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a b s t r a c t

The finite difference discretization of the Poisson equation with Dirichlet boundary
conditions leads to a large, sparse system of linear equations for the solution values at the
interior mesh points. This problem is a popular and useful model problem for performance
comparisons of iterative methods for the solution of linear systems. To use the successive
overrelaxation (SOR) method in these comparisons, a formula for the optimal value of
its relaxation parameter is needed. In standard texts, this value is only available for the
case of two space dimensions, even though the model problem is also instructive in
higher dimensions. This note extends the derivation of the optimal relaxation parameter
to any space dimension and confirms its validity by means of test calculations in three
dimensions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the Poisson equation with homogeneous Dirichlet boundary conditions
−1u = f inΩ, (1.1)
u = 0 on ∂Ω, (1.2)

on the domain Ω = (0, 1)d ⊂ Rd with boundary ∂Ω , where the Laplace operator in d dimensions is defined as 1u =∑d
i=1

∂2u
∂x2i
. Using N+2mesh points in each dimension, we construct a mesh with uniformmesh spacing h = 1/(N+1). The

finite difference discretization of (1.1)–(1.2) on the Nd interior points of this mesh results in large, sparse systems of linear
equations for the approximations to u at the mesh points.
Since the system matrix is symmetric positive definite and thus all standard iterative methods such as Jacobi,

Gauss–Seidel, SOR, SSOR, CG, etc., are guaranteed to converge, this linear system is a useful and popular model problem
for comparing the performance of these methods; see, e.g., [1, Section 6.3], [2, Subsection 9.1.1], [3, Chapter 10], and [4,
Section 7.1].
The family of classical iterativemethods include the successive overrelaxation (SOR)method,whose formulationdepends

on a relaxation parameterω. IfGω denotes the iterationmatrix of the SORmethod, the speed of its convergence is determined
by the spectral radius ρ(Gω), defined as the absolute value of the largest eigenvalue in magnitude of Gω . To include the SOR
method in comparisons between iterative methods, we need to use the optimal value for ω that minimizes the spectral
radius ρ(Gω). The value of the optimal relaxation parameter for the model problem on a N × N mesh in two dimensions is
well known in terms of the mesh spacing h = 1/(N + 1); see, e.g., [1, page 285], [4, page 540] for the exact value

ωopt =
2

1+ sin(πh)
(1.3)
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or, e.g., [2, page 155], [3, page 217] for approximations to (1.3) based on different Taylor expansions. Both the Poisson
problem (1.1)–(1.2) and the statements and derivations of ωopt in these sources are all specialized for the two-dimensional
case with dimension d = 2. But the comparison of iterative methods is also of interest for other cases of the dimension d.
The purpose of this note is to provide explicit derivation of the value (1.3) for any dimension d ≥ 1. The information here is
meant to complement the classical textbook information in [1–4] for two dimensions andwe thus purposely provide precise
citations to these standard texts.
After a brief reviewof the discretization of (1.1)–(1.2) by the finite differencemethod to set up thenotation of the resulting

systemof linear equations, Section 2 derives the eigenvalues and eigenvectors of the systemmatrix for any dimension d ≥ 1.
Section 3 recalls a standard formula for the optimal value of the relaxation parameter ω of the SOR method for a general
systemmatrix and applies it to our problem. Finally, Section 4 collect some numerical results in three dimensions to confirm
the validity of the analytical results.

2. The model problem in d dimensions

The centered difference approximation of the second derivative is used to discretize and approximate the second-order
derivatives in the Laplace operator in (1.1). Define a mesh with uniform mesh spacing h = 1/(N + 1) by the points
(xk1 , . . . , xkd) ∈ Ω ⊂ Rd with xki = h ki, ki = 0, 1, . . . ,N,N + 1, i = 1, . . . , d. Then approximate the second-order
derivative with respect to xi at the Nd interior mesh points by

