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A new technique is presented here to retrieve carbon monoxide (CO) profiles

from Atmospheric Emitted Radiance Interferometer (AERI) spectra. This retrieval

version deviates from the previous AERI CO retrieval method, which utilized sig-

nal processing to determine a constant CO mixing ratio representative of the entire

troposphere. Instead, this retrieval version utilizes linear mapping to ascertain an

estimate of the CO profile. A detailed analysis is conducted to estimate the error

from all aspects of the the linear mapping procedure including measurements, for-

ward modeling of atmospheric radiation, and uncertainty from inputs to the forward

model. It was found that the dominant sources of error were from cloud contami-

nated spectra and uncertainty in absorption line strengths inside the forward model.

A new cloud flagging technique that uses a neural network to identify spectra af-

fected by clouds was tested and compared to the previously used version based on

brightness temperature contrast. The neural network method decreased uncertainty

between AERI and forward model spectra by 30 percent when compared with the



previously used version.

First guess CO profiles to the AERI retrieval were from two different sources.

One source was an a priori CO profile calculated as the mean profile from 56 individ-

ual measurements where each CO profile encompasses tower, aircraft, and satellite

CO measurements. The other first guess CO profile came from the AIRS version 5

(AIRSv5) retrieved CO product. Incorporating the AIRS CO profile to the AERI

retrieval provided a better estimate of free tropospheric CO when compared with

the a priori profile. Using a better upper tropospheric CO estimate resulted in more

accurate results from the AERI retrieval below 2 km, thus revealing that an AERI

plus AIRS retrieved CO product is superior to either instrument’s own CO retrieval

working alone. The combined retrieval product is shown to have an RMSE of 10%

in the first 2 km of the atmosphere.
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Chapter 1

Introduction and Outline

1.1 Introduction

Carbon monoxide (CO) influences both climate change and surface air quality.

CO is the primary sink for the hydroxyl radical OH, and indirectly affects climate

change because methane and other greenhouse gases are removed from the atmo-

sphere through reactions with OH [19]. Carbon monoxide influences surface air qual-

ity through its role as a precursor in the tropospheric ozone chemistry cycle [12, 54].

The current ability to forecast the CO budget has been shown to be inadequate

in studies [71, 19] in which chemistry transport models (CTM) showed large biases

compared to National Oceanic and Atmospheric Administration/Ground Measur-

ing Division (NOAA/GMD) stations measuring CO at the surface [61]. A primary

source of uncertainty in the modeled CO budget comes from CTM assimilating CO

measurements from satellites that have shown observational error of 10-30%, where

the highest uncertainty is near pollution outflow regions [32]. Satellites are ideal for

measuring the well mixed CO distribution in the mid-troposphere, but do a poor

job measuring lower tropospheric CO, which can have variability of 50-100% in a

profile [37, 4, 17, 52].

This dissertation has two objectives:

1. Characterize all significant sources of error between measured spectra and
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modeled spectra in the band commonly used for the remote sensing of carbon

monoxide (2100 - 2200 cm−1) from both satellite [42, 88, 47] and ground based

sensors [48].

2. Present new remote sensing techniques that measure total column density and

profile information (when combined with satellite retrievals) that improves

upon a previous CO retrieval method [48, 28, 90].

By creating a retrieval algorithm that incorporates measurements from both ground

based and satellite sensors, the retrieved boundary layer CO value is decoupled

from the true value for free tropospheric CO. Thus, the uncertainty in the vertical

sensitivity present in the previous CO retrieval method is eliminated.

A ground based Fourier Transform Infrared Radiometer (FTIR) is the primary

instrument providing data; specifically, the Atmospheric Emitted Radiance Interfer-

ometer (AERI) is used to sample infrared radiation in a spectral region (2100 - 2200

cm−1) sensitive to carbon monoxide [28]. Temperature and water vapor profiles are

produced from different sections of AERI spectra [22, 53], allowing synthetic AERI

measurements to be created from the k Compressed Atmospheric Radiative Trans-

fer Algorithm (kCARTA) [13]. Retrieved CO columns are produced from measured

AERI calibrated spectra every 8-10 minutes.

With calibrated AERI measurements at 8 minute resolution already existing

back to 1995, the new remote sensing measurements provide a wealth of information

about surface CO measurements including climatologies and diurnal cycles of CO.

