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Abstract. The successive overrelaxation (SOR) method is an example of a classical iterative
method for the approximate solution of a system of linear equations. Its iteration matrix depends on
a relaxation parameter. There is no explicit formula for the optimal relaxation parameter in terms of
properties of the system matrix of a general system matrix. However, for the classical model problem
of a finite difference approximation to the Poisson equation, a formula for the optimal relaxation
parameter can be derived. Beyond this model problem, this result is also useful as guidance for the
choice of the parameter in other problems. This paper presents the detailed derivation of the formula
for the optimal relaxation parameter for the model problem and extends the well-known one- and
two-dimensional results to higher dimensions.
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1 Introduction

A classical model problem for the performance comparison of linear solvers is the system of linear
equations resulting from the finite difference discretization of the Poisson equation with Dirichlet
boundary conditions

−4u = f in Ω, (1.1)
u = g on ∂Ω, (1.2)

see, e.g., [1, Section 6.3], [3], [4, Subsection 9.1.1], [6, Chapter 10], [11, Section 7.1]. Here, Ω ⊂ Rd

denotes the domain of the partial differential equation in d = 1, 2, 3, . . . dimensions and ∂Ω denotes
the boundary of Ω. The Laplace operator 4u in d dimensions is defined as 4u =

∑d
i=1

∂2u
∂x2

i
. This

discretization results in a system of linear equations with a symmetric positive definite system matrix,
for which the convergence of several classical iterative methods (Jacobi, Gauss-Seidel, SOR, SSOR)
and modern iterative methods (conjugate gradient) can be guaranteed. Therefore, it is a good model
problem to compare the efficiency of these and other linear solvers. The two-dimensional version of
the problem, Ω ⊂ R2, is the most popular example, because direct methods (Gaussian elimination)
and iterative methods are competitive with each other on today’s computers; by contrast, for the one-
dimensional version, direct solvers are optimal, and for the three-dimensional version, only iterative
methods allow the solution of problems with reasonably fine spatial resolutions.

The classical iterative methods include the successive overrelaxation (SOR) method, whose formu-
lation depends on a relaxation parameter ω. The speed of convergence of classical iterative methods
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is determined by the spectral radius ρ(G), defined as the absolute value of the largest eigenvalue in
magnitude, of the iteration matrix G. The value of ω for which the spectral radius is minimized and
the convergence of the SOR method is the fastest is ωopt. For a general linear system Ax = b, no
explicit formula exists to compute its value in terms of properties of the system matrix A. But for
the model problem (1.1)–(1.2) discretized by a finite difference method on a uniform mesh with N +2
points in each coordinate direction, the formula

ωopt =
2

1 + sin πh
(1.3)

gives the optimal value for ω in terms of the mesh spacing h = 1/(N + 1).
The exact formula in (1.3) is available in several sources, e.g., [11, page 540], or sometimes an

approximation such as ωopt = 2(1 − πh) + O(h2) obtained using a Taylor expansion for the sine
function [4, page 155]. Some sources, notably [4, Subsections 9.1.1 and 10.1.1 together], also show
the complete derivation of the (Taylor approximation of the) result, but the derivations are typically
written specifically for the 2-D test problem. Another difficulty for casual reading of the derivations
in some sources is also that they give — for didactic purposes — an interleaved presentation of the
general theory and its application to the model problem. The key problem with the above is that it
is not clear which results are valid in more generality than for the model problem and — even for the
model problem — which part of the results extend to other than two dimensions.

Thus, this note has the dual purposes of reviewing the full derivation of the exact formula (1.3),
while clearly separating the general theory from its application to the model problem, and extending
the proof to the general d-D model problem for all d = 1, 2, 3, . . .. The final result is collected in
Theorem 11 that confirms that (1.3) is indeed the optimal relaxation parameter for the SOR method
in any space dimension.

This paper is organized as follows. Section 2 reviews the relevant results on the convergence
theory of the SOR method that are valid for linear systems with general system matrices. Moreover,
if the system matrix satisfies a certain technical assumption, the relation between spectral radius of
its Jacobi and SOR iteration matrices can be established. Section 3 introduces the Poisson equation
as model problem and its discretization by the finite difference method that results in the particular
system matrices, for which we wish to derive the optimal relaxation parameter. To prepare this,
the eigenvalue and eigenvectors of the system matrices are derived, first in 1-D and in 2-D, then
furthermore in general d-D. For interest, a way of discrete Fourier transforms is showed to derive the
eigenvalues of the 2-D model problem, whose idea is from [12, Section 4.6] and [2]. Section 4 shows
that the model problem satisfies the needed technical assumption in Section 2 and then derives the
optimal relaxation parameter for any d-D model problem, using the eigenvalues of the system matrices
of the linear system from Section 3.

2 Some Results for the SOR Method for General System Matrices

For iterative methods, various authors have developed a convergence theory, see, e.g., [5], [11], [12],
and others. Here, we state and derive some well-known theorems about the convergence of classical
iterative methods. These statements apply to linear systems Ax = b with general n × n system
matrices without making any assumption on A, aside from A being non-singular. Then, under only
one technical assumption, it is possible to derive a formula for the optimal relaxation parameter for
the SOR method, if one has the spectral radius of the Jacobi method available.

Suppose that a matrix norm ‖ · ‖ is defined. Consider the iteration in the form of

Mx(k+1) = Nx(k) + b, k = 0, 1, 2, . . . , (2.1)

where A = M −N is a splitting of A with a non-singular matrix M . Let the true solution be denoted
as x, and the approximation solution in the kth iteration be x(k). One obvious way to estimate the
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error in each step is by analyzing e(k) = x− x(k). From Ax = b with A = M −N and from (2.1), we
have

x = M−1Nx + M−1b,

x(k+1) = M−1Nx(k) + M−1b.