∂2u(xk1 , . . . , xki , . . . , xkd)
∂x2i

≈
uk1,...,ki−1,...,kd − 2uk1,...,ki,...,kd + uk1,...,ki+1,...,kd

h2
, (2.1)

ki = 1, . . . ,N , i = 1, . . . , d, with approximations uk1,...,kd ≈ u(xk1 , . . . , xkd) at the mesh points. Using this approximation
in (1.1) together with the boundary condition (1.2) gives a system of Nd linear equations for the finite difference
approximations at the Nd interior mesh points. Collecting the unknown approximations uk1,...,kd in a vector u ∈ RN

d
using

the natural ordering of the mesh points, we can state the problem as A u = b with the system matrix A ∈ RN
d
×Nd , where

b ∈ RN
d
denotes a vector collecting h2 multiplied by right-hand side function evaluations f (xk1 , . . . , xkd) using the same

ordering as was used for uk1,...,kd .
In one dimension, the system matrix is well known to be A = TN := tridiag(−1, 2,−1) ∈ RN×N . Its eigenvalues and

eigenvectors are stated in [1, Lemma 6.1], though not derived. In [1, Section 6.3.3], explicit formulas are given for using TN to
construct the systemmatrices in two and three dimensions using Kronecker products ‘‘⊗’’ as A = TN ⊗ I+ I⊗ TN ∈ RN

2
×N2

and A = TN ⊗ I ⊗ I + I ⊗ TN ⊗ I + I ⊗ I ⊗ TN ∈ RN
3
×N3 , respectively. It is also described how the eigenvalues of the two-

and three-dimensional cases are based on those of TN [1, page 276]. It is reasonably clear how to generalize the formulas of
A and its eigenvalues to any dimension d ≥ 2 by observation, but no proof is available in [1].
Complete derivations, albeit only for the one- and two-dimensional model problems, are available in [2, Section 9.1.1].

The eigenvalue theory is still built on analyzing the matrix for the one-dimensional model problem, but a more general
tridiagonal matrix is involved. To this end, [2, Lemma 9.1.1] derives the eigenvalues and eigenvectors for the generalized
case of A = tridiag(β, α, β) ∈ RN×N as λk = α+2β cos

( kπ
N+1

)
, k = 1, . . . ,N , using the theory of finite difference equations.

For the model problem in one dimension, this gives with β = −1 and α = 2 the eigenvalues λk = 2 − 2 cos
( kπ
N+1

)
=

4 sin2
(

kπ
2(N+1)

)
, k = 1, . . . ,N . The eigenvalues and eigenvectors of the two-dimensional cases are then constructed in [2,

Theorem 9.1.2] from the one-dimensional case by considering vector-valued finite difference equations for the eigenvectors
split in block form.
To generalize the proof of [2, Theorem 9.1.2] to the model problem in d dimensions, it is necessary to use another way

to set up as A in d dimensions that is based on the block matrix structure of A, instead of the compact formula based
on Kronecker products: Define the tridiagonal matrix S1 := tridiag(β, α, β) ∈ RN×N and construct A = Sd ∈ RN

d
×Nd

recursively using the block-tridiagonal matrices

Si =


Si−1 Ti−1
Ti−1 Si−1 Ti−1

. . .
. . .

. . .

Ti−1 Si−1 Ti−1
Ti−1 Si−1

 ∈ RN
i
×N i , for i = 2, . . . , d, (2.2)

where Ti = βI ∈ RN
i
×N i denote diagonalmatrices of appropriate dimensions. Notice that themodel problem in ddimensions

is a special case of (2.2) with α = 2d and β = −1. Note that the dimension d enters into the system matrix of the
model problem through the diagonal elements of S1, which set the diagonal elements of all diagonal blocks Si to 2 d. In
the formulation using Kronecker products, this is accomplished by the addition of d Kronecker products, each with 2 on the
diagonal.
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To derive the eigenvalues in general higher dimensions d ≥ 2, we repeat the construction in the proof of [2,
Theorem 9.1.2] inductively and obtain the following result for all eigenvalues and eigenvectors.

