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a b s t r a c t

Occasional outbreaks of cholera epidemics across the world demonstrate that the disease
continues to pose a public health threat. Traditional models for the spread of infectious
diseases are based on systems of ordinary differential equations. Since disease dynamics
such as vaccine efficacy and the risk for contracting cholera depend on the age of
the humans, an age-structured model offers additional insights and the possibility of
studying the effects of treatment options. The model investigated is given as a system
of hyperbolic (first-order) partial differential equations in combination with ordinary
differential equations. First, using a representation from themethod of characteristics and a
fixed point argument, we prove the existence and uniqueness of a solution to our nonlinear
system. Then we present a finite difference approximation to the model and study the
effect of high and low rates of shedding of cholera vibrios on the dynamics of the spread
of the disease. The simulations demonstrate the explosive nature of cholera outbreaks that
is observed in reality. The contrast of results for high and low rates of shedding of vibrios
suggest a possible underlying cause for this effect.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of cholera continues to be an important problem in mathematical epidemiology, as increasingly frequent
outbreaks of cholera epidemics continue to pose a public health threat [1,2] for humans in crowded conditions with poor
sanitation such as in a refugee camp. A common type of model for the spread of an infectious disease is an SIR model,
so named after the categorization of individuals in the classes of susceptible, infected, and recovered populations [3]. SIR
models of cholera developed so far are time-dependentmodels which give rise to a system of ordinary differential equations
(ODEs); see [1,4–7].

In 2001, Codeço published an ODE cholera model which analyzed the interplay between infected humans and the
concentration of cholera bacteria in the surrounding environment and the resulting disease dynamics [1]. The next year
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Merrell and Butler published a finding that freshly shed cholera bacteria from human intestines are 700 times more
infectious than bacteria shed only hours previously [8]. Thus, to model the pathway of infection more precisely, Hartley
et al. [5] proposed a model which takes into account the role of hyperinfective vibrios introduced into the water reserves
by the infected people in the population; this new model explains the explosive nature of the disease more clearly as seen
in historical accounts of cholera epidemics. This feature of hyperinfective vibrios, which gives increased transmission, will
be included in our model. See [9,10] for the biological sequencing background for this pathogen.

Note that King et al. [6] proposed a two-patch cholera ODE model including classes for ‘mild’ infections and the feature
of waning immunity. The work by Miller Neilan et al. [7] investigated optimal control of three strategies for slowing the
spread of the disease in ODE model with hyperinfectious vibrios, asymptomatic infecteds and waning immunity. There is
another modeling approach with a compartment that tracks the pathogen in the water; this approach gives a SIWR system
of four ODEs and was used to simulate cholera in the 19th century in London [11,12].

We now work on a model combining features of models in [1,5] to the next stage, but providing a new feature by taking
into account the influence of the age of the affected humans. People of different ages have different pathologies of infection
and of treatment. Although using age-structuredmodels to study the spread of infectious diseases is not in itself a new idea,
the application of such amodel in the study of cholerawill provide novel insights. At the heart of this age-structuredmodel is
a coupled systemof hyperbolic partial differential equations (PDEs)whichmodel the human dynamics in a cholera outbreak.
The equationswhich track the growth of the cholera bacteria will not need age structure and thus remain as ODEs.While the
introduction of a system of PDEs in place of a system of ODEs enhances the interconnectivity and accuracy of the model, the
resulting system of equations is substantially more complicated to analyze. The numerical computation needed to produce
outbreak simulations becomes a nontrivial task which introduces new challenges not encountered with the traditional ODE
models. It is additionally nontrivial to establish the existence and uniqueness of solutions to the model system.

For further background of age-structured models, we encourage the reader to see [13–18]. For equilibrium analysis of
an age-structured competition model, see [19,20]. The existence results and formulation of age-structured models were
introduced by Gurtin and MacCamy [21] and Venturino [22]. Barbu and Iannelli [23] studied the mathematical theory
behind age-structured populations. Brauer [24], Lia [25], and Saleem [20] provided insight into nonlinear age-dependent
populations and predator prey dynamics. Fister and Lenhart [26] investigated the existence of solutions to a predator–prey
age-structured model with control. For further background for epidemic models including age structure, spatial features,
and impulse effects, see [27–32].

This paper will develop an age-structured cholera model and provide a theoretical and numerical analysis of the model.
In Section 2, we will discuss the system of differential equations along with initial and boundary conditions that form our
disease model. In Section 3, we prove the existence and uniqueness of a solution in L1 and L∞ to our PDE system using a
fixed point argument on a representation derived from the method of characteristics. We discuss the numerical method
implemented in Section 4; and subsequently in Section 5, we discuss the numerical experiments conducted and present our
computational results along with their practical interpretations. We provide concluding remarks in Section 6.