Subtracting the two equations, we obtain x−x(k+1) = M−1N(x−x(k)), namely e(k+1) = M−1Ne(k) =
Ge(k), with iteration matrix G = M−1N . Substituting e(k) with its previous item inductively, we have
e(k) = Gke(0), where e(0) is the initial error.

Theorem 1. [11, Section 7.3] An iterative method converges for any initial guess x(0), if and only if
the spectral radius ρ(G) of its iteration matrix G satisfies

ρ(G) < 1,

where ρ(G) is the spectral radius of G. For large k, it holds that

‖e(k+1)‖
‖e(k)‖

≈ ρ(G).

Therefore, ρ(G) is the convergence rate of the iterative method.

Here, the spectral radius ρ(G) is the absolute value of the largest (in magnitude) eigenvalue of G,
that is, ρ(G) = maxk |λk|, if λk, k = 1, . . . , n, are the eigenvalues of G.

Consider now the classical iterative method SOR, which is given by (2.1) with the splitting matrix
M = 1

ωD − L, where we use the standard notation of A = D − L − U with D denoting the diagonal
part of A and −L and −U denoting the strictly lower and upper triangular parts of A, respectively.
The parameter ω is called a relaxation parameter. Let GJ and Gω denote the iteration matrices
of the Jacobi and SOR methods, respectively. Here, GJ = I − D−1A = D−1(L + U), and Gω =
I − (ω−1D − L)−1A = (D − ωL)−1[(1− ω)D + ωU ].

Theorem 2. [5, Section 4.4] If the SOR method converges, then the parameter ω satisfies that 0 <
ω < 2.

Proof. The iteration matrix for the SOR method is given by

Gω = M−1N = (D − ωL)−1[(1− ω)D + ωU ].

Using properties of the determinant and the fact that the matrices (1− ω)I + ωD−1U , (I − ωD−1L),
and hence also (I − ωD−1L)−1 are triangular, we can compute

det(Gω) = det
[
(D − ωL)−1[(1− ω)D + ωU ]

]
= det

[
[(D(I − ωD−1L)]−1

]
det

[
D[(1− ω)I + ωD−1U ]

]
= det(D−1) det[(I − ωD−1L)−1] det(D) det[(1− ω)I + ωD−1U ]

= det[(1− ω)I + ωD−1U ]
= (1− ω)n,

where n denotes the dimension of the matrix A. Therefore, the eigenvalues λi, i = 1, . . . , n, of the
iteration matrix Gω satisfy

n∏
i=1

λi = (1− ω)n. (2.2)

Hence, for the maximum eigenvalue in absolute value ρ(Gω), it must be not less than |1−ω|, otherwise
(2.2) cannot hold. If the SOR is convergent, then ρ(Gω) < 1. Hence, it follows that |1− ω| < 1. For
real numbers ω, this means that 0 < ω < 2.
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Theorem 3. [4, Section 10.1] Let A = D−L−U be a matrix that satisfies the technical assumption

det(kD − γL− γ−1U) = det(kD − L− U) for all k, γ ∈ R\{0}, (2.3)

and GJ and Gω the iteration matrices of the Jacobi and SOR methods, as defined above. If µ is an
eigenvalue of GJ and λ 6= 0 satisfies

µ =
λ + ω − 1

ωλ1/2
(2.4)

for some ω ∈ (0, 2), then λ is an eigenvalue of Gω.

Proof. We have the definitions for GJ and Gω that

GJ = D−1(L + U)

Gω = (D − ωL)−1[(1− ω)D + ωU ].

Let λ be one eigenvalue of Gω, λ 6= 0. Because U and L are strictly upper and lower triangular
matrices, and their main diagonal are zeros, we have det(D−1) det(D − ωL) = 1.

det(Gω − λI) = det
[
(D − ωL)−1[(1− ω)D + ωU ]− λI

]
= det(D−1) det(D − ωL) det

[
(D − ωL)−1[(1− ω)D + ωU ]− λI

]
= det[(1− ω)I + ωD−1U − λI + ωλD−1L]

= ωn det[(
1
ω
− 1)I + D−1U − λI

ω
+ λD−1L]

= (−1)nωnλ1/2 det(D−1) det[
ω + λ− 1

ωλ1/2
D − λ−1/2U − λ1/2L], use (2.3)

= (−1)nωnλ1/2 det[
ω + λ− 1

ωλ1/2
I −D−1U −D−1L]

= ωnλ1/2 det[GJ −
ω + λ− 1

ωλ1/2
I].

Because λ 6= 0 satisfies

µ =
λ + ω − 1

ωλ1/2
,

µ is an eigenvalue of GJ . In turn, when µ is an eigenvalue of GJ , and λ satisfies that relation, then λ
is an eigenvalue of Gω.

�

Theorem 4. [4, Section 10.1] Assume A = D − L − U is a matrix that satisfies (2.3), and assume
that GJ = I − D−1A has only real eigenvalues and that β ≡ ρ(GJ) < 1. Then the SOR iteration
converges for every ω ∈ (0, 2), and the spectral radius of the SOR matrix is

ρ(Gω) =
{

1
4 [ωβ +

√
(ωβ)2 − 4(ω − 1)]2 for 0 < ω ≤ ωopt,

w − 1 for ωopt ≤ ω < 2,
(2.5)

where ωopt, the optimal value of ω, is

ωopt =
2

1 +
√

1− β2
. (2.6)

For any other value of ω, we have

ρ(Gωopt) < ρ(Gω), for ω ∈ (0, 2)\{ωopt}. (2.7)
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Proof. For a given ω, ρ(Gω) is the largest eigenvalue of Gω in absolute value. Suppose that µ is an
eigenvalue of GJ . Solving (2.4) in Theorem 3, we have

λ =
1
4

(
ωµ±

√
(ωµ)2 − 4(ω − 1)

)2

. (2.8)

Then by Theorem 3, (2.8) gives two eigenvalues for Gω.
First, if (ωµ)2 − 4(ω − 1) < 0, then λ is imaginary, and the absolute value of λ is

|λ| =
(√

1
4
ω2µ2 + ω − 1− 1

4
ω2µ2

)2

= ω − 1,

when

ω̃ ≡ 2(1−
√

1− µ2)
µ2

< ω < 2.