Theorem 1. Let A = Sd ∈ RN
d
×Nd be defined as in (2.2)with d ≥ 1. Then the Nd eigenvalues λk1,...,kd of A, counted with respect

to the indices of the mesh points (k1, . . . , kd), are given by

λk1,...,kd = α + 2β
d∑
i=1

cos
(
kiπ
N + 1

)
, ki = 1, . . . ,N, i = 1, . . . , d, (2.3)

and components of the eigenvectors, counted with respect to the mesh points (m1,m2, . . . ,md), are

z(k1,k2,...,kd)m1,m2,...,md =

(
2

N + 1

) d
2 d∏
i=1

sin
(
kimiπ
N + 1

)
, ki,mi = 1, . . . ,N, i = 1, . . . , d. (2.4)

Proof. The statement of the theorem for d = 1 is a special case of [2, Lemma 9.1.1], which thus gives the initial step of the
induction.
In the induction step from d to d+1,we need to derive the eigenpairs (λ, z) of theN (d+1)×N (d+1)matrix A = Sd+1 defined

in (2.2), whose Nd × Nd sub-matrices we denote by S and T for short within this proof. The eigenvector z is partitioned as
z = (z1, . . . , zN)T ∈ RN

d+1
with the j-th block of z being zj ∈ RN

d
, j = 1, . . . ,N . Since A is block-tridiagonal, Az = λz gives

the difference equation

Tzj−1 + (S − λI)zj + Tzj+1 = 0, j = 1, . . . ,N, (2.5)

involving the sub-matrices S and T , where z0 = zN+1 = 0.
In the following, we use the vector indices k ≡ (k1, . . . , kd) and m ≡ (m1, . . . ,md) as abbreviations. The

induction assumption is that the results of the theorem hold for the Nd × Nd matrix S, which has eigenvalues λ(S)k =
α + 2β

∑d
i=1 cos(

kiπ
N+1 ) from (2.3) and eigenvectors from (2.4). Using these eigenvalues and eigenvectors, we have the

diagonalization S = QΛ(S)Q T with Λ(S) = diag(λ(S)k ) and the eigenvectors as the columns of the orthogonal matrix Q
by defining the entries q(k)m = ( 2

N+1 )
d
2
∏d
i=1 sin(

kimiπ
N+1 ),mi, ki = 1, . . . ,N . Since T = βI is a diagonal matrix of the same size

as S, it has a diagonalization T = QΛ(T )Q T withΛ(T ) = diag(λ(T )k ) and λ
(T )
k = β , using the same transformation matrix Q .

Using the diagonalizations of S and T in (2.5), we obtain the difference equation

Λ(T )yj−1 + (Λ(S) − λI)yj +Λ(T )yj+1 = 0, j = 1, 2, . . . ,N, (2.6)

for the transformed eigenvectors yj = Q Tzj. BothΛ(T ) and (Λ(S) − λI) are diagonal, therefore the difference equations

λ
(T )
k yk,j−1 + λ

(S)
k yk,j + λ

(T )
k yk,j+1 = λyk,j, j = 1, . . . ,N, (2.7)

for the components of yj decouple with k as parameter and involve only the diagonal entries ofΛ(T ) andΛ(S). This problem
can be rewritten in matrix form, when the parameter k is fixed and all components of y except the k-th one are 0,

λ
(S)
k λ

(T )
k

λ
(T )
k λ

(S)
k λ

(T )
k

. . .
. . .

. . .

λ
(T )
k λ

(S)
k λ

(T )
k

λ
(T )
k λ

(S)
k



yk,1
yk,2
...

yk,N−1
yk,N

 = λ

yk,1
yk,2
...

yk,N−1
yk,N

 .

As in [2, Theorem 9.1.2], the eigenpairs for such an eigenproblem are given as

λk,kd+1 = λ
(S)
k + 2λ

(T )
k cos

(
kd+1π
N + 1

)
, kd+1 = 1, . . . ,N,

y(k,kd+1)k,md+1
=

√
2

N + 1
sin
(
kd+1md+1π
N + 1

)
, kd+1,md+1 = 1, . . . ,N.

