
International Journal for Multiscale Computational Engineering, 4(3)319–335(2006)

Effect of the Knudsen Number on
Transient Times

During Chemical Vapor Deposition

Matthias K. Gobbert
Department of Mathematics and Statistics, University of Maryland, Baltimore County,

1000 Hilltop Circle, Baltimore, MD 21250, USA

Timothy S. Cale
Focus Center — New York, Rensselaer: Interconnections for Hyperintegration,

Isermann Department of Chemical and Biological Engineering,
Rensselaer Polytechnic Institute, CII 6015, 110 8th Street, Troy, NY 12180-3590, USA

ABSTRACT

Models for the individual steps used to fabricate integrated circuits (ICs) are of interest in
order to improve fabrication efficiency and process designs. Here we focus on deposition from
the gas stream in which the dominant species is an inert carrier gas, as it flows across a
wafer on which ICs are being fabricated. We model the transport of gaseous species to the
surface and heterogeneous (surface) chemical reactions for chemical vapor deposition using
a kinetic transport and reaction model (KTRM), which is represented by a system of linear
Boltzmann equations. The model is valid for a range of pressures and for length scales from
nanometers to decimeters, making it suitable for multiscale models. We present transient
simulation results for transport of reactants into an inherently three-dimensional prototypical
micron scale trench via structure for a wide range of Knudsen numbers. The results highlight
the capabilities of the KTRM and its implementation, and demonstrate that the transients last
longer for lower Knudsen numbers than for higher Knudsen numbers. We briefly discuss how
the KTRM might be used in a multiscale computational model.
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1. INTRODUCTION

Several important manufacturing processes for in-
tegrated circuits (ICs) involve the flow of gaseous
reactants over the wafer(s) on which the ICs are be-
ing made. Each process can occur at low (0.01 Torr),
moderate, or high (atmospheric) pressures. Cor-
respondingly, the average distance that a molecule
travels before colliding with another molecule (the
mean free path λ) ranges from < 0.1 µm (microm-
eter) to over 1 cm. On the one hand, the size of
the structures created on the wafer during IC fab-
rication (called features) is now well below 1 µm.
On the other hand, the size of the chemical reactor
through which the gas flow takes place is on the or-
der of decimeters. The appropriate transport model
at a given combination of pressure and length scale
is determined by the Knudsen number Kn, defined
as the ratio of the mean free path to the length
scale of interest Kn := λ/L. The Knudsen num-
ber arises as the relevant dimensionless group in ki-
netic equations [1], and serves as a guide to the type
of model needed: (i) For small values Kn < 0.01,
the usual continuum models describe the gas flow
well. (ii) At intermediate values Kn ≈ 1, kinetic
models based on the Boltzmann transport equation
capture the influence of both transport and colli-
sions among the molecules; this is called the transi-
tion regime. (iii) For large values Kn > 100, kinetic
models are still appropriate, with the collision term
being small; this is called the free molecular flow,
or ballistic transport, regime. We are interested in
models for species transport and chemical reactions
on the submicron scale (1 nm to 10 µm) to millimeter
scale (10–1000 µm), over a range of pressures. This
results in Knudsen numbers ranging from < 0.01 to
> 100; i.e., all three transport regimes.

The focus of this paper is to study the effect of
Kn on the time it takes for transients to be essen-
tially complete; e.g., how long does it take for the
effects of a change in fluxes into the modeled do-
main to stop changing the local concentration and
kinetic density through the domain. The studies
presented here extend reports in [2–4]. Studies
in Ref. [2] focus on the parallel scalability of the
numerical method on a distributed-memory clus-
ter. Reference [3] focuses on a full introduction to
the modeling and careful reference simulations that
provide a validation of the model, and Ref. [4] fo-
cuses on studies of the numerical method and its

convergence, which provide a validation of the nu-
merical method. The studies in Ref. [3] validated the
model against EVOLVE (discussed in [5], and refer-
ences therein), a well-established code that provides
steady-state solutions to low-pressure transport and
reaction inside features on patterned wafers. The
KTRM computed distribution of flux of incoming
species along the surface of a feature compares well
to that computed by EVOLVE. The agreement im-
proves with increasing number of velocity terms, as
expected, as confirmed by the studies focusing on
the numerical method in Ref. [4]. The studies in [2–
4] considered the Knudsen number as a dimension-
less group that characterizes the flow regime, but
did not specifically address the Kn dependence on
how long it takes for a transient to disappear. Since
the transient time dependency needs to be taken
into account when developing an efficient multi-
scale simulator, we extend our work to include this
issue here.