2. The model

In this section, we describe the system of differential equations which describes our cholera model. We consider a
given human population which we divide into three categories: susceptible, infected, and recovered. For each category, we
consider both the age density and the population changes over time. Thus, wewrite the number of humans in each category
S = S(a, t), I = I(a, t), and R = R(a, t) as functions of age a and time t . In a theoretical discussion, perhaps units of variables
in equations are not crucial because one knows that everything can be balanced with a suitable coefficient. However, for
real-life computations on concrete problems, one needs to pay close attention to the units of themodel quantities. Tomake a
dimensional study of the model simpler, we formally use units of weeks for the age of humans a and days for the simulation
time t in the tables of this paper, thoughwe also use conventional units of years in the text when thatmakes the intention of
the formulas clearer. With concentration units of humans per age for the population density variables, following, e.g., [33],
the number of susceptible people between, for instance, ages a1 and a2 at a time t is given by

 a2
a1

S(a, t) da. Specifically,

to find the number of susceptible humans of a particular age a0 years, we compute
 a0+1
a0

S(a, t) da using the conventional
understanding that all humans from a = a0 years to a = a0+1years are considered as a0 years old. Analogous approaches are
used for infected and recovered humans, I(a, t) and R(a, t). Following Hartley et al. [5], we have two vibrios compartments,
and we denote the hyperinfective and non-hyperinfective cholera bacteria by BH = BH(t) and BL = BL(t), respectively. The
five quantities S, I, R, BL, and BL are the dependent variables of the model.

The model is pictured in Fig. 1. The majority of microparasite diseases are directly transmitted by close contact with
an infectious individual, but cholera is usually considered as waterborne. To account for the various factors affecting the
dynamics of a cholera epidemic, we have introduced additional coefficient functions, which may be constant, or may vary
with age or time (or both).We assume a setting of a refugee camp, and thus the human demographics includes a recruitment
term Λ(a, t) along with a natural death rate b(a). The susceptible individuals become infected as a result of ingesting
bacteria at rates βH(a) and βL(a), with the bacteria concentrations measured with respect to their infectious doses, κH(a)
and κL(a). Individuals recover from cholera at rates γ1 for untreated cholera and γ2 for treated cholera. These are denoted
as just γ in Fig. 1. On the basis of studies that confirm age-dependent length of immunity from vaccine trials, we assume
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Fig. 1. Diagram of cholera dynamics.

similarly that recovered individuals gain short-term immunity that wanes at a rate w(a) which depends on age [34–36].
Infected humans contribute to the concentration of cholera bacteria in the local water supply at a rate ξη which accounts
for human shedding rates as well as the relative local impact, and is explained more fully in the discussion following the
model equations. Finally, we assume that infected humans die as a result of cholera at an age-based rate ∆(a). The bacteria
move from the hyperinfectious state, BH , to a less infectious class BL at a rate of χ . The less infectious bacteria experience
a natural removal rate of δL due to death or predation. See Table 1 for a complete description of the model quantities and
their units.

There are various strategies that can be implemented in a cholera outbreak to either decrease the numbers becoming
infected or decrease the loss of life. In this paper, we include two strategies u(a, t) and h(a, t) that represent antibiotic
treatment and hydration therapy, respectively. The antibiotic treatment lessens the duration and quantity of an infected
human’s contribution to the concentration of bacteria in the environment, while hydration therapy saves lives without
lessening an infected individual’s contribution to the environment. We note that in reality antibiotic treatment would not
be administered without hydration therapy, and that additionally there are great concerns as regards the spread of resistant
bacteria as a result of antibiotic therapy [37–39]. However, this investigationprovides a first step in developing the numerical
and theoretical tools for considering a model with more complex control methods that may more accurately reflect present
practices. Additionally,we are investigating the existence of a solution to this nonlinear system in connectionwith numerical
concepts.

We consider the age–time domain, Q = (0, A) × (0, T ), with interventions (u, h) in

Γ = {(u, h) ∈ (L∞(Q ))2 | 0 ≤ u(a, t) ≤ N1, 0 ≤ h(a, t) ≤ N2 a.e. in Q }, (2.1)

where N1 < 1 and N2 < 1 denote maximum fractions of intervention. The variables, (S, I, R, BH , BL), then satisfy the
following state system:

∂S
∂t

+ α
∂S
∂a

= Λ(a, t) − βL(a)
BL(t)

κL(a) + BL(t)
S(a, t) − βH(a)

BH(t)
κH(a) + BH(t)

S(a, t) − b(a)S(a, t) + ω(a)R(a, t), (2.2)

∂ I
∂t

+ α
∂ I
∂a

= βL(a)
BL(t)

κL(a) + BL(t)
S(a, t) + βH(a)