Moreover, when combined with satellite retrieved CO, this new CO measurement
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accurately measures boundary layer CO and can be used to better constrain the

CTM. The Atmospheric Radiation Measurement (ARM) program run by the De-

partment of Energy (DOE) keeps data records of AERI measurements in the tropical

western Pacific (TWP), North Slope of Alaska (NSA), and Southern Great Plains

(SGP) [29]. Ten new E-AERIs are expected to come online in the near future also,

providing many more observation locations [29].

Remote sensing techniques in this dissertation are developed and tested against

CO profiles that are a composite of measurements, including a 60 meter tower [7],

aircraft [60, 59], and version 5 CO profiles retrieved from the Atmospheric Infrared

Sounder (AIRS) [47]. These measurements are compiled together and used to vali-

date an earlier version of the CO retrieval (Version 1) [90].

1.2 Role in Tropospheric Ozone

Hemispheric asymmetry of tropospheric ozone first led to the idea that tro-

pospheric ozone is not just the result of intrusions from stratospheric air [24]. The

presence of ozone in the troposphere is a result of stratospheric intrusions and photo-

chemical reactions involving CH4-CO-NOx [11]. Carbon monoxide’s role as a source

or sink of ozone depends on the concentration of NOx [33, 11, 36]

Ozone is removed in the troposphere photochemically:

O3 + hν → O2 +O (1.1)

, or through a reaction with nitric oxide:

NO +O3 → NO2 +O2 (1.2)
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Tropospheric ozone is produced through the oxidation of CO with the hydroxyl

radical OH. The chemical cycle for the production of ozone is shown below (M is a

non reacting body required in the equation):

OH + CO → H + CO2

H +O2 → HO2 +M

HO2 +NO → NO2 +OH

NO2 + hν → NO +O

O +O2 +M → O3 +M

The net reaction of this cycle, shown in equation 1.3, demonstrates that one ozone

molecule is produced from the oxidation of one CO molecule [36].

CO + 2O2 → CO2 +O3 (1.3)

It has been estimated that the concentration of nitric oxide must be at least

10 parts per trillion (ppt) in order to overcome the loss of nitric oxide through

equation 1.2 [11]. When an adequate amount of nitric oxide is present the oxidation

of CO is estimated to produce 2.5x1011 molecules cm−2 s−1 of ozone. The ozone

yield from oxidation of both CO and methane is estimated to be 8x1011 molecules

cm−2 s−1 [36].
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1.3 Previous CO Retrieval Studies

Previous remote sensing studies of CO have been done using an AERI [48,

28, 90] and an FTIR measuring solar absorption [15, 91, 63]. Using an AERI,

which measures infrared photons passively, allows for diurnal studies and night time

measurements of CO, which are not possible with a sun-viewing FTIR [28]. A study

comparing retrieved total tropospheric column density from an AERI, an FTIR, and

a grating spectrometer showed agreement within 10% [48].

The previous AERI studies perturb a constant volume mixing ratio (VMR)

for the entire troposphere to minimize spectral residuals [48, 28]. The algorithm

takes spectra between 2135-2200 cm−1, measured in brightness temperature, and

utilizes a Fourier signal processing technique known as the Welch method [8, 20]

to estimate the cross-spectral density of the CO signal [52]. The CO signal is

defined as the observed spectrum from AERI minus a synthetic spectra produced

from kCARTA. This Fourier technique takes advantage of the regularly spaced and

nearly sinusoidal signal from the fundamental 1 - 0 vibration-rotation CO lines [51].

The final retrieved VMR is proportional to the amplitude of the sinusoid [52].

The single retrieved VMR represents a weighted average of the entire tropo-

sphere that is mostly sensitive to the boundary layer. In general, the retrieved

VMR is 70% sensitive to the boundary layer CO and 30% sensitive to the rest of

the troposphere [48]. As stated in [48], there is ambiguity as to whether the version

1 retrieval is better compared to boundary layer (≈0-2km) CO abundances or to

total tropospheric columns [48]. A validation campaign using 96 in situ composite
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true profiles was compared to version 1 retrieved CO in [90]. To overcome the am-

biguity with the proper comparison for the version 1 CO retrieval, the in situ CO

measurements were convolved with the averaging kernel (AK in equation 1.4) [66] of

the retrieval to produce a Convolved Truth measurement [90] (FG is the first guess

used in the CO retrieval). An averaging kernel defines relative weights of the true

and a priori profile in a retrieved profile, and therefore accounts for the sensitivity

of the retrieval to the true state [14].