These authors have coupled models on several
length scales, from feature scale to reactor scale, to
form a single or concurrent multiscale reactor sim-
ulator using a pseudosteady-state approach [6,7].
Continuum models were used for all but the fea-
ture scale; free molecular flow was appropriate at
that scale, as Kn > 100. The current work pro-
vides the basis for creating a multiscale model that
is valid over a wider pressure range, uses finite el-
ement methods and parallel code on all scales, and
can deal with process transients; e.g., in atomic layer
deposition [8–12]. Such a multiscale model will re-
quire well-tested and validated models and numer-
ical methods for each length scale of interest [5].

The following section summarizes the kinetic
transport and reaction model (KTRM) developed
for the processes under consideration. Section 3
briefly describes the numerical methods used. The
main part of this paper is the presentation and
discussion of simulation results for a micron-scale
model of chemical vapor deposition (CVD) in Sec-
tion 4. Finally, Section 5 summarizes the conclusions
drawn from the numerical results.

2. THE MODEL

We have developed the kinetic transport and reac-
tion model (KTRM) [3,9,10] to model flow of reac-
tive species in a gas flow dominated by an inert car-
rier that is assumed to be an order denser than the
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EFFECT OF THE KNUDSEN NUMBER ON TRANSIENT TIMES 321

reactive species. The KTRM is then represented by a
system of linear Boltzmann equations, one for each
of the ns reactive species

∂f (i)

∂t
+v·∇xf (i) =

1
Kn

Qi(f (i)), i = 1, . . . , ns (2.1)

with the linear collision operators

Qi(f (i))(x,v, t) =
∫

R3
σi(v,v′)

×
[
Mi(v)f (i)(x,v′, t)−Mi(v′)f (i)(x,v, t)

]
dv′

where σi(v,v′) = σi(v′,v) ≥ 0 is a given col-
lision frequency model and Mi(v) denotes the
Maxwellian distribution of species i. See [3] for
a derivation of the model and more details on its
assumptions and nondimensionalization. The left-
hand side of (2.1) models the advective transport of
molecules of species i (local coupling of spatial vari-
ations via the gradient ∇xf (i)), whereas the right-
hand side models the effect of collisions (global cou-
pling of all velocities in the integral operators Qi).
The Knudsen number arises as the relevant dimen-
sionless group in (2.1) because the transport on the
left-hand side is nondimensionalized with respect
to the typical domain size, while the collision oper-
ator on the right-hand side is nondimensionalized
with respect to the mean free path. Thus, the values
of Kn are affected by both the scale of interest of the
model and by the operating conditions of the chem-
ical reactor. The unknown functions f (i)(x,v, t) in
this kinetic model represent the (scaled) probabil-
ity density, called the kinetic density in the follow-
ing, that a molecule of species i = 1, . . . , ns at po-
sition x ∈ Ω ⊂ R3 has velocity v ∈ R3 at time
t. Its values need to be determined at all points x
in the three-dimensional spatial domain Ω and for
all three-dimensional velocity vectors v at all times
0 < t ≤ tfin. This high dimensionality of the space of
independent variables is responsible for the numer-
ical complexity of kinetic models, as six dimensions
need to be discretized, at every time step for tran-
sient simulations. Note that while Eqs. (2.1) appear
decoupled, they actually remain coupled through
the boundary condition at the wafer surface that
models the surface reactions and is of crucial impor-
tance for the applications under consideration.

3. NUMERICAL METHOD

The numerical method for (2.1) needs to discretize
the spatial domain Ω ⊂ R3 and the (unbounded)
velocity space R3. We start by approximating
each f (i)(x,v, t) by an expansion f

(i)
K (x,v, t) :=∑K−1

`=0 f
(i)
` (x, t)ϕ`(v). Here, the basis functions

ϕ`(v) in velocity space are chosen such that they
form an orthogonal family of functions in velocity
space with respect to a weighted L2-inner product
that arises from entropy considerations for the lin-
ear Boltzmann equation [13]. The basis functions
are constructed as products of polynomials and a
Maxwellian; hence, they are most appropriate if the
flow regime is not too far from a Maxwellian regime.
This is suitable for the flows that will be considered
here. Flows with other properties can however be
approximated by this method by constructing dif-
ferent basis functions.