BH(t)
κH(a) + BH(t)

S(a, t) − b(a)I(a, t)

− (1 − h(a, t))∆(a)I(a, t) − γ1(1 − u(a, t))I(a, t) − γ2u(a, t)I(a, t), (2.3)

∂R
∂t

+ α
∂R
∂a

= γ1(1 − u(a, t))I(a, t) + γ2u(a, t)I(a, t) − b(a)R(a, t) − ω(a)R(a, t), (2.4)

dBH

dt
=

 A

0
ξηI(a, t)da − χBH(t), (2.5)

dBL

dt
= χBH(t) − δLBL(t). (2.6)

Note that the vibrios interactwith the susceptibleswith aMonod orMichaelis–Menten type coefficient and the transmission
coefficients are different for BH and BL. In the above equations, α =

1
7
week
days is a coefficient introduced to balance the units

of age a in weeks and time t in days. Also, A which appears in the equation for BH is an upper bound on the age of people
in the model (we used A = 72 years in our simulations). The model above incorporates the two control strategies into the
model description given previously and in Fig. 1. Hydration therapy h(a, t) decreases the percentage ∆(a) of the infected
individuals who die from cholera. In the infected class (class I), the multiplicative factors γ1 (1 − u) and γ2 u represent the
rates of recovery for the individuals who have had no antibiotic treatment and for those who have had such a treatment,
respectively. The integral term in the BH equation depicts the total number of vibrios that are shed at a rate of ξ with the
relative amount of stool η per time for an infected individual of age, a. This model system is mixed in nature because it
involves both hyperbolic first-order partial differential equations and ordinary differential equations.
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Table 1
Model parameters and their units (HI denotes hyperinfectious).

Quantity Description Units

a Age Weeks
t Time Days
S(a, t) Susceptible humans of age a at time t divided uniformly over all ages human

week
I(a, t) Infected and infectious humans of age a at time t human

week
R(a, t) Removed and immune humans of age a at time t human

week
BH (t) HI vibrio population Cells/ml
BL(t) Non-HI vibrio population Cells/ml
α Proportionality factor (wave speed) Week/days
Λ(a, t) Recruitment rate, number of susceptible humans entering population of age a at time t human

week−day
h(a, t) Oral rehydration therapy, reduces disease related mortality (90% effective) of age a at time t None
u(a, t) Antibiotic treatment rate for humans of age a at time t None
βL(a) Ingestion rate of non-HI vibrios at age a 1/day
βH (a) Ingestion rate of HI vibrios at age a 1/day
κL(a) Saturation constant of non-HI vibrios at age a Cells/ml
κH (a) Saturation constant of HI vibrios at age a Cells/ml
b(a) Natural mortality rate of humans at age a 1/day
ω(a) Rate of waning immunity of humans at age a 1/day
∆(a) Disease related mortality rate for humans at age a 1/day
f (a) Maternity rate 1/week
γ1 Recovery rate of untreated cholera 1/day
γ2 Recovery rate of treated cholera 1/day
ξ Rate of shedding of cholera vibrios from infected human of age a Cells

ml−day−human
η Relative amount of stool per time (no dimension)
χ Rate of vibrio moving from HI to non-HI state 1/day
δL Death rate of vibrio in the environment 1/day

The boundary and initial conditions

We consider cholera disease dynamics to determine conditions for S, I , and R. We know that cholera does not transmit
vertically from mother to child, and there is evidence that infants have immunity either due to breastfeeding or from
the mother [40–43]. Several studies have established low disease rates in infants, due perhaps to breastfeeding or cross-
protection from Escherichia coli infections that are caused by a similar toxin [44,45]. Thus, newborns will appear in the R
class. We note that the immunity against infection at time of birth makes this model different from other age-structured
SIR models of infectious diseases. We also assume that women between the ages of 15 and 45 give birth to three children.
These considerations translate to the boundary conditions

S(0, t) = 0, (2.7)
I(0, t) = 0, (2.8)

R(0, t) =

 A

0
(S(a, t) + I(a, t) + R(a, t))f (a)da, (2.9)

where the fecundity function f is modeled as

f (a) =


1
5
sin2


a − 15
30


π


, 15 < a < 45,

0, otherwise.
(2.10)

This fecundity function is stated here in units of years for clarity, though the code and Table 1 use units of weeks. The
assumption that from age 15 to 45 years a woman will generally give birth to three children expresses itself in the integral A

0
f (a) da = 3, (2.11)

where A is the largest age allowed in themodel (which is always greater than 45 years). The assumption of three children per
woman appears applicable to the countries in the developing world, where cholera is more likely to occur than in Western
industrialized nations, where this number tends to be lower than 3.