Here, ρ(Gω) = |λ| is independent of µ = ρ(GJ).
Second, if (ωµ)2 − 4(ω − 1) ≥ 0, then

ρ(Gω) = max
µ∈σ(GJ )

1
4

[
ω|µ|+

√
(ω|µ|)2 − 4(ω − 1)

]2

, ω ∈ (0, ω̃].

On one hand, for a fixed ω, ρ(Gω) is an increasing function with respect to variable |µ|. Hence, to get
the spectral radius of Gω, let |µ| = ρ(GJ) = β, we have

ρ(Gω) =
1
4
[ωβ +

√
(ωβ)2 − 4(ω − 1)]2.

On the other hand, ρ(Gω) can be proved to be a decreasing function with respect of ω in (0, ω̃]. Details
are as follows. We have the first order derivative of ρ(Gω)

ρ′(Gω) =
1
2
(ωβ +

√
(ωβ)2 − 4(ω − 1))

(
β +

β2ω − 2√
(ωβ)2 − 4(ω − 1)

)
.

To determine its sign, we need to examine the sign of

β +
β2ω − 2√

(ωβ)2 − 4(ω − 1)
.

Because
√

(ωβ)2 − 4(ω − 1) > 0, β < 1, ω < 2 and

β
√

(ωβ)2 − 4(ω − 1) + β2ω − 2 <
√

ω2 − 4ω + 4 + ω − 2

=
√

(ω − 2)2 + ω − 2
= 2− ω + ω − 2
= 0.

Therefore, ρ′(Gω) < 0 in the interval (0, ω̃], which implies that ρ(Gω) is a decreasing function of ω.
When ω = ω̃, ρ(Gω) gets its minimum in the interval (0, ω̃]. We have proved above that in the interval
(ω̃, 2), ρ(Gω) = ω − 1 is an increasing function and also gets its minimum when ω approaches to
ω̃. Moreover, ρ(Gω) is continuous at the point ω̃. Considering that the optimal parameter ω is the

very number that makes ρ(Gω) gets its minimum. Therefore, ω̃ = ωopt = 2(1−
√

1−β2)

β2 = 2

1+
√

1−β2
.

According to the statement above, for any value of ω,

ρ(Gωopt) < ρ(Gω), ω ∈ (0, 2)\{ωopt}.
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Figure 1: Plot of ρ(Gω) defined in (2.5).

�

To get a visual impression of the influence of the choice of ω on the spectral radius ρ(Gω) given by the
function defined in (2.5), we plot ρ(Gω) as a function of ω in Figure 1 for several values of β = ρ(GJ).
The plot shows that the curve has a vertical asymptote from the left at ω = ωopt, but is linear for
ω > ωopt. Thus, it is better to slightly overestimate ωopt than to underestimate it, which is a classical
rule-of-thumb for the SOR method [1, page 294].

3 The Model Problem and its Eigenvalues

3.1 The 1-D Model Problem

Many large-scale linear equation systems arise from the discretization of partial differential equations.
One fundamental partial differential equation is the Poisson equation (1.1) subject to the boundary
condition (1.2). In the model problem, we consider g = 0 for simplicity and the unit interval Ω = (0, 1)
for 1-D case and the unit square Ω = (0, 1)× (0, 1) for 2-D case.

The finite difference method is now used to discretize this model, that is, to approximate the
derivatives in the differential equation. Topics on discretization of PDEs can be found on many books,
e.g., [7], [9], and [10]. First look at the Taylor series,

u(x + h) = u(x) + h
du

dx
+

h2

2!
d2u

dx2
+

h3

3!
d3u

dx3
+O(h4), (3.1)

u(x− h) = u(x)− h
du

dx
+

h2

2!
d2u

dx2
− h3

3!
d3u

dx3
+O(h4). (3.2)

Combining (3.1) and (3.2), we have

d2u

dx2
=

u(x− h)− 2u(x) + u(x + h)
h2

+O(h2). (3.3)

This formula involves the solution at three points u(x− h), u(x), u(x + h), hence this finite difference
is said to use a three-point stencil. It is called a centered difference approximation of the second
derivative. If any of the points is on the boundary, its value is known, namely as 0 in the model
problem, otherwise the points are in the interior of Ω.
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Now, use the three-point stencil for the finite difference approximation

−u′′ = f(x) in Ω = (0, 1) (3.4)

subject to the boundary condition
u(0) = 0 and u(1) = 0. (3.5)

Let h = 1/(N+1) denote the mesh spacing, where N means dividing the [0, 1] interval with N+2 points.
Hence, we get a mesh of uniformly spaced points xk = kh on the interval [0, 1], for k = 0, 1, . . . , N, N+1.
Then we can approximate u′′(xk) at the interior points of the mesh with the formula according to (3.3)

h2f(xk) = −h2u′′(xk) ≈ −u(xk−1) + 2u(xk)− u(xk+1), k = 1, . . . , N, (3.6)

where we use the boundary conditions u0 = uN+1 = 0. Therefore, we get a system of N equations in
N unknowns.