Convolved Truth = FG+ AK(Truth− FG) (1.4)

The results of the validation from [90] indicate that version 1 AERI CO re-

trieval has a large systematic bias; specifically, version 1 retrievals from AERI consis-

tently underestimate the CO abundance in the atmosphere. The validation results

report a standard deviation of ± 12 ppbv and a bias of -16 ppbv for a RMS er-

ror of 20 ppbv. The RMS error corresponds to a percent error of 11 - 20%. This

demonstrates that the 10% reported in [48] is the minimum expected error, and the

theoretical estimation of 5% reported in [28] is not accounting for all error sources.

1.3.1 Previous Modeled Error Analysis

The first error analysis related to retrieving CO investigated three sources of

error [49, 28]: Error due to measured spectra from AERI, error due to temperature

profiles input to kCARTA, and error due to water vapor mixing ratio profiles input to

kCARTA. A simulation study found that the effect from these sources on the VMR

retrieved from AERI was 0.75, 1.5, and 2.5% respectively, for a total error of 5% [49,
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28]. None of these error sources should produce a systematic bias, and considering

the validation results shown in Figure 1.1, the theoretical error underestimates the

real error.

Figure 1.1: Version 1 AERI retrieved CO compared with convolved in situ measure-

ments. This graph was taken from [90].

The validation study in [90] noted the radiance difference between synthetic

spectra from kCARTA and AERI measurements, and attributed the radiance differ-

ence to systematic error in the water vapor profiles input to kCARTA and scattered

solar photons from thin clouds. A result from [90] is shown in Figure 1.2(a) Radiance

difference plotted as a function of precipitable water vapor (PWV), shown in Fig-

ures 1.2(a) and 1.2(b), are for two separate studies summarized in Table 1.1. Both

figures show a quadratic dependence on PWV; however, the study in [82] states

that the error is a result of the self broadening absorption coefficient, used to model

the collisional effect of water, being 3-8% to strong in 900 cm−1 window region.

Between the two studies [82, 90], 3 different water vapor profiles (AERI retrieved,

radiosonde, Raman Lidar) were used as input to forward models and all displayed
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(a) Yurganov (b) Turner

Figure 1.2: (a) Average radiance difference in window channels 2142.7-2144.1 cm−1 and

2167.2-2168.7 cm−1 plotted as a function of PWV. Synthetic spectra was cal-

culated using retrieved water vapor profiles from AERI as input to kCARTA.

This plot was taken from [90]. (b) Average radiance difference in 900 cm−1

window channel. This was taken from [82], where Case B signifies that the

input to the line by line radiative transfer model (LBLRTM) were radioson-

des scaled by PWV from an MWR. Note the functional similarity among

the two graphs despite using different water vapor input profiles and for-

ward models used to calculate the synthetic spectra.

8



the same quadratic error as a function of PWV. This suggests that errors in the

water vapor profiles are not the main contributor to error in the CO band. Aerosol

optical thickness (AOT) and in situ surface aerosol measurements showed no cor-

relation with radiance difference in this spectral region as well. Considering the

similarity between Figures 1.2(a) and 1.2(b), the radiance difference is most likely

due to self broadening errors and accounts for the bias shown in Figure 1.1.

Study Forward Model Input WVMR Spectral Region

Yurganov [90] kCARTA AERI Retrievals Window around 2140 and 2160 cm−1

Turner [82] LBLRTM Radiosonde Window at 900 cm−1

Table 1.1: Two studies examining radiance difference of window channels. Input WVMR

specifies what type of water vapor mixing ratio (WVMR) profile is used in

the study.

1.4 New Techniques and Major Results

1.4.1 New Error Analysis

This is the first study that presents the estimated radiance error in the CO

band (2100-2200 cm−1) from synthetic spectra produced by kCARTA due to errors

in the AERI retrieved temperature and water vapor input profiles (a previous study

presented an estimate on the percent error in the version 1 CO retrieval due to

error in the input profile [28]). Moreover, this is the first work that investigates the
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significance of modeling errors in forward modeling spectra in the CO band. One

major result from this work, as discussed more fully in Chapter 3, is that the error

in synthetic spectra produced by kCARTA due to forward modeling errors is a full

order of magnitude larger than error from the input profiles and is likely systematic,

as was shown for a different spectral region (900 cm−1) [82]. Instrumental error in

AERI was estimated using the principal component analysis technique [81], and was

found to be two orders of magnitude smaller than modeling errors.