The initial conditions are given by

S(a, 0) = S0(a), I(a, 0) = I0(a), R(a, 0) = R0(a), BL(0) = BL0, BH(0) = BH0. (2.12)

We have listed all model parameters with brief descriptions in Table 1. To make things clear, we have also stated the
units for each of the quantities.
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3. Existence of the solution to the state system

For the existence of a solution, we first must develop a solution determined by the method of characteristics (see
[15, Section 4.3] and [18, Section 1.3]). Thenweprove the existence anduniqueness of solutions using the Banach contraction
mapping principle. To find the solution representation for the system (2.2)–(2.6), we introduce the following notation for
the right hand sides of the partial differential equations (PDEs):

f1(BL(t), BH(t), S(a, t), R(a, t)) = Λ(a, t) − βL(a)
BL(t)

κL(a) + BL(t)
S(a, t)

− βH(a)
BH(t)

κH(a) + BH(t)
S(a, t) + ω(a)R(a, t), (3.1)

f2(BL(t), BH(t), S(a, t), I(a, t), h(a, t), u(a, t)) = βL(a)
BL(t)

κL(a) + BL(t)
S(a, t)

+ βH(a)
BH(t)

κH(a) + BH(t)
S(a, t) − (1 − h(a, t))∆(a)I(a, t) − γ1(1 − u(a, t))I(a, t) − γ2u(a, t)I(a, t), (3.2)

f3(S(a, t), I(a, t), R(a, t), u(a, t)) = γ1(1 − u(a, t))I(a, t) + γ2u(a, t)I(a, t) − ω(a)R(a, t). (3.3)

Please note that the b(a)S(a, t), b(a)I(a, t) and the b(a)R(a, t) terms are not included in the fi for i = 1, 2, 3 terms. They
are included in the left hand side of the three partial differential equations (2.2)–(2.4) for use in the representation of the
solution via method of characteristics.

LetM be chosen such that

0 ≤ S0(a), I0(a), R0(a) a.e., A

0
S0(a)da ≤ M,

 A

0
I0(a)da ≤ M,

 A

0
R0(a)da ≤ M,

and 0 ≤ BH0, BL0 ≤ M.

(3.4)

We define our state solution space as

X =


(S, I, R, BH , BL) ∈ (L∞(0, T ; L1(0, A)))3 × (L∞(0, T ))2| sup

t

 A

0
|S(a, t)|da ≤ 2M, sup

t

 A

0
|I(a, t)|da ≤ 2M,

sup
t

 A

0
|R(a, t)|da ≤ 2M, |BH(t)| ≤ 2M, |BL(t)| ≤ 2M a.e. t


.

Using the method of characteristics, we can find the representation of the solution (if it exists) and we use that
representation to build the map to use in our fixed point argument for existence and uniqueness. Next we define a map

L : X → X such that
L(S, I, R, BH , BL) = (L1(S, I, R, BH , BL), L2(S, I, R, BH , BL), L3(S, I, R, BH , BL), L4(S, I, R, BH , BL), L5(S, I, R, BH , BL))

where L1 is associated with Eq. (2.2) and L2 is associated with Eq. (2.3), etc., and where

L1(S, I, R, BH , BL)(a, t) =



e−
 t
0 b(ατ−αt+a)dτ S0(a − αt) +

 t

0
e−

 t
s b(ατ−αt+a)dτ

× (f1(BH(s), BL(s), S(αs + a − αt, s), R(αs + a − αt, s))) ds
if a > αt
1
α

  a

0
e−

 a
s

b(τ )
α dτ

× f1


BH


s + αt − a

α


, BL


s + αt − a

α


,

S

s,

s + αt − a
α


, R


s,

s + αt − a
α


ds if a < αt,

(3.5)
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L2(S, I, R, BH , BL)(a, t) =



e−
 t
0 b(ατ−αt+a)dτ I0(a − αt) +

 t

0
e−

 t
s b(ατ−αt+a)dτ

× f2(BH(s), BL(s), S(αs + a − αt, s), I(αs + a − αt, s),
h(αs + a − αt, s), u(αs + a − αt, s)) ds if a > αt
1
α

  a

0
e−

 a
s

b(τ )
α dτ

× f2


BH


s + αt − a

α


, BL


s + αt − a

α


,

S

s,

s + αt − a
α


, I


s,

s + αt − a
α


, h


s,

s + αt − a
α


,

u

s,

s + αt − a
α


ds if a < αt,

(3.6)