Inserting the expansion for f (i)(x,v, t) and test-
ing successively against ϕk(v) with respect to the
inner product approximates (2.1) by a system of lin-
ear hyperbolic equations [13]

∂F (i)

∂t
+ A(1) ∂F (i)

∂x1
+ A(2) ∂F (i)

∂x2
+ A(3) ∂F (i)

∂x3

=
1

Kn
B(i) F (i), i = 1, . . . , ns (3.1)

where F (i)(x, t) := [f (i)
0 (x, t), ..., f (i)

K−1(x, t)]T is the
vector of the K coefficient functions in the expan-
sion in velocity space. Here, A(1), A(2), A(3), and
B(i) are constant K ×K matrices. Using collocation
basis functions, the coefficient matrices A(1), A(2),
A(3) become diagonal matrices [4]. Note again that
the equations for all species remain coupled through
the crucial reaction boundary condition at the wafer
surface.

The hyperbolic system (3.1) is now posed in a
standard form as a system of partial differential
equations on the spatial domain Ω ⊂ R3 and in time
t and amenable to solution by various methods. Fig-
ure 1 shows two views of a representative domain
Ω ⊂ R3; more precisely, the plots show the solid
wafer surface consisting of a 0.3 µm deep trench,
in which is etched another 0.3 µm deep via (round
hole). The domain Ω for our model is the gaseous
region above the solid wafer surface up to the top of
the plot box at x3 = 0.3 µm in Fig. 1. Since typical
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322 GOBBERT AND CALE

FIGURE 1. Two views of the solid wafer surface boundary of the trench/via domain. The gas domain of the model
is the region above the wafer surface up to the top of the plot box

domains in our applications such as this one are of
irregular shape, we use the discontinuous Galerkin
method (DGM) [14] relying on a finite element dis-
cretization of the domain into tetrahedra.

The degrees of freedom (DOF) of the finite ele-
ment method are the values of the ns species’ coef-
ficient functions f

(i)
` (x, t) in the Galerkin expansion

at K discrete velocities on the four vertices of each
of the Ne tetrahedra of the three-dimensional mesh.
Hence, the complexity of the computational prob-
lem is given by 4 Ne K ns at every time step. To ap-
preciate the size of the problem, consider that the
mesh of the domain in Fig. 1 uses Ne = 7087 three-
dimensional tetrahedral elements; even in the case
of a single-species model (ns = 1) and if we use just
K = 4 × 4 × 4 = 64 discrete velocities in three di-
mensions, as used for the application results in the
following section, the total DOF are N = 1,814,272
or nearly two million unknowns to be determined
at every time step. Extensive validations of the
numerical method and convergence studies for a
wide range of Knudsen numbers are the focus of [4].
Based on these results, the choice of discrete veloci-
ties here is sufficient to obtain reliable results.

The size of problem at every time step motivates
our interest in parallel computing. For the paral-
lel computations on a distributed-memory cluster,
the spatial domain Ω is partitioned in a prepro-
cessing step, and the disjoint subdomains are dis-
tributed to separate parallel processes. The discon-
tinuous Galerkin method for (3.1) needs the flux

through the element faces. At the interface from
one subdomain to the next, communications are re-
quired among those pairs of parallel processes that
share a subdomain boundary. Additionally, a num-
ber of global reduce operations are needed to com-
pute inner products, norms, and other diagnostic
quantities. The performance of the parallel imple-
mentation was studied in [2] and confirmed that
a distributed-memory cluster is very effective in
speeding up calculations for a problem of this type.

4. APPLICATION RESULTS

As an application example, we present a model for
chemical vapor deposition. In this process, reac-
tants are supplied from the gas-phase interface at
the top of the domain at x3 = 0.3 in Fig. 1. The re-
actants flow downward throughout the domain Ω
until they reach the solid wafer surface shown in
Fig. 1, where some fraction of the molecules form a
solid deposit. The time scale of all simulations cor-
responds to forming only a very thin layer; hence,
the surface is not moved within a simulation. Here,
we use a single-species model with one reactive
species (ns = 1) and drop the species superscript
in the following discussion. The deposition at the
wafer surface can then be modeled using a stick-
ing factor 0 ≤ γ0 ≤ 1 that represents the fraction of
molecules that are modeled to deposit at (“stick to”)
the wafer surface. The reemission into Ω of gaseous
molecules from the wafer surface is modeled as ree-
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mission with velocity components in Maxwellian
form and proportional to the flux to the surface as
well as proportional to 1 − γ0. The reemission is
scaled to conserve mass in the absence of deposition
(γ0 = 0). The studies shown use a sticking factor of
γ0 = 0.01; that is, most molecules reemit from the
surface, which is a realistic condition [5]. The col-
lision operator uses a relaxation time discretization
by choosing σ1(v,v′) ≡ 1/τ1 with (dimensionless)
relaxation time τ1 = 1.0 that characterized the time
to return to steady state under appropriate bound-
ary conditions. The temperature on the scale of this
µm-scale domain is assumed constant and uniform
throughout the domain and is set at T = 500 K [3].
We focus on how the flow behaves when starting
from no gas present throughout Ω, modeled by ini-
tial condition f ≡ 0 at t = 0 for the reactive species;
the inert species is already present throughout the
domain [3].