The error analysis in this work provides some conclusions about the retrieval

bias found in the version 1 retrieval [90]. By using a new cloud flagging technique

[80], this work shows that many days (28 out of 56 for 2007 - 2008) used to validate

the version 1 CO retrieval contained clouds that were not flagged by an earlier cloud

flag technique [28]. The spectral contrast in the CO band is reduced when clouds are

present in the AERI field of view, thereby reducing retrieved CO for the version 1 re-

trieval. Direct comparison of AERI and kCARTA spectra for cloud free days showed

that kCARTA is biased low. The magnitude of the difference between kCARTA and

AERI shows a temporal variation quite similar to the seasonal cycle of PWV mea-

sured from an microwave radiometer (MWR). This seasonal cycle persisted even

after scaling water vapor profiles from AERI, used as inputs to kCARTA, with the

PWV measurement from the MWR. This provides further proof that absorption

coefficients used to model water (water, self broadening, foreign broadening) are the

dominant error term for this region and have a systematic bias. The full effect of

this seasonal bias is not tested, but likely contributes to the retrieval bias shown in

Figure 1.1 as well.
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1.4.2 New Retrieval Techniques

Two retrieval techniques are created, which use the estimated error statistics

from part one of this dissertation to create an error covariance matrix for use in a

constrained nonlinear least squares retrieval technique [67]. This new remote sensing

technique is called the Stand-Alone AERI CO retrieval, or SAAC for short.

The first new measurement is a single layer CO column density measurement

whose averaging kernel is very similar to the version 1 CO retrieval [48]. When

the bias was removed from kCARTA spectra, total column density CO matched up

with in situ. When the bias was not removed from kCARTA spectra, retrieved CO

from this technique exhibited a similar systematic bias as was found in the study

by Yurganov [90].

A 5 layer retrieval is created that remotely measures CO VMR profiles. Re-

sults confirm that when using an AERI without other information, profiling is not

possible; however, it is shown that using the AIRSv5 CO retrieval [47] as a first

guess created a SAAC+AIRS retrieval that retrieves boundary layer CO to better

than 10 percent while preserving the free tropospheric retrieval from AIRS. Profiles

from this combined retrieval scheme are more accurate than retrievals from SAAC

or AIRSv5 working independently. Further, this retrieval method effectively decou-

ples the boundary layer CO value from the free tropospheric value. This presents an

improvement over the version 1 CO retrieval, where it is not clear what the retrieved

value really represents.
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1.5 Outline

In Chapter 2, an overview of the instrumentation and platforms used in this

study is presented. In a study by [90], an assortment of platforms, including AIRS

retrieved CO, in situ gas measurements from aircraft and a tower are used in order

to construct the best estimate of a true CO profile. The primary instrument used

is the AERI-01 instrument located at the SGP research site in Oklahoma. Data

obtained from the AERI-01 instrument is the measurement to be linearly mapped

to an estimated CO profile. Next, details about the Atmospheric Infrared Sounder

are presented. AIRS is an instrument aboard the Aqua satellite which provides daily

CO profiles globally [46]. Next, the near surface in situ trace gas measurements are

detailed. Small aircraft were used to sample air at standard heights from 450 to

4500 meters above sea level (a.s.l.) [60, 59]. Below this, CO data was sampled

by gas samplers on a 60 meter tower [7]. Lastly, information on the MWR used

to constrain water vapor profiles used in kCARTA to generate synthetic spectra is

presented. An illustration demonstrating all the different measurement platforms

used in this project can be seen in Figure 1.3.

Chapter 2 presents the aspects of radiative transfer theory, error theory, and

inverse theory used in this dissertation. The radiative transfer equation describ-

ing the physics for an up-looking instrument measuring infrared energy from clear

sky conditions is presented. Error theory describes how measurement error is un-

derstood and uncertainty is quantified . The inverse methods describe why the

inverse problem is ill-posed, and constraints are needed. In developing the retrieval
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Figure 1.3: A schematic showing the setup of all the measurements used in the study.
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solutions, information content and the effect of the first guess is also described.

In Chapter 3, an overview of all the modeling efforts taken to simulate a

measurement from the AERI-01 instrument is presented. In this section, an ex-

amination of which atmospheric variables make strong contributions to the radiant

energy, in the part of the spectrum where CO has strong emission lines, is presented.

