖uh(·, t)− u(·, t)‖
L2(Ω)

)
.

The results of this formula are listed in the parentheses in Table 4.2 (a), and we note
them to be consistent with q = 2.

The above procedure uses the true solution u(x, t), which is not available in
practice. An alternative in that case is to use the numerical solution on the finest
possible mesh as reference solution in place of u(x, t). We use here the numerical
solution on the mesh 256 × 256 × 1024. The results of the observed errors and the
convergence order estimates in Table 4.2 (b) show agreement with the results based
on the true solution above. The purpose of these tests was validate the choice of
ODE tolerances, to carefully test the code, and to confirm that the post-processing
procedure to estimate the convergence order q(est) only using available numerical data
is reliable.

4.3. Scalar test problem with non-smooth source term. As in the previous
section, we solve the scalar test problem obtained from (1.1) by setting the application
functions to 0 and choosing ns = 1, D = 1, a = 0, but now with f(x, t) as one Dirac
delta function centered at x = 0 that opens at t = 1 and stays open for the duration
of the simulation. We again use the domain of the application problem in this test.
In the terminology of the application, we have 1 centered CRU in the cell that starts
firing at t = 1. For this case, the classical theory does not apply, but considerations
and computational results in [5] lead us to expect q = 0.5 in (3.3). Since no true
solution is available for this problem on a finite domain, the errors in Table 4.3 (a)
against a reference solution on the finest mesh 256× 256× 1024 are computed by the
post-processing procedure tested in the previous section. They do converge, but it is
hard to tell by what ratio the errors decrease. But the q(est) in the parentheses show
that the errors decrease with a convergence order that is consistent with the expected
number q = 0.5.

Another way to check convergence is possible by combining the results of Ta-
bles 4.3 (b) and (c). Table 4.3 (b) considers the L2-norm on the domain Ω with a
small area centered about the Dirac delta function’s center removed. Specifically, let

Long-Time Simulations on High Resolution Meshes 15

Table 4.3
Convergence study for scalar test problem with non-smooth source term.

(a) Error on Ω against reference solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 1.8651e+03 1.8503e+03 1.8415e+03
32× 32× 128 1.7120e+03 (0.124) 1.6974e+03 (0.124) 1.6951e+03 (0.120)
64× 64× 256 1.4537e+03 (0.236) 1.4531e+03 (0.224) 1.4529e+03 (0.222)

128× 128× 512 9.6843e+02 (0.586) 9.6832e+02 (0.586) 9.6829e+02 (0.585)
(b) Error on Ω\Ω0 against reference solution (estimated convergence order)

t = 2 t = 3 t = 4
16× 16× 64 2.6478e-01 9.8039e-01 2.2494e+00

32× 32× 128 1.2526e-01 (1.080) 3.7741e-01 (1.377) 6.6924e-01 (1.749)
64× 64× 256 3.7324e-02 (1.747) 1.1385e-01 (1.729) 1.8863e-01 (1.827)

128× 128× 512 8.0971e-03 (2.205) 2.3743e-02 (2.262) 3.8368e-02 (2.298)
(c) Error in species mass (estimated convergence order)

t = 2 t = 3 t = 4
16× 16× 64 1.4332e+00 3.6992e+00 4.4979e+00

32× 32× 128 1.2033e+00 (0.252) 1.2032e+00 (1.620) 1.2032e+00 (1.902)
64× 64× 256 3.1122e-01 (1.951) 3.1111e-01 (1.951) 3.1110e-01 (1.951)

128× 128× 512 7.8784e-02 (1.982) 7.8737e-02 (1.982) 7.8707e-02 (1.983)

Ω0 := (−εx, εx)×(−εy, εy)×(−εz, εz) with εx, εy, εz chosen as the mesh spacings ∆x,
∆y, ∆z of the coarsest mesh 16× 16× 64, then we consider the L2(Ω\Ω0)-norm. The
errors in this norm listed in Table 4.3 (b) clearly converge quadratically again. Since
we have removed Ω0 from consideration, the question remains whether the solution at
the center of the domain, where the single CRU is located can be trusted. We answer
this question by considering the total mass in the system mh(t) :=

∫
Ω

uh(x, t) dx at
time t; we indicate by the subscript h that mh(t) is the mass associated with the
numerical solution uh on mesh Ωh. For this scalar problem with no flow boundary
conditions and the delta function as the only source, we know that this mass should
equal the mass at the initial time m(0) =

∫
Ω

uini(x) dx plus the mass released into the
cell up to time t given by

∫ t

0
σ nopen(t′) dt′, where nopen(t′) denotes the number of open

CRUs at time t′. Since the sole CRU in this system opens at t = 1, the latter integral
is equal to (t− 1)σ for t ≥ 1. Table 4.3 (c) lists the errors |mh(t)−m(0)− (t− 1)σ|
for t = 2, 3, 4, and we observe quadratic convergence for this quantity; note that the
apparently large values for the mass error must be viewed in the context of the large
size of the domain which is (12.8)(12.8)(64.0) = 10485.76. Thus, we conclude from
Table 4.3 (c) that mass is conserved in the system, which shows together with the
convergence on Ω\Ω0 in Table 4.3 (b) that also the error at x = 0 is converging.