4.1 Concentration Results

Figures 2–5 show the results of transient simulations
for the values of the Knudsen numbers Kn = 0.01,
0.1, 1.0, and 100.0, respectively, at six selected times
throughout the simulation; note that different times
are selected for different cases. The quantity plotted
for each (redimensionalized) time is the (dimension-
less) concentration

c(x, t) :=
∫

R3
f(x,v, t) dv

across the domain Ω. The values of the dimension-
less concentration 0 ≤ c ≤ 1 is represented by the
gray-scale on each of the horizontal slices through Ω
at the vertical levels at six values of x3; the shapes of
all slices together indicate the shape of the domain
Ω.

In Fig. 2 for Kn = 0.01, a value that indicates near
fluid-dynamic regime, we see that the top-most slice
at x3 = 0.15 is always darker than the slices below
it, indicating higher concentration of molecules has
reached this level from the inflow at the top of the
domain than the lower levels deeper in the feature.
More specifically, at the early times 5 ns and 10 ns,
relatively few molecules have reached the inside of
the feature. By 10 ns, the slice at x3 = 0 shows that
the concentration at the flat parts of the wafer sur-
face has reached relatively high values than above

the mouth of the trench (0.3 ≤ x1 ≤ 0.7); this is ex-
plained by the ongoing flow of molecules into the
trench. By 50 ns, we observe the same phenomenon
at the slice for x3 = −0.3, where the concentra-
tion has reached a higher value in the flat areas of
the trench bottom as compared to the opening into
the via (round hole) below. The following plots
for times 100, 150, and 200 ns show how the fill of
the entire domain with gaseous molecules continues
over time.

Figure 3 shows slice plots of c(x, t) across Ω for
the case of Kn = 0.1 at selected times t; note that
the first two plots are at the same times 5 and 10 ns
as the previous figure, but the remaining times are
different from in the previous figure. Comparing
the plots at t = 5 ns in Figs. 2 and 3 to each other,
the one for the smaller Kn has generally lighter
color indicating a slower fill of the feature with gas.
The smaller Knudsen number means more colli-
sions among molecules, leading to a less directional
flow than for the larger Knudsen number. Since the
bulk direction of the flow is downward because of
the supply at the top with downward velocity, the
feature fills faster with molecules in this case. This
comparison also applies to time 10 ns. The follow-
ing plots show again how the fill of the entire do-
main with gaseous molecules continues over time;
as the times are 15, 20, 25, and 30 ns here, we see
that the fill occurs substantially faster for this larger
Knudsen number of Kn = 0.1.

Figures 4 and 5 extend the comparison of slice
plots of c(x, t) to the Knudsen numbers Kn = 1.0
and 100.0, respectively; note that smaller times are
selected here, but the times 5 and 10 ns are still avail-
able for comparison, now in the final two plots. We
note first that the behavior of the two cases in Figs. 4
and 5 appears nearly identical, up to the resolution
of the plots. We also note that the overall behavior
of the feature filling with molecules is similar to the
previous cases of smaller Knudsen numbers, but it
clearly occurs a lot faster. By time 10 ns, steady state
is rapidly being approached already, where in the
previous plots at 10 ns, in particular, the inside of
the via had only been reached by few molecules.

4.2 Kinetic Density Results

The previous figures showed results of the (macro-
scopic) concentration c(x, t) =

∫
f(x,v, t) dv, given
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324 GOBBERT AND CALE

t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

FIGURE 2. Slice plots of the dimensionless concentration c(x, t) for Kn = 0.01 at heights x3 =
−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at selected times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1
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t = 5 ns t = 10 ns

t = 15 ns t = 20 ns

t = 25 ns t = 30 ns

FIGURE 3. Slice plots of the dimensionless concentration c(x, t) for Kn = 0.1 at heights x3 =
−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

FIGURE 4. Slice plots of the dimensionless concentration c(x, t) for Kn = 1.0 at heights x3 =
−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

