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Several important manufacturing processes for integrated circuits (ICs) involve
the flow of gaseous reactants over the wafer(s) on which the ICs are being
made. W discuss a model in which reactive components of the gas phase do
not collide; either because there is a dominant carrier species, or the pressure is
low enough. The kinetic transport and reaction model consists of a system of
transient linear Boltzmann equations for the reactive species in the flow. This
model applies to a wide range of transport regimes, characterized by a wide
range of Knudsen numbers as a function of pressure and length scale of inter-
est. A numerical simulator based on a spectral Galerkin method in velocity
space approximates each linear Boltzmann equation by a system of transient
conservation laws in space and time with diagonal coefficient matrices, which
are solved using the discontinuous Galerkin method. This deterministic solver
gives direct access to the kinetic density that is the solution to the Boltzmann
equation, as a function of position, velocity, and time. The availability of the
kinetic density as a function of velocity is useful to analyze the underlying
kinetic causes of macroscopic observeables. Using chemical vapor deposition
as an important application example, the influence of process parameters is
studied in transient two-dimensional and three-dimensional features that rep-
resent structures seen during integrated circuit fabrication for a wide range of
Knudsen numbers. The results highlight the capabilities of the KTRM and its
implementation, and indicate that kinetic solvers may be needed for models
on intermediate length scales characterized by Knudsen numbers on the order
of unity.

1 INTRODUCTION

Multiscale modeling of chemical vapor deposition (CVD) and other microelectronics manu-
facturing processes is particularly challenging when different types of models are appropriate
on different length scales [1]. The dimensionless group that characterizes the applicability
of the different models is the Knudsen number Kn; it is the ratio of the mean free path to a
characteristic length scale of the domain of interest. For Kn� 1, typical of the reactor scale,
continuum transport and reaction models are used [2, 3]. For Kn� 1, typical of the feature
scale, free molecular or ballistic transport and reaction models are used [4]. Approaches to
models in the intermediate regime with Kn ≈ 1 need to take collisions into account and re-
sult in integral equations or integro-differential equations such as the Boltzmann Transport
Equation (BTE) [1, 5, 6] The numerical techniques appropriate for use with continuum and
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kinetic models are different. In turn, the codes that solve each type of model need to be
interfaced for a fully integrated model of the process.

Early approaches to combining reactor scale and feature scale models used a top-down
approach that fed information from the decimeter to the micrometer scale [7, 8]. A fully
integrated multiscale model provides concurrent solution of models for all relevant scales and
provides information flow both upscale and downscale. To develop an integrated, determin-
istic, multiscale CVD model, we introduced a mesoscopic scale model; i.e., i.e., a model on
the millimeter length scale. This type of model covers the length scale of several feature
clusters, each perhaps containing thousands of features. It is useful in studying cluster-to-
cluster effects [9], and it provides an interface between models and simulators on the reactor
and feature scales. In this spirit, we presented the first fully integrated three-scale CVD
simulator in [10, 11]. In this three-scale approach, continuum models were used for both
the reactor scale and the mesoscopic scale and were solved using FIDAP [12]. The Ballistic
Transport and Reaction Model (BTRM) was used for the feature scale, and was solved using
EVOLVE [13].

Our desire to study transients and to extend transport and reaction modeling into the
transition transport regime, where Kn ≈ 1, motivated the development of an explicitly
kinetic or BTE based approach. We introduced the Kinetic Transport and Reaction Model
(KTRM) approach, with a focus on transients during atomic layer deposition (ALD) in
[14, 15, 16, 17]. That work treated Kn� 1, in which the collision terms of the BTE can be
neglected.

We provided a formal derivation of the multi-species KTRM valid for the full range of
Knudsen numbers in [18]. The goal of that work was to lay the rigorous foundation for using
the KTRM as part of a multiscale model. We studied CVD on the feature scale, for Kn
values from � 1 to ∞ by varying (formally) the pressure in the model in the context of a
relevant application. Equally important, the numerical simulator used to solve the KTRM
was tested for a range of Kn, from small to large, and its reliability was discussed in [19].
Note that in collisional systems, the KTRM is valid for cases in which there is a dominant
background species; e.g., a carrier gas [18].