With the values for λ(S)k and λ
(T )
k from above, the eigenvalues are then

λk,kd+1 = α + 2β
d∑
i=1

cos
(
kiπ
N + 1

)
+ 2β cos

(
kd+1π
N + 1

)
= α + 2β

d+1∑
i=1

cos
(
kiπ
N + 1

)
.
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Since yj = Q Tzj, j = 1, . . . ,N , and because all components of y except the k-th one are 0, only the k-th entry of the (d+1)-st
block of y is nonzero. Hence, we have

z(k,kd+1)m,md+1 = q
(k)
m y

(k,kd+1)
k,md+1

=

(
2

N + 1

) d+1
2 d+1∏
i=1

sin
(
kimiπ
N + 1

)
.

These results are (2.3) and (2.4) for the Nd+1 × Nd+1 matrix A = Sd+1 and complete the proof of the induction step. �

The result in Theorem 1 is for the general matrix in (2.2). We collect the result needed for the systemmatrix of the linear
system resulting from the finite difference discretization of (1.1)–(1.2) in the following lemma.

Corollary 1. The system matrix A ∈ RN
d
×Nd derived from (2.1), which is (2.2) with α = 2 d and β = −1, with d ≥ 1 has Nd

eigenvalues

λk1,...,kd = 2 d− 2
d∑
i=1

cos
(
kiπ
N + 1

)
= 4

d∑
i=1

sin2
(

kiπ
2(N + 1)

)
, ki = 1, . . . ,N, i = 1, . . . , d.

Proof. Corollary 1 is easily checked by plugging α = 2 d and β = −1 into Theorem 1, with the final equality obtained from
a trigonometric identity. �

3. Convergence theory for the model problem

For a general system matrix A, many sources, e.g., [1, Theorem 6.7] and [2, Theorem 10.1.3], guarantee that the SOR
method converges for relaxation parameters 0 < ω < 2 and provide the formula for the optimal value

ωopt =
2

1+
√
1− ρ2

(3.1)

in terms of the spectral radius ρ ≡ ρ(GJ) of the iteration matrix of the Jacobi method. Using standard notation for the
splitting of the system matrix A = D − L − U into the diagonal part D and strictly lower and upper triangular parts −L
and−U , the iteration matrices of the Jacobi and SOR methods are GJ = I − D−1A and Gω = (D − ωL)−1[(1 − ω)D + ωU],
respectively [4, Section 7.2]. The conclusions of convergence of the SOR method and the value of the optimal relaxation
parameter require the assumptions that the system matrix A be consistently ordered and that the iteration matrix GJ of
the Jacobi method has only real eigenvalues satisfying ρ(GJ) < 1. One proof of this general results can be found in [2,
Section 10.1]; note that [2] develops the theory originally for the pre-factored version of the system matrix D−1A, but we
state it for the original matrix for consistency, and we use terminology of consistent ordering from [1, page 292].
To apply this result to our systemmatrix, we need to check the assumptions necessary for applying the general result, in

particular that A is consistently ordered.

Lemma 2. Consider the system matrix A = Sd in (2.2) for d ≥ 1 split in the standard form A = D− L−U. Then A is consistently
ordered, that is, det(kD− γ L− γ−1U) = det(kD− L− U) for all γ 6= 0 and for all k.

Proof. This proof generalizes the idea in the proof in [6, Theorem 2.1 on page 141] by constructing a similarity
transformation between the matrices kD − γ L − γ−1U and kD − L − U . Like for matrix A = Sd in (2.2), define Md =
kD − γ L − γ−1U , which is a block-tridiagonal matrix with blocks Mi = tridiag(γ−1T ,Mi−1, γ T ) for i = 2, . . . , d and
M1 = tridiag(γ−1β, kα, γ β). Here, T = βI denote again diagonal matrices of the appropriate sizes. Let Di be the diagonal
part and −Li and −Ui the strictly lower and strictly upper triangular parts of Si. Then Mi = kDi − γ Li − γ−1Ui for all
i = 1, . . . , d.
Now construct an invertible matrix Q1 ∈ RN×N by using Q1 = diag(1, γ , γ 2, . . . , γ N−1). It can be checked that the

similarity transformation Q−11 M1Q1 = Q
−1
1 (kD1 − γ L1 − γ−1U1)Q1 = kD1 − L1 − U1 holds. Then, define a sequence

of invertible block-diagonal matrices Qi = diag(Qi−1, γQi−1, . . . , γ N−1Qi−1) for i = 2, . . . , d that satisfy the analogous
similarity transformations for i = 2, . . . , d