L3(S, I, R, BH , BL)(a, t) =



e−
 t
0 b(ατ−αt+a)dτR0(a − αt) +

 t

0
e−

 t
s b(ατ−αt+a)dτ

× f3(S(αs + a − αt, s), I(αs + a − αt, s), R(αs + a − αt, s),
u(αs + a − αt, s)) ds if a > αt

e−
 a
0

b(τ )
α dτ

×

 A

0


S

s,

αt − a
α


+ I


s,

αt − a
α


+ R


s,

αt − a
α


f (s) ds

+


1
α

  a

0
e−

 a
s

b(τ )
α dτ

× f3


S

s,

s + αt − a
α


, I


s,

s + αt − a
α


,

R

s,

s + αt − a
α


, u


s,

s + αt − a
α


ds if a < αt,

(3.7)

with

L4(S, I, R, BH , BL)(t) = BH0e−χ t
+

 t

0

 A

0
e−χ(t−s)ξηI(a, t) dads, (3.8)

and

L5(S, I, R, BH , BL)(t) = BL0e−δLt +

 t

0
χe−δL(t−s)BH(s) ds. (3.9)

A fixed point of the map L, satisfying

(S, I, R, BH , BL) = (L1, L2, L3, L4, L5)(S, I, R, BH , BL),

with each of S(a, t), I(a, t), R(a, t), BH(t), and BL(t) being non-negative, will be a solution (S, I, R, BH , BL) = (S, I, R,
BH , BL)(u, h) to the state system.

Theorem 3.1 (Existence and Uniqueness of Solutions). For (u, h) ∈ Γ as defined in (2.1) and T sufficiently small, there exists a
unique solution (S, I, R, BH , BL) to the state system (2.2)–(2.6) with boundary and initial conditions (2.7)–(2.9) and (2.12).

Proof. We prove that the map

L : X → X,

defined above, is a strict contraction. We note that the functions f1, f2 and f3 in the S, I, R equations are Lipschitz in their
arguments with the Lipschitz constants depending on coefficients and parameters from the model as well as onM , through
the bounds on S, I, R from the set X .

To show that Lmaps X into X , from the definition of the map L, the definition of the Li functions for i = 1, 2, 3 gives A

0
|Li(S, I, R, BH , BL)|(a, t)da ≤ C1MT + M ≤ 2M

where the single M in the first inequality comes from the bound of
 A
0 S0(a)da,

 A
0 I0(a)da, or

 A
0 R0(a)da, respectively for

i = 1, 2, 3. Since T is sufficiently small, then the above estimate is less than or equal to 2M .
Additionally, for j = 4, 5, we have

|Lj(S, I, R, BH , BL)| ≤ max{BH0, BL0} + C2MT ≤ 2M.

The constants C1 and C2 depend on the coefficients and the parameters in the model. Again, for T sufficiently small, we
obtain the estimate above and therefore, we have that the Lmaps X into X .
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For the contraction property, for i = 1, 2, 3, we consider A

0
|Li(S1, I1, R1, BH1, BL1) − Li(S2, I2, R2, BH2, BL2)|(a, t) da.

In order to proceed, we need to investigate terms such as βL(a)
BL(t)

κL+BL(t)
S(a, t) and in particular their differences. For

example, we have

BL1(t)
κL + BL1(t)

|S1 − S2|(a, t) +
S2(a, t)κL|BL1 − BL2|(t)

(κL + BL1(t))(κL + BL2(t))
(3.10)

to consider from Eqs. (3.5) and (3.6). For specificity, we demonstrate an estimate of such a term for a > αt in
L1(S, I, R, BH , BL)(a, t): A

0

 t

0

e−
 t
s b(ατ−αt+a)dτ

× βL(αs + a − αt, s)
BL2(s)

κL + BL2(s)
|S2 − S1|(αs + a − αt, s)

+
S1(αs + a − αt, s)κL|BL2 − BL1|(s)

(κL + BL1(s))(κL + BL2(s))
+ βH(αs + a − αt, s)

BH2(s)
κH + BH2(s)

|S2 − S1|(αs + a − αt, s)

+
S1(αs + a − αt, s)κH |BH2 − BH1|(s)

(κH + BH1(s))(κH + BH2(s))
+ ω(αs + a − αt, s)(R2 − R1)(αs + a − αt, s)

− v(αs + a − αt, s)(S2 − S1)(αs + a − αt, s)| ds da.