Other work has focused on extending the simulator and its applicability specifically to
three-dimensional models with features of more realistic complexity that require a general
three-dimensional mesh without symmetries [20], such as a trench with a central via below
the trench shown in Figure 1 (a). We have also started to analyze the behavior of the KTRM
and its simulator on different time scales as a function of the Knudsen number [21]. This
work is continued in the present paper for a representative two-dimensional trench shown in
Figure 1 (b).

Section 2 provides a brief overview of the KTRM. Section 3 summarizes the numerical
method. Sections 4.1 and 4.2 present the simulation results for the domains in Figures 1 (a)
and (b), respectively. The results are discussed in Section 5.

2 THE MODEL

Gas flow in the desired regimes, particularly for both collisionless transport (Kn � 1) and
transport in the transition regime (Kn ≈ 1), is appropriately modeled by the Boltzmann
transport equation. For Kn � 1, traditional continuum approaches are more appropriate
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in practice because of their numerical efficiency. For a multi-species model, we have the
dimensional equations [5, 6, 18]

∂f (i)

∂t
+ v · ∇xf

(i) =
ns∑

j=0

Qij(f
(i), f (j)), (1)

where the left-hand side models the transport of species i and the right-hand side models all
collisions of species i with all other species j = 0, 1, . . . , ns through the collision operators
Qij(f

(i), f (j))(x,v, t).
The unknown functions f (i)(x,v, t) in this kinetic model represent the (scaled) probability

density, called the kinetic density in the following, that a molecule of species i = 0, 1, . . . , ns

at position x ∈ Ω ⊂ R3 has velocity v ∈ R3 at time t. We present the model equations here
and in the following section in three-dimensional notation for definiteness, but both models
in two and three dimensions are useful in practice and will be considered in Section 4. Its
values need to be determined at all points x in the three-dimensional spatial domain Ω and
for all three-dimensional velocity vectors v at all times 0 < t ≤ tfin. This high dimensionality
of the space of independent variables is responsible for the numerical complexity of kinetic
models, as six dimensions need to be discretized, at every time step for transient simulations.

The system of partial differential equations in (1) is coupled to boundary conditions at
the surface of the domain Ω ⊂ R3. At the top of the domain is the interface to the bulk
domain of the chemical reactor, and the flow is modeled as a Maxwellian distribution there.
The crucial boundary condition for applications in microelectronics manufacturing is along
the wafer surface at the bottom of the domain. We prescribe a re-emission of molecules from
the wafer with a velocity distribution of Maxwellian shape and proportional to the outflow
plus the generation rate of any molecules created in or re-emitted by surface reactions. This
condition allows for a general, non-linear reaction model at the surface, involving potentially
other surface species. Examples of a two-species model with two surface reactions were
developed for the reaction step of ALD in [15, 16, 17].

The dimensional model in in (1) involves a carrier species that is assumed to be dominant
and inert, denoted by i = 0. Generalizations of assumptions in [5] allow for the simplification
of the model to a system of linear Boltzmann equations. In dimensionless form, the KTRM
is then given by the system of partial differential equations [18]

∂f (i)

∂t
+ v · ∇xf

(i) =
1

Kn
Qi(f

(i)), i = 1, . . . , ns, (2)

with the linear collision operators

Qi(f
(i))(x,v, t) =

∫
R3

σi(v,v′)
[
M (i)(v)f (i)(x,v′, t)−M (i)(v′)f (i)(x,v, t)

]
dv′, (3)

where σi(v,v′) = σi(v
′,v) ≥ 0 is a given collision frequency model and M (i)(v) denotes

the Maxwellian distribution of species i. This model only involves the reactive species i =
1, . . . , ns. It is non-dimensionalized by scaling the transport on the left-hand side with
respect to the typical domain size L∗, while the collision operator on the right-hand side
is non-dimensionalized with respect to the mean free path of the mixture λ. Thus, the
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Knudsen number Kn = λ/L∗ arises formally as the dimensionless group in (2). The values
of Kn are affected by both the scale of interest of the model and by the mean free path
through the operating conditions of the chemical reactor. Notice that while the equations
in (2) appear decoupled, they actually remain coupled through the boundary condition at
the wafer surface that models the surface reactions and is of crucial importance for the
applications under consideration.