Q−1i MiQi = Q
−1
i (kDi − γ Li − γ−1Ui)Qi

= Q−1i


Mi−1 γ−1T
γ T Mi−1 γ−1T

. . .
. . .

. . .

γ T Mi−1

Qi
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=


Q−1i−1Mi−1 γ−1Q−1i−1T
Q−1i−1T γ−1Q−1i−1Mi−1 γ−2Q−1i−1T

. . .
. . .

. . .

γ−(N−2)Q−1i−1T γ−(N−1)Q−1i−1Mi−1

Qi

=


Q−1i−1Mi−1Qi−1 T

T Q−1i−1Mi−1Qi−1 T
. . .

. . .
. . .

T Q−1i−1Mi−1Qi−1


= kDi − Li − Ui.

For i = d and with Q ≡ Qd, this construction yields a similarity transformation

Q−1(kD− γ L− γ−1U)Q = kD− L− U,

between Md = kD − γ L − γ−1U and kDi − Li − Ui = kD − L − U . Therefore, det(kD − γ L − γ−1U) = det(kD − L − U),
which is independent of γ for all γ 6= 0 and for all k. �

This lemma shows that the system matrix A in (2.2) is consistently ordered, which also applies to our system matrix as
a special case. To apply the general result, we need to check additionally that the eigenvalues of GJ are real and satisfy
ρ(GJ) < 1 for the special case of α = 2d and β = −1. Since GJ = I − D−1A and with the eigenvalues λk1,...,kd of A in their
final form from Corollary 1, we can explicitly compute the eigenvalues of GJ as the real numbers

µk1,...,kd = 1−
1
2d
λk1,...,kd = 1−

2
d

d∑
i=1

sin2
(

kiπ
2(N + 1)

)
, ki = 1, . . . ,N, i = 1, . . . , d. (3.2)

The largest eigenvalues in magnitude are attained for k1 = · · · = kd = 1 and= N , and thus the spectral radius of GJ is

ρ(GJ) = 1−
2
d

d∑
i=1

sin2
(

π

2(N + 1)

)
= 1− 2 sin2

(
π

2(N + 1)

)
= cos

(
π

N + 1

)
= cos(πh) (3.3)

with the notation h = 1/(N + 1) for the mesh spacing. Thus we have ρ(GJ) < 1 for all meshes with interior points (N ≥ 1).
Therefore, we can apply the general result to the systemmatrix A = Sd in (2.2) for the special case of α = 2d and β = −1

by inserting ρ = ρ(GJ) = cos(πh) into (3.1) to computeωopt = 2/(1+
√
1− cos2(πh)) = 2/(1+sin(πh)). This proves that

the formula for the optimal relaxation parameter of the SORmethod in (1.3) applies to themodel problem in any dimension
d ≥ 1. We see that while the eigenvalues µk1,...,kd of the iteration matrix GJ of the Jacobi method themselves depend on the
dimension d, the spectral radius ρ(GJ) = cos(πh) is the same for all d and thus alsoωopt is independent of the dimension d.