It is determined that the important variables are temperature, water, and carbon

monoxide. Investigations are done that examine how the choice of a radiative trans-

fer grid, water continuum model, and kCARTA version affect the simulated AERI

measurements. Finally, tests are conducted that examine the bias between the best

forward model and AERI measurements.

Chapter 4 is an in depth discussion of the two SAAC retrieval algorithms,

where the first retrieval technique is an iterative constrained least square approach

[34] constrained to the previous iteration. The second is similar to the first; however,

it is constrained to the first guess [67]. Critical to these inverse methods is the

estimation of the covariance matrices used in the retrieval scheme. Care is taken to

make the best statistical estimation of the error and a priori covariance matrices.

The retrieval grids and a priori profiles are built on 1,2, 3 and 5 layers. The a priori

profile is taken as the mean state of all 56 profiles in the true composite CO data

set.

Chapter 5 presents the results of both retrieval algorithms for retrieval grids

of 1,2,3 and 5 layers using the a priori as the first guess. Single layer measurements

are total columns and are shown to have high correlation to the true total column

measurements. Also shown are comparisons to the version 1 CO retrieval.

14



Chapter 6 presents results using AIRSv5 CO retrievals as a first guess for the

retrieval and demonstrates how CO profiles using AIRSv5 CO is superior to using

an a priori profile for the first guess. The chapter concludes with directions for

future work and conclusions.
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Chapter 2

Measurements, Models, and Theory

2.1 Tower

In situ CO measurements from the 60m tower at the SGP site are acquired by

the Lawrence Berkeley National Laboratory (LBNL) using a non-dispersive infrared

gas correlation instrument (ThermoScientific TE-48C) [7]. This instrument uses

additional pressure control, frequent zero correction and multi-point calibrations to

provide precision and accuracy near 5 ppbv when compared with NOAA network

flask measurements [62]. These measurements provide the surface measurements of

CO for use in the construction of the true CO profiles.

2.2 Airplanes Profiles

In situ CO profiles at the SGP site are measured weekly by the NOAA

Earth System Resources Laboratory (ESRL) using an automated programmable

flask package operated on a small aircraft. Flasks are filled by air at standard

heights above sea level (a.s.l.): 450, 610, 914, 1220, 1520, 1830, 2440, 3050, 3660,

4570m a.s.l. (the surface altitude at SGP is 374m a.s.l.). Following each flight, the

flasks are returned to NOAA/ESRL for analysis via gas chromatography to deter-

mine CO mixing ratios [59]. Measurements are reported in units of nanomol/mo

16



(10−9 molCO per mol of dry air) relative to the WMO CO scale [60]. Reliability of

the measurements, based on repeated analysis of air from a high-pressure cylinder,

is ± 1 ppbv for measurements near 50 ppbv and ± 2 ppbv for measurements near 200

ppbv [59]. From 2007-2008, there were 57 occurrences when aircraft measuring CO

were collocated in time and space with AERI measurements and tower data [90].

2.3 AIRS

The AIRS instrument is a high spectral resolution (
ν

∆ν
≈ 1200) grating spec-

trometer [74]. AIRS has been providing well calibrated spectral radiances since

its launch date of May 4, 2002 aboard the Aqua satellite and measures two bands

with a total coverage from 660 to 2655 cm−1. Launched in a 705 km polar sun-

synchronous orbit, it was designed to retrieve day and night profiles of temperature

and moisture with high vertical resolution [47]. Also aboard the Aqua satellite are

the Advanced Microwave Sounding Unit A (AMSU-A) and the Humidity Sounder

for Brazil (HSB). Both the AIRS and the HSB have a footprint of 13 km at nadir. A

3 x 3 array of AIRS and HSB footprints are contained within one AMSU-A footprint

[74]. By combining these instruments together AIRS can retrieve CO in scenes that

are up to 80% cloudy [74, 41, 75].

AIRS utilizes 36 spectral channels from 2189.49 to 2221.12 cm−1 to retrieve

CO. Above 5 km, AIRSv5 CO is used to construct the true composite CO profiles.

The level 5 CO product has been validated extensively by the Differential Absorp-

tion CO Measurement (DACOM) instrument flown aboard NASA’s DC-8 aircraft.
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These flights were flown during two measurement campaigns by NASA known as

the Intercontinental Chemical Transport Experiment (INTEX -A and INTEX -B).

Results from the extensive validation efforts of [47] are shown in Figures 2.1(b)

and 2.1(a). The estimated error from AIRS above 5km is expected to range from

14 to 21%.