3 THE NUMERICAL METHOD

The numerical method for (2)–(3) needs to discretize the spatial domain Ω ⊂ R3 and the
(unbounded) velocity space R3. We start by approximating each f (i)(x,v, t) by an expansion

f
(i)
K (x,v, t) :=

∑K−1
`=0 f

(i)
` (x, t)ϕ`(v). Here, the basis functions ϕ`(v) in velocity space are

chosen such that they form an orthogonal family of functions in velocity space with respect
to a weighted L2-inner product.

Inserting the expansion for f (i)(x,v, t) and testing successively against ϕk(v) with respect
to the inner product approximates (2) by a system of linear hyperbolic equations [19]

∂F (i)

∂t
+ A(1)∂F (i)

∂x1

+ A(2)∂F (i)

∂x2

+ A(3)∂F (i)

∂x3

=
1

Kn
B(i) F (i), i = 1, . . . , ns, (4)

where F (i)(x, t) := (f
(i)
0 (x, t), ..., f

(i)
K−1(x, t))T is the vector of the K coefficient functions in

the expansion in velocity space. Here, A(1), A(2), A(3), and B(i) are constant K×K matrices.
Using collocation basis functions, the coefficient matrices A(1), A(2), A(3) become diagonal
matrices [19]. Note again that the equations for all species remain coupled through the
crucial reaction boundary condition at the wafer surface.

The hyperbolic system (4) is now posed in a standard form as a system of partial differ-
ential equations on the spatial domain Ω and in time t and amenable to solution by various
methods. Since typical domains in our applications such as shown in Figure 1 (a) are of
irregular shape, we use the discontinuous Galerkin method (DGM) [22], relying on a finite
element discretization of the domain Ω.

The implementation of the numerical method permits for switching between various
triangular and quadrilateral meshes in two and three dimensions and provides an effective
parallel implementation. The degrees of freedom (DOF) of the finite element method are

the values of the ns species’ coefficient functions f
(i)
` (x, t) in the Galerkin expansion at K

discrete velocities on the vertices of each of the Ne elements of the finite element mesh. In two
dimensions, we use a 8×8 velocity mesh in R2 and a spatial mesh of the trench in Figure 1 (b)
with Ne = 80 quadrilateral elements, thus the number of DOFs are (4)(64)(80) = 20,480 at
every time step. In three dimensions, we use a 4 × 4 × 4 velocity mesh in R3 and a spatial
mesh of the trench-via structure in Figure 1 (a) with Ne = 7,087 tetrahedral elements, hence
the number of DOFs are (4)(64)(7087) = 1,814,272 at every time step. Extensive validations
of the numerical method and convergence studies for a wide range of Knudsen numbers are
the focus of [19].

4 RESULTS

We consider a simple, linear (constant sticking factor) CVD chemistry with one reactant
species (ns = 1) to focus on transients. The following figures show simulation results for the
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domains shown in Figure 1. The reactant is supplied from the gas-phase interface at the top
of the domain and deposits at the wafer surface with a sticking factor of γ = 0.01 [3]. The
collision operator uses a relaxation time discretization by choosing σ(v,v′) ≡ 1/τ in (3) with
(dimensionless) relaxation time τ = 1.0 that characterizes the time to return to steady-state
under appropriate boundary conditions; here and in the following, we drop the species index
i = 1 in this single-species model. The temperature in this micron-scale domain is assumed
constant and uniform throughout the domain and is set at T = 500 K [18]. We focus on how
the flow behaves when starting from no reactive gas present modeled by initial condition
f ≡ 0 at t = 0 for the reactive species; the inert species is already present throughout the
domain [18].

4.1 Two-Dimensional Trench

Figures 2, 3, and 4 show simulation results for the two-dimensional trench of Figure 1 (b).
The trench is modeled as 0.25 µm wide with aspect ratio 3. The reactive species is fed at
the top of the domain at x2 = 0.25 µm.