If we let s1 = α(s − t) + a and s2 = s, then 0 < −αt + a < α(s − t) + a < a or 0 < α(s − t) + a < A and 0 ≤ s2 < T . In
addition, the Jacobian for this transformation is finite. Therefore, we can bound the estimate above by T

0

 A

0
C3|S2 − S1|(s1, s2) + C4|R2 − R1|(s1, s2) ds1ds2

+ C5

 T

0

 A

0
|S1(s1, s2)| ds1{|BL2(s2) − BL1(s2)| + |BH2(s2) − BH1(s2)| ds2}

≤ C6T sup
t

 A

0


|S2 − S1| + |R2 − R1|


(a, t) da + C7MT sup

t


|BL2 − BL1|(t) + |BH2 − BH1|(t)


where we have replaced the variables s1 and s2 by a and t , respectively. Also, the constants Ck for k = 3, . . . , 7 depend on
the bounds of the coefficients. Moreover, for terms involving the fractional components, we have used the 2M bound for the
terms involving the Si for i = 1, 2 in the second term of (3.10) for integrals over (0, A) × (0, t) when a > αt or for integrals
over (0, A) × (0, a) when a < αt < αT . We can gather these estimates to give A

0
|L1(S1, I1, R1, BH1, BL1) − L1(S2, I2, R2, BH2, BL2)|(a, t) da

≤ C8T sup
t

 A

0


|S2 − S1| + |R2 − R1|


(a, t) da + C9MT sup

t


|BL2 − BL1|(t) + |BH2 − BH1|(t)


.

A similar estimate holds for j = 2, 3.
For j = 4, 5, we have that

|Lj(S1, I1, R1, BH1, BL1) − Lj(S2, I2, R2, BH2, BL2)|(t) ≤ T sup
t

 A

0
|I1 − I2|(a, t) da + C10T sup

t
|BH1 − BH2|(t),

where C10 depends on χ and δ.
By combining the work above and by selecting T sufficiently small, we obtain the contraction result and thus the desired

fixed point for the system (2.2)–(2.6). �

Remark. By using an argument from Chapter 2 in [18] and noticing that the right hand side of each differential equations
has a common factor S, I , or R, respectively, one can obtain the non-negativity of the solutions.

4. Numerical concepts

In this section, we describe briefly the numerical method used in our computations. The equations for the quantities S, I ,
and R from (2.2)–(2.4) form a hyperbolic system of PDEs; coupled with these, we have the two ODEs for BH and BL from
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Table 2
These are the values of the model parameters in all
simulations except ξ in Section 5.3. All units are the same as
in Table 1.

Quantity Value

Λ(a, t) 0
h(a, t) 0.9
u(a, t) 0
βL

1.5
7

βH
1.5
7

κL 106

κH
κL
700

γ1
1
5

γ2
1
3

ξ 109

η 0.1
χ 120/day
δL

1
30

Fig. 2. Reference simulation with no infected population: population dynamics over time.

(2.5)–(2.6). Our choice of numerical method is a forward time/backward space finite difference scheme [46, Chapter 1]. For
the convenience of the reader we recall the scheme for the simpler case of the scalar one-way wave equation

∂w

∂t
+ α

∂w

∂x
= g(x, t) (4.1)

where α is a constant (physically the wave speed), and t and x represent time and space, respectively. The forward
time/backward space scheme [46] for the above problem is given by

un+1
m − un

m

1t
− α

un
m − un

m−1

1x
= g(xm, tn),

where n denotes the time index and m the space index in the time and space grid.
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Fig. 3. Reference simulation with no infected population: population dynamics as a function of age and time.

We also recall that any explicit scheme is only conditionally stable [46]. To ensure stability of the scheme, a necessary
and sufficient condition is the famous Courant–Friedrichs–Lewy (CFL) condition [46, Theorem 1.6.1] which requiresα 1t

1x

 ≤ 1. (4.2)

For a given spatial discretization 1x, this yields a restriction on the time step: 1t ≤ 1x/|α|.

5. Computational experiments and results

In this section,wepresent three simulations to test the robustness and accuracy of ourmodel.Wepoint out that themodel
parameters, especially the age-dependent coefficient functions, require more careful research and hence, at this point, our
current results are mainly useful in a qualitative sense. Nevertheless, even qualitative information on the dynamics of a
disease as complicated as cholera can be helpful in gaining further insight. The following results consider a maximum age of
A = 72 years in the population and run for 24 weeks, which is a duration of approximately half a year. The code internally
uses units of weeks for both age and time with an age resolution of 1 week and a time step of 1/50 weeks. Simulations
in [47] report an earlier version of the studies for this model.

We specify all the model parameters when we discuss our simulations in the following subsections. However, we will
point out an importantmodel parameter here—the rate ofwaning of immunity. Since cholera vaccines requiremore frequent
booster administration to children than adults, we model the rate of waning of immunity of humans at age a by

ω(a) =


1/365, a ≤ 10 years old,
1/(2 · 365), a > 10 years old. (5.1)

As we will see shortly, the rate of waning of immunity is important, because in particular, it influences our choice of initial
conditions.