If the unknowns uk ≈ u(xk) are organized in a column vector u = [u1, u1, . . . , uN ]T ∈ RN , the
equations in (3.6) can be organized in matrix form

ANu = b

with the tri-diagonal system matrix

AN =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


(3.7)

and right-hand side b = h2[f(x1), f(x2), . . . , f(xN )]T .
Before moving on to the proof of the following theorem that gives the eigenvalues and eigenvectors

of the system matrix in (3.7), we quote one result for the solution to finite difference equations for
simple roots of the characteristic polynomial from [7, Section 1.3].

Theorem 5. If all the roots of the characteristic polynomial of a linear difference equation are simple
and nonzero, then each solution of the difference equation is a linear combination of such special
solution.

In other words, if r1, r2, . . . , rm are simple and nonzero roots for characteristic polynomial of a
difference equation, then the components xi of the solution vector of the difference equation x can be
written as

xi =
m∑

i=1

akr
i
k, 1 ≤ i ≤ m,

where ak are coefficients that are determined from the boundary conditions.

Theorem 6. Let AN ∈ RN×N be the matrix given in (3.7), then the eigenvalues λk and eigenvectors
z(k), k = 1, . . . , N , of AN are given by

λk = 2
(

1− cos
(

kπ

N + 1

))
= 4 sin2

(
kπ

2(N + 1)

)
(3.8)

and the components of z(k) = (z(k)
` ) by

z
(k)
` =

√
2

N + 1
sin

(
k`π

N + 1

)
, ` = 1, 2, . . . , N. (3.9)
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Proof. Let (λ, z) denote one eigenpair. So, ANz = λz or (AN − λI)z = 0, namely
2− λ −1
−1 2− λ −1

. . . . . . . . .
−1 2− λ −1

−1 2− λ




z1

z2

z3
...

zN

 = 0

The kth component of this equation is −zk−1 +(2−λ)zk− zk+1 = 0, k = 1, . . . , N , with the boundary
conditions z0 = zN+1 = 0. We can re-write this as

zk+2 − (2− λ)zk+1 + zk = 0, (3.10)

where k = 0, . . . , N − 1, and z0 = zN+1 = 0. This problem is a second-order linear finite difference
equation with constant coefficients, one of whom contains the eigenvalue λ that also needs to be
determined as part of the problem. We have the characteristic polynomial p(r) = r2 − (2− λ)r + 1 of
(3.10).

If the characteristic equation had a double root r1, then the general solution of (3.10) had the form
z` = αr`

1 + β`r`
1. The boundary conditions z0 = α = 0 and zN+1 = αrN+1

1 + β(N + 1)rN+1
1 = 0 would

then give α = β = 0. Hence, we need to have two distinct roots r1 6= r2 and have the general solution
z` = αr`

1 + βr`
2, by Theorem 5.

The boundary condition then read{
0 = α + β,

0 = αrN+1
1 + βrN+1

2 .

Solving these equations, we have (
r1

r2

)N+1

= 1,

that is the fraction r1/r2 can be any of the N + 1 complex roots of unity given by

r1

r2
= e

2πki
N+1 , k = 0, . . . , N, (3.11)

or r1 = r2e
2πki
N+1 . Since r1 and r2 are the roots of the characteristic polynomial, we also have p(r) =

r2− (2−λ)r+1 = (r−r1)(r−r2) = r2− (r1 +r2)r+r1r2. Matching the constant terms gives 1 = r1r2

and thus
r1 = e

ikπ
N+1 , r2 = e

−ikπ
N+1 , k = 1, . . . , N ;

notice that the case k = 0 would result in a double root, and we showed above already that this cannot
be the case. Matching now the coefficient of the linear term gives 2 − λ = r1 + r2, which determines
the eigenvalues λk, k = 1, . . . , N , as

λk = 2− (r1 + r2) = 2−
(
e

ikπ
N+1 + e

−ikπ
N+1

)
= 2− 2 cos(

kπ

N + 1
), k = 1, 2, . . . , N,

using the formula cos θ = (eiθ+e−iθ)/2. Using moreover the trigonometric identity cos 2x = 1−2 sin2 x

gives the alternative form λk = 4 sin2
(

kπ
2(N+1)

)
.

Therefore, using sin θ = (eiθ − e−iθ)/(2i), we finally have the components of the eigenvectors

z
(k)
` = αr`

1 + βr`
2 = α(e

k`πi
N+1 − e

−k`πi
N+1 ) = 2iα sin

(
k`π

N + 1

)
.
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Letting α =
√

2
N+1/(2i), we have

z
(k)
` =

√
2

N + 1
sin

(
k`π

N + 1

)
.

The choice of α in the scaling of the eigenvectors ensures that they are real and are normalized, that
is, ‖z(k)‖2 = 1. Notice moreover that the eigenvectors form an orthogonal set, since AN is symmetric.
Together with the normalization, this gives an orthonormal set.

We will later need a generalization to tri-diagonal matrices of the following form.

�

Theorem 7. [4, Section 9.1] Let A be an N ×N matrix of the form
α β
β α β

. . . . . . . . .
β α β

β α

 .

Then the eigenvalues λk and eigenvectors z(k), k = 1, . . . , N , of A are given by

λk = α + 2β cos
(

kπ

N + 1

)
(3.12)

and the m-th component of z(k) = (z(k)
m ) by

z(k)
m =

√
2

N + 1
sin

(
mkπ

N + 1

)
, k, m = 1, 2, . . . , N. (3.13)

Proof. See the proof of Lemma 9.1.1 in Greenbaum [4, Section 9.1].

�

Notice that the eigenvectors do not involve the coefficients α and β, thus all matrices A of this form
can be diagonalized using the same transformation matrix Q with the eigenvectors z(k) as its columns.
Since the eigenvectors form an orthonormal set, this matrix will be orthogonal, that is, it satisfies
QT Q = I or Q−1 = QT .