Figure 2 shows the dimensionless concentration c(x, t) :=
∫

f(x,v, t) dv vs. x = (x1, x2).
The columns show the transient results at selected (re-dimensionalized) times for Kn = 0.01,
0.1, 1.0, and 100.0, as specified at the top of the figure. The vertical scale ranges from 0 to
1 in all plots. Starting from c = 0 at t = 0 (not shown), the concentration increases from
the source at the top of the domain, as seen in the first row of plots for t = 1 ns. From
there on, the concentration increases faster in the cases of larger Kn, because the flow tends
to be more directional. For Kn < 1, the collisions tend be more dominant and thus the
concentration profiles smoother, but it takes longer for significant numbers of molecules to
reach the feature bottom at x2 = −0.75 µm.

The key advantage of the KTRM is that we have direct access to the kinetic density
f(x,v, t) as a function of velocity v. This is demonstrated by Figure 3, whose plots show
f(x,v, t) vs. v = (v1, v2) ∈ R2 at the position x = (x1, x2) = (0.0625, 0.0) at the feature
mouth for the same times and Kn as Figure 2. Notice that the vertical scales are different in
some of the plots. The v1-v2-axes are slightly rotated so that the v2 is at the front of the plot
with negative values on the right; this means that velocity directions pointing downward
into the trench are in the right half of each plot. We see that the shape of f tends to a
Maxwellian for Kn = 0.01, but notice that its maximum has not yet reached the height of
the Maxwellian at steady-state. By contrast, the kinetic density for the larger values of Kn
has a larger maximum value much faster, but the shape remains noticably unsymmetric,
indicating that the flow direction remains downward.

Because the numerical values of the components of f vary widely in size, it is useful to
define the saturation f(x,v, t)/M(v). This is plotted vs. v ∈ R2 in Figure 4. The horizontal
v1-v2-axes are rotated as in Figure 3. The vertical scale ranges from 0 to 1 in all plots. We
can readily see the smoother shape of f for the smaller Kn. Particularly for Kn = 100.0, it is
visible that there are very few upward velocity components at t = 1 ns. These components
only arise later as molecules return from re-emission at the wafer surface.

4.2 Three-Dimensional Trench-Via Structure

Figures 5 and 6 show representative simulation results for the three-dimensional trench-via
structure of Figure 1 (a). The reactive species is fed at the top at x3 = 0.3 µm.
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Figure 5 shows slice plots of the concentration c(x, t) as a function of x = (x1, x2, x3) for
the example of the Knudsen number Kn = 1 in the transition regime. The shapes of the
slices indicate the shape of the domain Ω of Figure 1 (a). The values of c are indicated by
the gray scale. We can see that at t = 5 ns the mean wafer surface at x3 = 0.0 has already
been saturated, but not the bottom of the via at x3 = −0.6. By t = 10 ns, substantially
more molecules have reached the bottom of the via.

To analyze the directionality of the flow, one can consider the kinetic density f(x,v, t)
as a function of v = (v1, v2, v3) at selected points x = (x1, x2, x3). We select the two points
(0.5, 0.5, 0.0) and (0.5, 0.5,−0.3); both lie in the central axis of the via with x1 = x2 = 0.5;
the first point with x3 = 0.0 is at the height of the trench mouth, while the second one
with x3 = −0.3 is at the via mouth. As before, to show more clearly the effect also on the
components of f with smaller numerical values, we plot the saturation of the kinetic density
f/M . At the point x in the center of the domain, f is symmetric with respect to the v1 and
v2 components, hence we fix v1 = v2 = 0 here and consider f/M as a function of v3 only.
This leads to the plots in Figure 6. Starting from the initial condition f = 0, the saturation
increases over time in all components. At first, the increase is in the downward components
(in the left half of the plot), then also in the upward components (right half). Comparing
both plots, we see that the increase of f/M lags at the via mouth deeper inside the feature
than the trench mouth. More extensive studies of flow in this domain are shown in [21].

5 DISCUSSION AND CONCLUSIONS

The results demonstrate that lower Kn lead to longer transients, as seen by lower species
concentrations c deeper inside the features at each time. Access to the kinetic density
f(x,v, t) as a function of v allows us to analyze the dependence of f on velocity components.
For example, inside the features there are no reactant gas molecules traveling upwards during
the initial transient. The f values for upward velocities increase as a result of re-emission
of molecules that did not react on the wafer surface. This is particularly notable for larger
Kn values. For simulations with lower Kn, we see that f is smaller for all velocities for a
given time. It is this latter effect that leads to the longer transients. We can also observe
that the shape of f approaches that of a Maxwellian faster for low Kn and thus macroscopic
observables such as the concentration c represent the transients adequately. This means that
the added computational effort required to simulate a kinetic model may not be warranted in
this case, as traditional methods for continuum models may provide all of the details needed.
Quantitatively, we see that for Kn = 0.1, some insight into the behavior of the model at
small times is gained from the kinetic density, and so the effort of determining f may be
needed for some studies.