4.4. Case studies for the full application problem. In this section, we
present two case studies for the full application problem described in section 2. Recall
from section 2.1 that the calcium current through a CRU, ISR, determines the amount
of calcium released into the cell through an open CRU and thus influences whether
a calcium wave self-organizes or not [8]. We consider here the values ISR = 10 pA
and ISR = 20 pA resulting in the corresponding values of σ in Table 2.1. The initial
concentration of calcium is chosen at rest, u(0) = 0.1 µM, throughout the cell and
the other species concentrations computed such that r(i) = 0 for all i. Also, we have
Jleak = Jpump for u(0) = 0.1 µM. Initially, all CRUs are closed, hence, JSR = 0. The

16 Matthias K. Gobbert

numerical parameters used for the studies are specified and discussed in section 3.

Since no CRUs are triggered artificially, the first test for the model is whether any
CRUs will open randomly and whether the diffusion of the calcium released causes
any neighboring CRUs to open. Figures 4.2 and 4.3 show results for the case study
with ISR = 10 pA. Figure 4.2 shows the plots indicating any CRU open in the domain
at ten selected times from 100 ms to 1000 ms; each dot indicates that the CRU at the
spatial point is open and does not represent the value of any quantity. We observe
that a number of CRUs open randomly over time, thus the probability mechanism
of the model works. However, no systematic opening of CRUs develops. Figure 4.3
shows isosurface plots of the calcium concentration u(0) throughout the cell with an
isolevel of 65 µM indicated by each surface. It is clear that the concentration around
open CRUs does increase. It then diffuses and thus the concentration in the area falls
below the isolevel chosen again. We notice that the level of calcium concentration
does not rise high enough anywhere to cause more CRUs in the area to open.

Figures 4.4 and 4.5 show results for the case study with ISR = 20 pA. We see in
Figure 4.4 that at time t = 100 ms a number of CRUs are open without any discernible
pattern. But by t = 200 ms, two waves of CRUs opening have self-organized in this
case. At some time between 100 and 200 ms, the concentration near the left end
of the domain as well as just to the right of center at the top has reached higher
levels that caused several neighboring CRUs to open at the same time. In turn, more
neighboring CRUs of those opened and by t = 200 ms we have one wave traveling left
to right with its front at about z = −12 and a second wave expanding from a center at
about (x, y, z) = (5, 5, 5). The formation of the waves is clearly visible in the movies
available at the website mentioned in the Introduction. After the CRUs, where the two
waves started, have been closed for a time period of tclosed = 100 ms, they open again
and re-start a wave similar to each first one. This process is repeated several times
throughout the simulation. The reason why several of the snapshots look remarkably
similar is that the time between them of 100 ms approximates the period of time
between wave initiations of topen + tclosed = 105 ms. These results demonstrate that
the model at this higher value of current ISR = 20 pA promotes the self-organization
of waves, as intended by the model. Notice that it took some time of between 100 and
200 ms for the first wave to form, which demonstrates the importance of being able to
perform long-time simulations for this application problem. Even more so, the effect
of waves traveling through the cell several times could only be seen by simulating to
a large final time such as 1000 ms.

Figure 4.5 shows isosurface plots of the calcium concentration u(0) throughout
the cell with an isolevel of 65 µM. We see at t = 100 ms that the concentration has
crossed this isolevel only around a few CRUs that happen to be open. By t = 200 ms
however, in the wake of both waves, we see significantly increased levels of calcium,
which by t = 400 ms have reached levels above the isolevel throughout the domain.
Clearly, the model exhibits the feedback mechanism of open CRUs releasing calcium
and the diffused calcium in turn promoting the initiation of a new wave after the time
period of closure tclosed has passed. In fact, we note from our log files that about 300
CRUs are open at any given moment in time for all times t ≥ 200 ms. Plots of the
maximum each of the species concentration vs. time (not shown) demonstrate that the
calcium concentration grows without bound and the other free species are practically
completely consumed. It would appear that this behavior is not physical, because the
calcium concentration is not be permitted to grow without bound in a cell. This points
to some effect being missing or coefficient values being not appropriate. Notice here

Long-Time Simulations on High Resolution Meshes 17

that this fact is simply not apparent until simulations to times significantly larger
than tclosed = 100 ms are performed, because we have to wait for waves to travel
through the cell several times to see this effect.

5. Conclusions. We consider a model for calcium waves in an atrial heart cell
proposed in [7, 8, 9]. To validate this model and recreate the conditions of an ex-
periment, it is desirable to be able to perform simulations up to large final times, to
allow for waves to re-generate several times, and on a domain that encompasses the
entire cell. This requires a high resolution mesh to adequately discretize the given
lattice of calcium release units throughout the cell. Section 3 presents all choices for
the development of a special-purpose simulation code for this model from the ground
up. The key to our ability to perform the desired long-time simulations on a high-
resolution mesh are the use of a variable-order, variable step size ODE solver and the
matrix-free implementation of all linear solves.