3.2 The 2-D Model Problem

In two dimensions, let the domain of the model problem be the unit square Ω = (0, 1) × (0, 1). The
Poisson problem (1.1)–(1.2) can be written in 2-D concretely as

−∂2u

∂x2
− ∂2u

∂y2
= f in Ω, (3.14)

subject to the boundary condition
u = 0 on ∂Ω. (3.15)

Let h = 1/(N +1) denote the mesh spacing, where N means divides each direction of [0, 1]× [0, 1] into
N + 2 points. Hence, we get a mesh of uniformly spaced points (xk, y`) = (kh, `h) on the bounded
region Ω, for k, ` = 0, 1, . . . , N, N + 1. According to (3.3), fixing the y variable, we have

∂2u

∂x2
(xk, y`) ≈

u(xk−1, y`)− 2u(xk, y`) + u(xk+1, y`)
h2

. (3.16)
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With the x variable being fixed, we obtain

∂2u

∂y2
(xk, y`) ≈

u(xk, y`−1)− 2u(xk, y`) + u(xk, y`+1)
h2

. (3.17)

Combining (3.16) and (3.17) together, we can approximate −4u(xk, y`) = f(xk, y`) with the following
formula

−uk−1,` − uk,`−1 + 4uk,` − uk,`+1 − uk+1,` = h2fk,`, k, ` = 1, 2, . . . , N. (3.18)

Using the fact that the value of u = 0 on the boundary is known and we only have to consider
approximations uk` ≈ u(xk, y`) for the interior points, we have N2 equations in N2 unknowns. If the
unknowns are organized in natural ordering into the column vector

u = [u11, u21, . . . , uN1, u12, u22, . . . , uN2, . . . , u1N , u2N , . . . , uNN ]T ∈ RN2
,

then the problem can be stated in matrix form

Au = b, (3.19)

with system matrix

A =


S T
T S T

. . . . . . . . .
T S T

T S

 , S =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

 , T =


−1

−1
. . .

−1
−1

 (3.20)

and b collecting the terms h2f(xk, y`) in the same order as the terms in u.

Theorem 8. [4, Section 9.1] Let A ∈ RN2×N2
be defined as in (3.20). The eigenvalues of A are then

λk,` = 4 sin2

(
kπ

2(N + 1)

)
+ 4 sin2

(
`π

2(N + 1)

)
, k, ` = 1, 2, . . . , N,

with corresponding eigenvectors, with components counted with respect to the mesh point (m,n),

z(k,`)
m,n =

2
N + 1

sin
(

mkπ

N + 1

)
sin

(
n`π

N + 1

)
, m, n, k, ` = 1, 2, . . . , N

Proof. Let (λ, z) be one eigenpair of A, namely Az = λz. A is in block form, having N ×N blocks
of size N ×N . Let eigenvector z be partitioned as

z =

 z1
...

zN

 ∈ RN2
with the n-th block of z being zn =

z1,n
...

zN,n

 ∈ RN , n = 1, . . . , N.

According to the block matrix eigenproblem, we have

Tzn−1 + (S − λI)zn + Tzn+1 = 0, n = 1, 2, . . . , N, (3.21)

where z0 = zN+1 = 0.
In Section 3.1, we have seen that S and T can be diagonalized as S = QΛSQT and T = QΛT QT with
the same orthogonal transformation matrix Q and diagonal matrices ΛS and ΛT , whose k-th diagonal
entries are

λS,k = 4− 2 cos
(

kπ

N + 1

)
,

λT,k = −1.

10



By (3.13), the mth component of column k of Q is

q(k)
m =

√
2

N + 1
sin

(
mkπ

N + 1

)
, m, k = 1, 2, . . . , N.

Using (3.21), we have

QT Tzn−1 + QT (S − λI)zn + QT Tzn+1 = 0

⇒ ΛT yn−1 + (ΛS − λI)yn + ΛT yn+1 = 0, yn = QT zn, n = 1, 2, . . . , N.

Both ΛT and (ΛS − λI) are diagonal. So we have the following difference equation

λT,kyk,n−1 + λS,kyk,n + λT,kyk,n+1 = λyk,n, k = 1, 2, . . . , N.

This problem can be rewritten in matrix form, when the index k is fixed and all components of y
except the kth one are 0,

λS,k λT,k

λT,k λS,k λT,k

. . . . . . . . .
λT,k λS,k λT,k

λT,k λS,k




yk,1

yk,2
...

yk,N−1

yk,N

 = λ


yk,1

yk,2
...

yk,N−1

yk,N

 .

By Theorem 7, the eigenpairs for such an eigenproblem are given as

λk,` = λS,k + 2λT,k cos
(

`π

N + 1

)
= 4− 2 cos

(
kπ

N + 1

)
− 2 cos

(
`π

N + 1

)
(3.22)

= 4 sin2

(
kπ

2(N + 1)

)
+ 4 sin2

(
`π

2(N + 1)

)
, (3.23)

y
(k,`)
k,n =

√
2

N + 1
sin

(
n`π

N + 1

)
,

where k, `, n = 1, 2, . . . , N. Here, y
(k,`)
k,n is the kth entry of the nth block of the corresponding eigenvec-

tor.
Since yn = QT zn, n = 1, 2, . . . , N , and because all components of y except the kth one are 0, only the
kth entry of the nth block of y is nonzero. Hence, we have

z(k,`)
m,n = qk

my
(k,`)
k,n =

2
N + 1

sin
(

mkπ

N + 1

)
sin

(
n`π

N + 1

)
.

�

Remark. There is another way to find the eigenvalues of the 2-D model problem. For interest, we
show in detail how to use discrete Fourier transforms to get the eigenvalues. The idea comes from [12,
Section 4.6] and [2]. For more details about Fourier transformations, [8] is a good reference.