These observations agree heuristically with the notion that the downward direction of
the flow at the gas-phase interface is unimpeded for free molecular flow (Kn = ∞), and
more molecules reach the feature bottom faster than for the collisonal flows at lower Kn. If
transients are important to understanding a given process, it is important to develop and
test a simulator for the range of Kn of potential interest, before using it in the context
of multiscale models. Specifically, it is apparent that intermediate scale models, for which
0.1 ≤ Kn ≤ 10.0 might hold, will in fact motivate the use of kinetic solvers.
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Figure 1: Schematics of (a) a three-dimensional trench-via structure (known as a ‘Damascene’
structure in industry) and (b) a two-dimensional trench defining the feature width L and
aspect ratio A. Each plot shows the solid wafer surface. The gas domain of the KTRM is
the region above the wafer surface up to the top of the plot box.
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Kn = 0.01 Kn = 0.1 Kn = 1.0 Kn = 100.0

t = 1 ns t = 1 ns t = 1 ns t = 1 ns

t = 5 ns t = 5 ns t = 5 ns t = 5 ns

t = 10 ns t = 10 ns t = 10 ns t = 10 ns

t = 20 ns t = 20 ns t = 20 ns t = 20 ns

t = 30 ns t = 30 ns t = 30 ns t = 30 ns

Figure 2: Dimensionless concentration c(x, t), as a function of x in the two-dimensional
trench for selected Kn at selected times. The vertical scale ranges from 0 to 1 in all plots.

10



Kn = 0.01 Kn = 0.1 Kn = 1.0 Kn = 100.0

t = 1 ns t = 1 ns t = 1 ns t = 1 ns

t = 5 ns t = 5 ns t = 5 ns t = 5 ns

t = 10 ns t = 10 ns t = 10 ns t = 10 ns

t = 20 ns t = 20 ns t = 20 ns t = 20 ns

t = 30 ns t = 30 ns t = 30 ns t = 30 ns

Figure 3: Dimensionless kinetic density f(x,v, t) as a function of v ∈ R2 at x = (0.0625, 0.0)
in the two-dimensional trench for selected Knudsen numbers Kn at selected times. Notice
the different scales on the vertical axes in some plots.
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Kn = 0.01 Kn = 0.1 Kn = 1.0 Kn = 100.0

t = 1 ns t = 1 ns t = 1 ns t = 1 ns

t = 5 ns t = 5 ns t = 5 ns t = 5 ns

t = 10 ns t = 10 ns t = 10 ns t = 10 ns

t = 20 ns t = 20 ns t = 20 ns t = 20 ns

t = 30 ns t = 30 ns t = 30 ns t = 30 ns

Figure 4: Saturation of kinetic density f(x,v, t)/M(v) as a function of v ∈ R2 at x =
(0.0625, 0.0) in the two-dimensional trench for selected Knudsen numbers Kn at selected
times. The vertical scale ranges from 0 to 1 in all plots.
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t = 5 ns t = 10 ns

Figure 5: Slice plots of the dimensionless concentration c(x, t) for Kn = 1.0 at heights
x3 = −0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times. Grayscale from light ⇔ c = 0
to dark ⇔ c = 1.

(a) trench mouth (b) via mouth

Figure 6: Line plots of the saturation of the kinetic density f(x,v, t)/M(v) for Kn = 1.0 for
v1 = v2 = 0 as a function of v3; (a) at the mouth of the trench at position x = (0.5, 0.5, 0.0)
and (b) at the mouth of the via at position x = (0.5, 0.5,−0.3); at times: × = 1 ns, + = 2 ns,
3 = 3 ns, 2 = 4 ns, ◦ = 5 ns, 4 = 10 ns.
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