4. Numerical confirmation

The analytical result of the previous section gives the optimal value of the relaxation parameter ω for the SOR method,
for which the iterations should converge fastest to a given tolerance. Since the speed of convergence is indicated by the
spectral radius of the iteration matrix, the derivation for this result is based on deriving an explicit formula for the spectral
radius ρ(Gω) as a function of ω as [2, Theorem 10.1.3]

ρ(Gω) =

{1
4

[
ωρ +

√
(ωρ)2 − 4(ω − 1)

]2
for 0 < ω ≤ ωopt,

ω − 1 for ωopt ≤ ω < 2,
(4.1)

which is minimized for ω = ωopt. In (4.1), both the spectral radius of the Jacobi method ρ ≡ ρ(GJ) and the value ωopt
depend on the problem under consideration and its size, as seen in Figs. 1 (a) and (b), which plot the classical formula (4.1)
for the range 1.5 ≤ ω ≤ 2 for the model problem (1.1)–(1.2) in d = 3 space dimensions discretized as in Section 2 with
N = 32 and N = 64, respectively. Notice that in three dimensions, these values of N result in linear systems with system
matrices of sizes 32,768× 32,768 and 262,144× 262,144, respectively. Using a sparse storage mode, these are substantial
but feasible problem sizes on today’s computers and thus the model problem in three space dimensions is interesting for
numerical tests. The higher values of the spectral radius for N = 64 indicate that this problem will be the harder one to
solve and require more iterations to reach a converged solutions for any given, fixed tolerance.
To confirm the theoretical prediction of fastest convergence when using ω = ωopt, we conduct a numerical test and plot

the observed number of iterates taken by the SOR method for each relaxation parameter ω considered. We consider the
problem in d = 3 dimensions with right-hand side function

f (x1, . . . , xd) = (−2π2)
d∑
i=1

(
cos(2πxi)

∏
j6=i

sin2(πxj)

)
. (4.2)
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(a) N = 32. (b) N = 64.

(c) N = 32. (d) N = 64.

Fig. 1. Theoretical spectral radius ρ(Gω) in (4.1) vs. relaxation parameter ω in (a) and (b) and observed number of SOR iterations vs. relaxation parameter
ω in (c) and (d) for the model problem in three dimensions with N = 32 and N = 64. The star indicates the respective value vs. ω = ωopt in each plot.

(The problem has the known true solution u(x1, . . . , xd) =
∏d
i=1 sin

2(πxi), though this fact is not used here.) We start from
an all-zero vector as initial guess and use an tolerance of 10−6 on the Euclidean vector norm of the relative residual andmax-
imumnumber of iterations allowed set to 1,000. The test considers 33 values of the relaxation parameterω ranging from 1.5
to 2.0. Figs. 1 (c) and (d) plot the number of iterations taken by the SOR method with N = 32 and N = 64, respectively, to
either converge to the chosen tolerance or to reach the maximum number of iterations allowed. The marker indicates addi-
tionally the observed number of iterationswhen usingω = ωopt exactly. ForN = 32 in Fig. 1 (c), we haveωopt ≈ 1.8264 and
the observed number of iterations 99. ForN = 64 in Fig. 1 (d), we haveωopt ≈ 1.9078 and the observed number of iterations
196. In both cases, the number of iterations is indeed smallest at the optimal value of ω. Comparing the two cases, we see
that the case of N = 64 requires substantially more iterations to reach a converged solution, if one is reached at all within
the number of iterations allowed. In both cases of N , the number of iterations grows more the further ω is away from ωopt.
The observed behavior in Figs. 1 (c) and (d) agrees with the theoretical prediction in Figs. 1 (a) and (b), respectively. Both

the plot of the spectral radius and the numerical test highlight the importance of selecting ω as close to the optimal value
as possible. Moreover, we observe that the spectral radius as well as the number of iterations grow much more rapidly if ω
is to the left of ωopt, compared to a slower growth if ω is to the right of ωopt. These are the reasons for the observation that
ρ(Gω) ‘‘has a very narrow minimum’’ [1, page 294] and for the rule-of-thumb for the estimation of ωopt that it is ‘‘better to
overestimate it than to underestimate it’’ [2, page 153]. In the classical texts such as [1–4], these predictions are only based
on the theoretical prediction of the spectral radius as a function ofω as in Fig. 1 (a) and (b) and presented in the context of the
two-dimensional case of the model problem. Here, the previous sections extend the analytical result to d dimensions, and
this section also provides results of a numerical test in Fig. 1 (c) and (d) that extend the numerical test from two dimensions
in [5] to three dimensions.
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