Let A be the coefficient matrix given by (3.20). To determine the eigenvalues of A, we can solve
the equation

−uk−1,` − uk,`−1 + (4− λ)uk,` − uk,`+1 − uk+1,` = 0, (3.24)

11



where u0,` = 0, uk,0 = 0, for k, ` = 1, 2, . . . , N . By [8, Section 19.4], the 2-D inverse sine transform for
uk,` is

uk,` =
4

(N + 1)2

N∑
m=1

N∑
n=1

ûm,n sin
kπm

N + 1
sin

`πn

N + 1
,

which satisfies the Dirichlet boundary condition u = 0 on the boundary, when k = 0, N + 1 or
` = 0, N + 1. Then we introduce some notations, following [2]. Denote

Sa
b = sin

aπb

N + 1
,

Ca
b = cos

aπb

N + 1
.

Applying this to (3.24), we get

4
(N + 1)2

N∑
m=1

N∑
n=1

ûm,n

(
Sk−1

m S`
n + Sk

mS`−1
n + Sk

mS`+1
n + Sk+1

m S`
n

)
=

4(4− λ)
(N + 1)2

N∑
m=1

N∑
n=1

ûm,nSk
mS`

n.

Canceling out the common factor and taking away the summation, we have

Sk−1
m S`

n + Sk
mS`−1

n + Sk
mS`+1

n + Sk+1
m S`

n = (4− λ)Sk
mS`

n (3.25)

Since sin(a + b) = sin a cos b + cos a sin b, we have in our notation

Sa+b
m = Sa

mCb
m + Ca

mSb
m.

Moreover,
C−a

m = Ca
m,

S−a
m = −Sa

m.

Therefore,

Sk+1
m S`

n + Sk−1
m S`

n = S`
n

(
Sk

mC1
m + Ck

mS1
m + Sk

mC1
m − Ck

mS1
m

)
= 2S`

nSk
mC1

m,

Sk
mS`+1

n + Sk
mS`−1

n = Sk
m

(
S`

nC1
n + C`

nS1
n + S`

nC1
n − C`

nS1
n

)
= 2Sk

mS`
nC1

n.

Using this, (3.25) can be simplified to be

2S`
nSk

mC1
m + 2Sk

mS`
nC1

n = (4− λ)Sk
mS`

n,

2C1
m + 2C1

n = 4− λ.

Therefore, we have
λm,n = 4− 2C1

m − 2C1
n, m, n = 1, 2, . . . , N.

Here, m and n can be replaced with index k and `, and the formula for the eigenvalues of the model
problem in 2-D can be written as

λk,` = 4− 2 cos
(

kπ

N + 1

)
− 2 cos

(
`π

N + 1

)
= 4 sin2

(
kπ

2(N + 1)

)
+ 4 sin2

(
`π

2(N + 1)

)
, k, ` = 1, 2, . . . , N.

It can be compared with (3.23) and is the same as that result. The Fourier transformation also provides
a way to solve the Poisson equation. Interested readers can refer to [8].
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3.3 The d-D Model Problem

In some applications, we need to discretize the model problem in 3-D domain. Furthermore, we can
generalize the result for d-D case of the Poisson equation (1.1) with boundary condition (1.2). In this
section, we also consider g = 0 and the unit region Ω = (0, 1)× (0, 1)× . . .× (0, 1) for d-D case, which
can be written in d-D case as

−∂2u

∂x2
1

− ∂2u

∂x2
2

− · · · − ∂2u

∂x2
d

= f in Ω (3.26)

subject to the boundary condition
u = 0 on ∂Ω (3.27)

Similar to the previous cases, we can derive the system matrix A for the d-D case, where Au = b. The
system matrix

ANd×Nd =


S1 T
T S1 T

. . . . . . . . .
T S1 T

T S1

 , Si =


Si+1 T
T Si+1 T

. . . . . . . . .
T Si+1 T

T Si+1

 , (3.28)

Sd−1 =


2d −1
−1 2d −1

. . . . . . . . .
−1 2d −1

−1 2d

 , T =


−1

−1
. . .

−1
−1

 ,

where 1 ≤ i ≤ d − 2. Here, A is of size Nd ×Nd and Sd−1 of size N ×N . The matrices T = −I are
negative identity matrices with dimensions adjusted implicitly according to the size of Si+1.

Theorem 9. Let A ∈ RNd×Nd
be defined as in (3.28). The eigenvalues λk1,k2,...,kd

and eigenvectors
z
(k1,k2,...,kd)
m1,m2,...,md of A,, counted with respect to the mesh points (k1, k2, . . . , kd), are given by

λk1,k2,...,kd
= 2d− 2

d∑
i=1

cos
(

kiπ

N + 1

)
= 4

d∑
i=1

sin2

(
kiπ

2(N + 1)

)
(3.29)

and components of the eigenvectors, counted with respect to the mesh point (m1,m2, . . . ,md),

z(k1,k2,...,kd)
m1,m2,...,md

=
(

2
N + 1

) d
2

d∏
i=1

sin
(

kimiπ

N + 1

)
, ki,mi = 1, 2, . . . , N.

In (3.29), the term 2d is determined by the main diagonal entry of A.

Proof. To prove it by induction, we have the initial step that d = 1 is true by Theorem 6.
In the induction step, assume that formula (3.29), as well as other conclusions in the Theorem

9, holds true for d dimensional case. In the d + 1 dimension case, let (λ, z) be one eigenpair of
A ∈ RN(d+1)×N(d+1)

. A is viewed as an N ×N block matrix, and each block is of size Nd ×Nd. The
eigenvector z is partitioned to be

z =

 z1
...

zN

 ∈ RNd+1
with the j-th block of z being zj ∈ RNd

, j = 1, . . . , N.
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Because Az = λz, it gives the following difference equation

Tzj−1 + (S − λI)zj + Tzj+1 = 0, j = 1, 2, . . . , N, (3.30)

where z0 = zN+1 = 0, S and T are Nd×Nd matrices defined in (3.28). S has its main diagonal entries
as 2(d + 1). S and T can be diagonalized as S = QΛSQT and T = QΛT QT with the same orthogonal
transformation matrix Q and diagonal matrices ΛS and ΛT .