FIGURE 5. Slice plots of the dimensionless concentration c(x, t) for Kn = 100.0 at heights x3 =
−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1
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as integral of the kinetic density f(x,v, t). To pro-
vide more insight into the behavior of the solution,
Figs. 6–9 show plots of the kinetic density f(x,v, t)
directly as a function of velocity v. This requires
fixing the spatial position x ∈ Ω at which the ki-
netic density is analyzed. We select the values
x = (0.5, 0.5, 0.0) at the center of the mouth of the
trench (at height x3 = 0.0) in Figs. 6 and 7 and
x = (0.5, 0.5,−0.3) at the center of the mouth of the
via (at height x3 = −0.3) in Figs. 8 and 9. We fo-
cus here on comparing the two Knudsen numbers
Kn = 0.01 and 1.0, with the plots for Kn = 0.01 in
Figs. 6 and 8, and the plots for Kn = 1.0 in Figs. 7
and 9. The selected times are, for each Kn, the same
ones as for the corresponding concentration plots in
Figs. 2 and 4, respectively.

Each plot in Figs. 6 through 9 is an isosurface plot
of f(x,v, t) as function of v ∈ R3, where the surface
of the wireframe shown represents the isosurface
level f = 0.005. That is, the velocities on the inside
of the wireframe have higher values of f(x,v, t) and
the outside lower values than 0.005. This presenta-
tion is chosen because a Maxwellian distribution of
the molecule velocities, which represents the case of
fully randomized velocities, is useful as a reference
and would result in a sphere in three dimensions,
up to the resolution of the velocity discretization.

In Fig. 6 for the velocity distribution at the mouth
of the trench at x = (0.5, 0.5, 0.0) for the relatively
small Knudsen number Kn = 0.01, the plots at
times 5 and 10 ns confirm that few molecules have
reached this point, as all components of f(x,v, t)
are < 0.005. In accordance with the concentration
results in Fig. 2, by time 50 ns, significant amounts
of molecules have reached the mouth of the trench.
The plots in Fig. 6 for the times 50 ns and larger
additionally show that these molecules have appar-
ently a randomized velocity distribution, close to a
Maxwellian distribution, for Kn = 0.01.

By contrast, the plots in Fig. 7 for the case of
the larger Kn = 1.0 first of all confirm the results
in Fig. 4 that molecules reach the position x =
(0.5, 0.5, 0.0) faster; note that the times 5 and 10 ns
are in the bottom row of plots in this figure. But we
also see in the plots for the earlier times 2, 3, 4 ns,
and even at 5 ns, that the distribution of velocities is
far from Maxwellian. Rather, as f(x,v, t) > 0.005
only for v3 < 0, we have, predominantly, veloci-
ties pointing from the inlet at the top of the domain
downward into the feature. By 10 ns though, suf-

ficiently many molecules have been reemitted from
the wafer surface that there are also many molecules
with upward velocities.

Figures 8 and 9 show the same quantity as the
previous plots at the same times, but with the point
x = (0.5, 0.5,−0.3) chosen at the mouth of the via
(round hole) half-way down the feature. Since this
position lies deeper inside the feature than x =
(0.5, 0.5, 0.0), it is expected that there is a time lag
for molecules to reach this position. This can be
seen for each Kn by comparing Fig. 8 to Fig. 6 for
Kn = 0.01 and Fig. 9 to Fig. 7 for Kn = 1.0. Par-
ticularly, the kinetic density at t = 50 ns in Fig. 8
has smaller values than those in Fig. 6, but they are
equally randomized due to relatively frequent col-
lisions for Kn = 0.01. Analogously, the density at
t = 5 ns in Fig. 9 has smaller values than the density
in Fig. 7, but it is also still more directional and less
randomized.

4.3 Kinetic Saturation Results

The final plots in Figs. 6–9 all appear to show that
kinetic density has reached a Maxwellian velocity
distribution in the final plot. To determine if this
is indeed the case, we now plot the kinetic satu-
ration 0 ≤ f(x,v, t)/M(v) ≤ 1 that shows how
close to a Maxwellian the kinetic density f is. More-
over, all results in the previous four figures bear
out that at positions x in the center of the feature
(x1 = x2 = 0.5), the kinetic density f(x,v, t) does
not depend on the velocity components v1 and v2

in the x1 and x2 directions, respectively, and we use
this observation to plot f/M as a function of v3 only,
for v1 = v2 = 0 fixed, in Figs. 10 and 11. Each line
shows the result at a particular time, as listed in the
figure captions; these times are the same ones for
each Kn as before, but different for the two Kn.