5.1. The reference simulation with no infected population

Suppose we have a pool of 10,000 humans distributed uniformly over the age range 0 ≤ a ≤ A, none of whom are
infected. Since there are no infected humans in this reference case, I(a, 0) = 0 for all ages a at t = 0. Hence, all 10,000
humans are distributed to the susceptible and recovered categories. According to (5.1), it takes a year for a newborn baby
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Fig. 4. High rate of shedding of cholera: dynamics of the cholera epidemic over time.

to lose his or her immunity and become susceptible to cholera. Hence, we initialize everyone with age less than or equal to
one year old in the removed category and everyone older than one year old in susceptible category. This translates to the
initial conditions

S(a, 0) =


0 if 0 ≤ a ≤ 52 weeks,
d if a > 52 weeks

for the susceptible and

R(a, 0) =


d if 0 ≤ a ≤ 52 weeks,
0 if a > 52 weeks,

for the recovered populations, respectively. The numerical value of the age density d in the initial conditions depends on
the number of humans and the numerical resolution of the age variable: numerically, using the age resolution in weeks, we
will have a fixed density d for each age a for 0 ≤ a ≤ 52, given by

d =
10,000 (humans)

52 (week/year) × 72 (year)
≈ 2.67

humans
week

.

This gives the value of d in the initial conditions for S(a, 0) and R(a, 0). With the age resolution of 1 week, at the initial
time with constant density d, this gives 52d ≈ 139 humans of each age a. This is equivalent to saying that the 10,000 total
humans are distributed to the ages 0–72 uniformly as 10,000/72 ≈ 139 humans; these are distributed uniformly across the
values in the age category with the finer numerical resolution of 1 week.

For the initial vibrio populations we make the following assumptions: BL(0) = 0, BH(0) = 0. These assumptions fix the
choice of initial conditions in our system of differential equations.

Note that in our numerical results, we have a nonzero hydration strategy and have no antibiotic treatment strategy.
Investigating both of these strategies as optimal controls will be considered in a future paper.

To model the disease related mortality rate, we use from [5]

∆(a) =


0.007, a > 10 years old,
0.032, a ≤ 10 years old.

Table 2 lists the values for the remaining model parameters.
In Fig. 2, we depict the dynamics in the total population, susceptible population, infected population, and removed

(recovered) population over time. As expected, with no infected people in the initial population, the number of infected
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Fig. 5. High rate of shedding of cholera: (a) BH over time, (b) BL over time.

people remains zero at all times. Note that in this case, we see an increase in total population which is merely due to the
positive balance in the rate atwhich babies are born versus the natural death rate of people.We note here the decrease in the
susceptible population, which is due to people who died of natural causes during the time-line of the simulation. Moreover,
we see an increase in removed (recovered) population, which is due to the fact that newly born infants have immunity to
cholera, and it takes some time for them to lose their immunity (which is governed by the rate of waning of immunity).

Even though there is no epidemic in this simulation, our model depicts more than just the population dynamics. The
three-dimensional surface plots in Fig. 3 show the advantages of our age-structuredmodel even in this basic simulation. Each
plot in Fig. 3 shows the number of humans at an age a in years at time t in weeks; the color encodes the same information
as the height of surface. The number of humans at a particular age is computed by integrating each density, for instance,
S(a, t) from a years to a + 1 years using

 a+1
a S(ā, t) dā, representing the common understanding that humans from age a

to a + 1 are considered a years old. Notice that we use a resolution of 1 week in age; thus at the initial time with constant
density d, this gives 52d ≈ 139 humans of each age a. Comparing Fig. 3(c) and (a) close to age 0, we see how babies are born
immune and then over time lose their immunity and become susceptible.

5.2. The spread of an epidemic with a high rate of shedding of cholera

As before, we start with an initial population of 10,000 people. However, this time wewill put one infected person of age
18 years in the initial population and use ξ = 109. This is implemented in the code, with concentration units of humans per
age, by setting I(a, 0) = 0 for a < 18 and a > 19 years and one uniform value I(a, 0) > 0 for 18 ≤ a ≤ 19 years such that 19

18
I(a, 0) da = 1.
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Fig. 6. High rate of shedding of cholera: dynamics of the cholera epidemic as a function of age and time.

Fig. 7. Low rate of shedding of cholera: dynamics of the cholera epidemic over time.
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Fig. 8. Low rate of shedding of cholera: (a) BH over time, (b) BL over time.

This initial condition on I is interpreted as having one infected person of age 18 in the initial population. The numerical
values for I(a, 0) for 18 ≤ a ≤ 19 years depend on the resolution of the age variable. For instance, with the numerical
resolution of 1 week that we use, I(a, 0) = 1/52 for 18 ≤ a ≤ 19 years. The rest of the population of 9999 humans is
distributed in susceptible and removed categories like in the previous simulation.