We need to find out the eigenvalues of S and T in (3.30). Because S is coincide to the Nd ×Nd

matrix A defined in (3.28) with the only difference that the main diagonal entries of S in (3.30)
is 2(d + 1), the eigenvalues for S should be corrected as λk1,k2,...,kd

= 2(d + 1) − 2
∑d

i=1 cos( kiπ
N+1),

considering that all the conclusions in Theorem 9 are supposed to be true for d-D case. So the k-th
diagonal block entries (k denotes the set k1, k2, . . . , kd) of ΛS and ΛT are

λS,k = 2(d + 1)− 2
d∑

i=1

cos
(

kiπ

N + 1

)
,

λT,k = −1.

The mth block component (m denotes the set m1,m2, . . . ,md) of column k of Q is

q(k)
m =

(
2

N + 1

) d
2

d∏
i=1

sin
(

mikiπ

N + 1

)
, mi, ki = 1, 2, . . . , N.

Using (3.30), we have

QT Tzj−1 + QT (S − λI)zj + QT Tzj+1 = 0

⇒ ΛT yj−1 + (ΛS − λI)yj + ΛT yj+1 = 0, where yj = QT zj , j = 1, 2, . . . , N.

Both ΛT and (ΛS − λI) are diagonal. So we have the following difference equation

λT,kyk,j−1 + λS,kyk,j + λT,kyk,j+1 = λyk,j , j = 1, 2, . . . , N.

This problem can be rewritten in matrix form, when the index k is fixed and all components of y
except the kth one are 0,

λS,k λT,k

λT,k λS,k λT,k

. . . . . . . . .
λT,k λS,k λT,k

λT,k λS,k




yk,1

yk,2
...

yk,N−1

yk,N

 = λ


yk,1

yk,2
...

yk,N−1

yk,N

 .

By Theorem 7, the eigenpairs for such an eigenproblem are given as

λk,kd+1
= λS,k + 2λT,k cos

(
kd+1π

N + 1

)
= 2(d + 1)− 2

d∑
i=1

cos
(

kiπ

N + 1

)
− 2 cos

(
kd+1π

N + 1

)
(3.31)

= 4
d+1∑
i=1

sin2

(
kiπ

2(N + 1)

)
,

y
(k,kd+1)
k,md+1

=

√
2

N + 1
sin

(
md+1kd+1π

N + 1

)
, md+1, kd+1 = 1, 2, . . . , N,
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where k denotes the set {ki}, m denotes {mi}, i = 1, 2, . . . , d. (3.31) shows that the term 2(d+1) is
equal to the main diagonal entry of A.

Since yj = QT zj , j = 1, 2, . . . , N , and because all components of y except the kth one are 0, only
the kth entry of the (d+1)th block of y is nonzero. Hence, we have

z
(k1,k2,...,kd+1)
m1,m2,...,md+1 = qk

my
(k,kd+1)
k,md+1

=
(

2
N + 1

) d+1
2

d+1∏
i=1

sin
(

mikiπ

N + 1

)
.

�

4 The Optimal Parameter for the Model Problem

Because many of the real world problems are large in scale, the matrix derived from discretizing
the Poisson equation is large and sparse. Iterative methods provide efficient and economical ways
to solve these linear large scale sparse systems. Jacobi, Gauss-Seidel, SOR, and SSOR are classic
iterative methods, and the conjugate gradient method is an example of a modern iterative method.
Preconditioning techniques are also available to improve the speed of convergence of these methods.
Such techniques improve the spectral properties of these iteration matrix. As we have shown before,
the spectral radius plays an important role in the convergence of the iterative method. Here, we
explore more details about how to choose the optimal parameter ω in the SOR method. In fact, for
the system matrix arising from the model problem, we will derive a formula for ω that minimizes the
spectral radius of the SOR iteration matrix and is thus optimal.

In the model problem, the system matrix is A = D−L−U , where D is the diagonal part of A, −L
the strictly lower triangular part, and −U the strictly upper triangular part. Let GJ and Gω denote
the iteration matrices of the Jacobi and SOR methods. Here, GJ = I − D−1A = D−1(L + U), and
Gω = I − (ω−1D − L)−1A = (D − ωL)−1[(1− ω)D + ωU ].

Lemma 1. For the d-dimensional model problem (d ≥ 1), its system matrix A = D − L− U defined
in (3.28) satisfies (2.3), namely

det(kD − γL− γ−1U) = det(kD − L− U) for all k, γ ∈ R\{0}, (4.1)

where A is a block matrix, D is diagonal of A, and −L and −U are the strictly lower and strictly
upper triangular parts of A, respectively.

Proof. (3.28) shows how the system matrix in d-D case is constructed. After applying kD − γL−
γ−1U to system matrix A = D − L − U , the matrix Sd−1 becomes a new matrix, denoted as Md−1

such that

Md−1 =


2kd −γ−1

−γ 2kd −γ−1

. . . . . . . . .
−γ 2kd −γ−1

−γ 2kd

 .

Each Si in (3.28) becomes

Mi =


Mi+1 γ−1T
γT Mi+1 γ−1T

. . . . . . . . .
γT Mi+1 γ−1T

γT Mi+1

 , 1 ≤ i ≤ (d− 2),
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where T = −I are negative identity matrices with dimensions adjusted implicitly according to the
size of Mi+1. We introduce notation Di to stand for the diagonal matrix of Si, −Li and −Ui are the
strictly lower and strictly upper triangular parts of Si. Hence, Mi = kDi − γLi − γ−1Ui. Construct
an invertible matrix Qd−1 of size N ×N that

Qd−1 =


1

γ
γ2

. . .
γN−1

 .