Figure 10 shows the saturation f/M at the trench
mouth and via mouth for Kn = 0.01. In both cases,
the saturation increases over time. Overall, the sat-
uration levels are lower at the via mouth than at
the trench mouth, which is consistent with the con-
centration results in Fig. 2; note the different scales
on the vertical axes. We note that the last lines are
closer to each other than earlier lines, so a steady
state is being approached; note that the six times se-
lected are not uniformly spaced. Finally, each line
shows larger values of f/M for v3 < 0 (the left side
of the plot) than for f3 > 0 (the right side). This
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t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

FIGURE 6. Isosurface plots of the kinetic density f(x,v, t) for Kn = 0.01 as function of velocity v ∈ R3 at the mouth
of the trench at x = (0.5, 0.5, 0.0) at selected times. Isosurface level at f(x,v, t) = 0.005
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

FIGURE 7. Isosurface plots of the kinetic density f(x,v, t) for Kn = 1.0 as function of velocity v ∈ R3 at the mouth
of the trench at x = (0.5, 0.5, 0.0) at selected times. Isosurface level at f(x,v, t) = 0.005
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t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

FIGURE 8. Isosurface plots of the kinetic density f(x,v, t) for Kn = 0.01 as function of velocity v ∈ R3 at the mouth
of the via at x = (0.5, 0.5,−0.3) at selected times. Isosurface level at f(x,v, t) = 0.005
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

FIGURE 9. Isosurface plots of the kinetic density f(x,v, t) for Kn = 1.0 as function of velocity v ∈ R3 at the mouth
of the via at x = (0.5, 0.5,−0.3) at selected times. Isosurface level at f(x,v, t) = 0.005
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trench mouth via mouth

FIGURE 10. Line plots of the saturation of the kinetic density f(x,v, t)/M(v) for Kn = 0.01 for (v1, v2) = (0, 0)
as function of v3; at the mouth of the trench at position x = (0.5, 0.5, 0.0) and at the mouth of the via at position
x = (0.5, 0.5,−0.3); at times: × = 5 ns, + = 10 ns, 3 = 50 ns, 2 = 100 ns, ◦ = 150 ns, 4 = 200 ns. Note the different
scales of the vertical axes

means that the velocity distribution has a down-
ward direction. This detail could not be clearly de-
termined in Fig. 6 or 8; in fact, many of the plots of
the kinetic density could not be distinguished from
Maxwellians there, but the present plots of the satu-
ration allow us to establish clearly that they are not
Maxwellians.

Figure 11 shows the saturation f/M for Kn = 1.0.
The same observations as for Fig. 10 hold concern-
ing the level of saturation being higher at the trench
mouth than the via mouth and concerning a gener-

ally downward velocity distribution. But addition-
ally, we note that the difference between the f/M
values for v3 < 0 and v3 > 0 is sharper for most
of the times; this corresponds to fewer collisions for
this larger Kn = 1.0 compared to more collisions
for Kn = 0.01 that tend to smooth out the veloc-
ity distribution. However, by the final time, suffi-
ciently many molecules have been reemitted from
the wafer surface that also upward velocity compo-
nents are present in the distribution and, hence, the
saturation plot has become more uniform.

trench mouth via mouth

FIGURE 11. Line plots of the saturation of the kinetic density f(x,v, t)/M(v) for Kn = 1.0 for (v1, v2) = (0, 0)
as function of v3; at the mouth of the trench at position x = (0.5, 0.5, 0.0) and at the mouth of the via at position
x = (0.5, 0.5,−0.3); at times: × = 1 ns, + = 2 ns, 3 = 3 ns, 2 = 4 ns, ◦ = 5 ns, 4 = 10 ns
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5. CONCLUSIONS

The results presented in Section 4 highlight the ca-
pabilities of the KTRM and the numerical method
used to model an important chemical process. We
see that the flow associated with larger Knudsen
numbers is more directional and the transients due
to the change in flux of reactant species are shorter
for higher Kn. This is highlighted by looking at the
local kinetic density function at selected times. Ac-
cess to the kinetic density is thus important to un-
derstanding such systems.

The studies presented point out the need to con-
sider Kn when deciding how long transients due to
perturbations might last. That is, when deciding the
simulation time for a particular case, its Knudsen
number must be taken into account because differ-
ent times will be appropriate for different Kn. This
is important in our effort to develop a multiscale
simulator for processes of this type.
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