The code is applied to the application problem in section 4.4. The results show
that the model successfully allows for the self-organization of a wave at a random
location in the cell, without any artificial triggering of calcium release. To see this
result, it was already necessary to simulate up to final times over 100 ms. But to
see waves re-generate and travel through the cell several times, we need to be able to
reach final times of at least 1000 ms. This is possible for our special-purpose code,
and the results indicate that the model, in the form stated in [7, 8, 9] and with the
model parameters available from these references, may eventually accumulate more
calcium in the cell than is physically reasonable. This observation can only be made
because our code can compute to sufficiently large final times.

We note that our application studies follow careful convergence studies in sec-
tions 4.2 and 4.3 for a scalar linear test problem with smooth and non-smooth source
term, respectively, designed to evaluate the accuracy and reliability of our method
and its implementation as thoroughly as possible. The results also demonstrate that
the method converges on our uniform mesh without refinement around the locations
of the calcium release units. Notice that a convergence study for the full application
problem including the probabilistic term is problematic, because its behavior is influ-
enced by the random number generator and also by the calcium concentration, which
is not exactly the same at different resolutions. Finally, section 4.1 demonstrated the
effectiveness of using parallel computing to solve this large problem and the scalability
of our implementation.

In section 3, we also include a number of comparisons to the simulator used in [8].
One apparent difference is the use of our uniform mesh to their unstructured mesh.
They use this to refine the mesh around the locations of the calcium release units. But
according to our convergence studies, this is not necessary. So, the difference between
[8] and this work is actually the use of a general-purpose code vs. the development
of a special-purpose one. This distinction is independent of the mesh used, because,
as long as the mesh is regular in some way and fixed in time, we can still compute
all matrices analytically and implement all linear solves in matrix-free form, which is
one key to the efficiency of our code. But we believe this is not the direction of most
promise to pursue, because this still does not take full advantage of the knowledge
about the application: A fine mesh around the location of a calcium release unit is
needed only if that release unit is open; not when it is closed, as is the case far most of
the time (compare topen = 5 ms with tclosed100 ms). So, the most significant advance in
efficiency could be achieved by an automatic mesh refinement and coarsening strategy
that uses a finer mesh only around those release units that are open.

18 Matthias K. Gobbert

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1000

Fig. 4.2. Open calcium release units throughout cell with ISR = 10 pA.

Long-Time Simulations on High Resolution Meshes 19

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1000

Fig. 4.3. Isosurface plot of calcium concentration in cell with ISR = 10 pA.

20 Matthias K. Gobbert

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1000

Fig. 4.4. Open calcium release units throughout cell with ISR = 20 pA.

Long-Time Simulations on High Resolution Meshes 21

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1000

Fig. 4.5. Isosurface plot of calcium concentration in cell with ISR = 20 pA.

22 Matthias K. Gobbert

REFERENCES

[1] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[2] M. K. Gobbert, Configuration and performance of a Beowulf cluster for large-scale scientific

simulations, Comput. Sci. Eng., 7 (2005), pp. 14–26.
[3] M. K. Gobbert, M. Kruž́ık, and T. I. Seidman, Numerical approximation of a heat equation

with measure-valued data. In preparation.
[4] M. K. Gobbert, T. I. Seidman, and R. J. Spiteri, A non-negativity preserving Newton

method for high-order implicit time stepping. In preparation.
[5] A. L. Hanhart, M. K. Gobbert, and L. T. Izu, A memory-efficient finite element method for

systems of reaction-diffusion equations with non-smooth forcing, J. Comput. Appl. Math.,
169 (2004), pp. 431–458.

[6] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, vol. 33 of Springer Series in Computational Mathematics,
Springer-Verlag, 2003.

[7] L. T. Izu, J. R. H. Mauban, C. W. Balke, and W. G. Wier, Large currents generate cardiac
Ca2+ sparks, Biophysical Journal, 80 (2001), pp. 88–102.

[8] L. T. Izu, S. A. Means, J. N. Shadid, Y. Chen-Izu, and C. W. Balke, Interplay of ryanodine
receptor distribution and calcium dynamics, Biophysical Journal, 91 (2006), pp. 95–112.

[9] L. T. Izu, W. G. Wier, and C. W. Balke, Evolution of cardiac calcium waves from stochastic
calcium sparks, Biophysical Journal, 80 (2001), pp. 103–120.

[10] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer
Simulation, 8 (1998), pp. 3–30.

[11] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, 1994.

[12] D. L. Ropp, J. N. Shadid, and C. C. Ober, Studies of the accuracy of time integration
methods for reaction-diffusion equations, J. Comput. Phys., 194 (2004), pp. 544–574.

[13] A. Sandu, Positive numerical integration methods for chemical kinetic systems, J. Comput.
Phys., 170 (2001), pp. 589–602.

[14] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18
(1997), pp. 1–22.

[15] L. F. Shampine, S. Thompson, J. A. Kierzenka, and G. D. Byrne, Non-negative solutions
of ODEs, Appl. Math. Comput., 170 (2005), pp. 556–569.

[16] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer
Series in Computational Mathematics, Springer-Verlag, second ed., 2006.