As before, the plots in Fig. 4 depict, over time, the total population, the susceptible population, the infected population,
and the removed (recovered) population. We note the explosive nature of the spread of cholera in the plot of infected
people where we see a high of about 5000 infected people within the first couple of weeks of the epidemic. Qualitatively
similar results were obtained in [5] using an ODE model. We also looked at the dynamics of BH and BL over time which
are depicted in Fig. 5(a) and (b), respectively. They both show a peak within the first few days of the outbreak, but the less
infectious vibrios have a greater accumulation in total area under the given curve. To take advantage of our PDE model,
we can look at the model quantities in Fig. 6 which show how the quantities change over time across different age groups.
For example, in Fig. 6, in the surface plot of the susceptible population, the height (the vertical coordinate) at point (a, t)
is the number of susceptible people of age a at time t; the color encodes the same information as the height of the surface.
Since the susceptible and infected populations decrease, as expected, the recovered increase over time and age. Note that
due to infants, the recovered increase at a greater rate. This is assumed to occur due to a higher proportion of them having
immunity from their mother’s milk. Up to approximately age 72, the susceptible population decreases exponentially. The
infecteds have a peak at approximately 3 weeks. This coincides with the maximum height of the highly infectious and less
infectious vibrios in Fig. 5(a) and (b).

5.3. The spread of an epidemic with a low rate of shedding of cholera

In the previous simulation, we noted that our model reports a total of 5000 infected people in less than two weeks; this
shows the explosive nature of cholera [4]. One may simply ask which aspect of the model captures this explosive nature of
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Fig. 9. Low rate of shedding of cholera: dynamics of the cholera epidemic as a function of age and time.

cholera. The answer to that question lies in the role played by hyperinfective vibrios BH(t) [5]. Recall that in the system of
differential equations describing our model, we had the ODE (2.5)

dBH

dt
=

 A

0
ξηI(a, t)da − χBH(t), (5.2)

where ξ is the rate at which infected people shed hyperinfective vibrios into the aquatic environment. In the previous
simulations, we had ξ = 109. Making this number smaller implies that fewer hyperinfective vibrios are being released by
people. To see what will happen in this case, we conducted our third simulation, where we let ξ = 102. The remaining
parameters are as listed in Table 2.

The results of this simulation reported in Figs. 7–9 show the dynamics of the epidemic in this case of a lower rate of
shedding of cholera with the inclusion of one infected of age 18. We see that when the hyperinfective vibrios play a less
significant role, the result is a milder outbreak of the disease. We see here that we get is less than 1500 infected people in
over six weeks time, which is a much less severe case than that of our previous simulation.

With Fig. 7, the dynamics in comparison to Fig. 4 are different due to the decrease in ξ . We see an initial increase in the
total population and a decrease betweenweeks 5 and 12. The peak of the infected population occurs at roughly 5 weeks and
decays to approximately zero by week 12. As expected, the susceptibles decrease in this interval. The removed population
increases during this time. Yet, an interesting attribute is that the susceptible population increases slightly at the end of the
time frame.

In Fig. 8, we see that the peaks for the highly infectious vibrios shift by approximately 5weekswith almost a 107 decrease
in height. For the less infectious vibrios, the peak shifts in the same way. These graphs can help explain the shifts that occur
in Fig. 9 in relation to the higher shedding rate noted in Fig. 6. In addition, the decrease in the vibrio volume directly effects
the changes in the SIR curves due to the Michaelis–Menten terms involving BH and BL.

In Fig. 9, the shifts in the BH and BL peaks seen in Fig. 8 make their effects known in the translations in the infected and
susceptible peaks that occur later than in Fig. 4. Another difference fromFig. 4 is the increase in the susceptible population for
a person under the age of 10 at the end of the time period. We can only speculate that this increase happens due to a longer
time frame prior to the vibrio peak allowing more time for access to the disease, although at lower levels of occurrence.

6. Discussion

An age-structured model can model the infection pathway of cholera more precisely, since the risk for contracting the
disease depends on the age of a human.We see that introducing age as another independent variable entails solving a system
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of partial differential equations instead of simpler ordinary different equation systems; this introduces new challenges
for the existence of a solution of the system and for the numerical method. We present our existence result for the PDE
system using a fixed point argument. The reference simulation without any infected population reproduces the behavior of
a population model. A simulation with a high rate of shedding of cholera produces results that show the same rapid speed
of infection as traditional ODEmodels. To test the fidelity of the model and its implementation, a simulation with a low rate
of shedding of cholera is contrasted, which has a more moderate spike of infections. This shows the central role played by
the hyperinfective vibrios shed by infected and infectious people in the population, an important element pointed out in [5].
The results obtained by varying the rate of shedding motivate ideas on the different treatment options that may be possible
with this age-structuredmodel and its implementation. Combination treatments in an ordinary differential equation setting
have been introduced and theoretically analyzed in [7]. The inclusion of treatment control strategies in an age-structured
cholera model will be presented in future work.
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