Basing on that, a group of invertible block matrix Qi can be obtained such that

Qi =


Qi+1

γQi+1

. . .
γN−1Qi+1

 1 ≤ i ≤ (d− 2).

It can be checked that the similarity transformation holds

Q−1
d−1Md−1Qd−1 = Q−1

d−1(kDd−1 − γLd−1 − γ−1Ud−1)Qd−1 = kDd−1 − Ld−1 − Ud−1.

Then consider the matrix Sd−1. Construct another invertible block matrix Qd−2 that

Qd−2 =


Qd−1

γQd−1

. . .
γN−1Qd−1

 .

Repeating the similarity transformation again, we have

Q−1
d−2Md−2Qd−2 = Q−1

d−2(kDd−2 − γLd−2 − γ−1Ud−2)Qd−2

= Q−1
d−2


Md−1 γ−1T
γT Md−1 γ−1T

. . . . . . . . .
γT Md−1

Qd−2

=


Q−1

d−1Md−1 γ−1Q−1
d−1T

Q−1
d−1T γ−1Q−1

d−1Md−1 γ−2Q−1
d−1T

. . . . . . . . .
γ−(N−2)Q−1

d−1T γ−(N−1)Q−1
d−1Md−1

Qd−2

=


Q−1

d−1Md−1Qd−1 T

T Q−1
d−1Md−1Qd−1 T

. . . . . . . . .
T Q−1

d−1Md−1Qd−1


= kDd−2 − Ld−2 − Ud−2.

After repeating d− 1 times, we have an invertible matrix Q such that

Q−1(kD − γL− γ−1U)Q = kD − L− U,

where Q is a block diagonal matrix with its ith diagonal block being γi−1Q1, (1 ≤ i ≤ N). Therefore,
det(kD − γL− γ−1U) = det(kD − L− U), which is independent of γ for all γ 6= 0 and for all k.
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The case d = 1 is a special case, however, in the 1-D case, the system matrix A defined in (3.7) also
satisfies (2.3). Having this, Theorem 3 and Theorem 4 can be applied to the system matrix A of d-D
model problem.

Theorem 10. Let A = D − L − U be a matrix defined in (3.28). GJ = I − D−1A is the iteration
matrix for Jacobi method. The eigenvalues of GJ are

λk1,k2,...,kd
= 1− 2

d

d∑
i=1

sin2

(
kiπ

2(N + 1)

)
, ki = 1, 2, . . . , N.

Here, d ≥ 1 stands for the dimension of the problem.

Proof. For the d-D model problem, the eigenvalues of the system matrix are

λ
′′
k1,k2,...,kd

= 4
d∑

i=1

sin2

(
kiπ

2(N + 1)

)
, ki = 1, 2, . . . , N,

by Theorem 9. Because the diagonal entries of D for the d-D model problem are 2d, the eigenvalues
of D−1A can be determined as

λ′k1,k2,...,kd
=

2
d

d∑
i=1

sin2

(
kiπ

2(N + 1)

)
, ki = 1, 2, . . . , N.

Therefore, eigenvalues for GJ = I −D−1A are

λk1,k2,...,kd
= 1− 2

d

d∑
i=1

sin2

(
kiπ

2(N + 1)

)
, ki = 1, 2, . . . , N.

�

Corollary 2. The spectral radius of GJ is the same for any d-D model problem, namely

β = ρ(GJ) = cos
(

π

N + 1

)
.

Proof. According to Theorem 10, the spectral radius of GJ is

β = ρ(GJ) = 1− 2
d

d∑
i=1

sin2

(
π

2(N + 1)

)
= 1− 2 sin2

(
π

2(N + 1)

)
= cos

(
π

N + 1

)
.

�

Theorem 11. Consider the model problem (1.1)–(1.2) with domain Ω ⊂ Rd in d ≥ 1 dimensions
discretized by the finite difference method on a mesh with N + 2 points in each coordinate direction
and uniform mesh spacing h = 1/(N + 1). The optimal relaxation parameter for the SOR method is
then given by

ωopt =
2

1 + sin πh
, (4.2)

which is independent of dimension d.
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Figure 2: Comparison of different ω’s effect on iteration numbers.

Proof. Corollary 2, Theorem 9, formula (2.6) give

ωopt =
2

1 +
√

1− cos2( π
N+1)

=
2

1 + sin( π
N+1)

=
2

1 + sin πh
.

�

To confirm the optimality of this value of the relaxation parameter, we consider the 2-D model problem
(3.14) with boundary condition (3.15) using a 65× 65 mesh to partition the unit square (0, 1)× (0, 1).
The function f(x, y) is chosen as f(x, y) = −2π2 cos(2πx) sin2(πy) − 2π2 sin2(πx) cos(2πy). We solve
this problem with the SOR method, with error tolerance 10−7 and maximum number of iterations
allowed 1000, and let the parameter ω vary from 1.5 to 2. In this way, we can observe how the choice of
ω affects the iteration. The optimal ω is also calculated according to (4.2), that is ωopt = 1.9078, and
its iteration number (206 times) is also obtained to compare with other ω. In Figure 2, the smallest
numbers of iteration is obtained when ω is near 1.9078.

5 Conclusions

There does not exist an explicit formula to compute the optimal relaxation parameter for SOR method
in terms of properties of the system matrix A of a general linear system. But the special structure of
the system matrix A resulting from the finite difference discretization of the classical model problem
(1.1)–(1.2) allows for the derivation of such an explicit formula, based on the explicit determination of
the spectrum of A. This result is well-known in two dimensions. Here, we presented a complete proof
to extend this result to any dimension.
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