(a) (b)

Figure 2.1: (a) AIRSv5 CO bias estimates defined as AIRS - Truth. (b) AIRSv5 CO

RMS estimates. Both figures were taken from [47]

It must be understood that the true profiles used in this study contain error

from each source (tower, aircraft, AIRS) and the inclusion of the error from each

source should be included into kCARTA studies. The true AIRS error is the un-

convolved error estimation, and its effect on the spectra must be analyzed. Further,

the AIRS retrieved CO is used as the true profile above 5 km and the unconvolved

error is 14-21%, as seen in Figure 2.1(b). Because the instrument and retrieval are

highly sensitive to the first 2-3 km, a 14% error in the true profile, above 5 km,
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has limited effect on the retrieval. Therefore, the AIRS CO retrieval can be used as

truth above 5 km [90].

2.4 Radiative Transfer

A forward model (e.g. kCARTA) is used to simulate what an instrument

would measure. To understand the relationship CO has with measured spectra the

radiative transfer equation (RTE) must be analyzed. First, a number of assump-

tions about the nature of the AERI retrieval setup simplifies the radiative transfer

equation.

1. The AERI instrument field of view (FOV) is very small and the beam above

the instrument contributing to the measurement will be homogeneous. This

means a plane parallel atmosphere can be assumed.

2. All AERI measurements occur under clear sky conditions, therefore cloud

effects or scattering from clouds are not included into the RTE.

3. All scattering effects are ignored because AERI measurements occur in por-

tions of the infrared spectrum where scattering is negligible.

4. Any portion of the atmosphere that will contribute to the spectra measured

at the ground is in local thermodynamic equilibrium.

Using these assumptions the radiative transfer equation in differential form is sim-

plified [86].

dI(ν, θ)

dz
= (−I(ν, θ) +B[ν, T (z)]) sec θ

N∑

i=1

ki(ν)ρi (2.1)
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where,

B[ν, T (z)] = Planck blackbody function at frequency ν and at Temperature T(z)

I(ν, θ) = radiance at frequency ν and in the direction θ from local vertical

ki(ν) = absorption coefficient of an absorbing gas i

ρi(z) = density of absorbing gas i

N = Total number of absorbing gases in the atmosphere

The Planck function describes the spectral radiance for an ideal body emitting

radiation at a certain temperature. Equation 2.2 displays how to calculate the

Planck blackbody radiation for a given temperature. An effective temperature can

be calculated by inverting Equation 2.2 and solving for the temperature. This

effective temperature is commonly known as the brightness temperature. Figure 2.2

displays an example of AERI spectra compared to blackbodies radiating energy with

different temperatures.

B(ν, T ) =
2hc2

exp[hcν/kT ]− 1
(2.2)

where,

h = the Planck constant

c = the speed of light

k = the Stefan-Boltzman constant

ν = wavenumber

T = temperature in Kelvin

A few more simplifications of the RTE can be made before writing down the

integral version. Because AERI’s FOV is directly vertical sec θ ≈ 1. Next, the

hydrostatic equation can transform height to pressure by ρdz = -
dp

qg
, where q is
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Figure 2.2: AERI radiance compared to blackbodies emitting radiance with their tem-

peratures in K listed in the label.

the mass mixing ratio of the absorbing gas and g is acceleration due to gravity. It

becomes convenient here to define the fractional transmittance of a layer, T :

τ(ν, p) = exp[
−1

g

N∑

i=1

∫ psurf

p

ki(ν, p)qi(p)dp] (2.3)

Equation 2.3 describes how gases absorb radiation and how they effect measured

spectra. For regions where k(ν,p) is not negligible, an increase in gas will decrease

the transmission coefficient. Therefore, photons reaching an instrument are coming

from regions closer than before the increase. For an up looking instrument, this

means that photons are coming from warmer regions in the atmosphere and the

measured energy will now be greater. The opposite is true for a satellite, an increase

in gas amount means that photons reaching the instrument are emitted higher up in

the atmosphere where regions are cooler and decrease the top of atmosphere (TOA)

radiance. The summary of this is provided in Table 2.1.
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Instrument Position gasi truth - guess τtruth - τguess obs. - calcs.

Ground looking up positive negative positive

Ground looking up negative positive negative

Space looking down positive negative negative

Space looking down negative positive positive

Table 2.1: Expected values of observed minus simulated radiance calculations for a per-

turbation in a gas profile. Also shown is the change in transmittance. This is

for tropospheric sounding only; in the stratosphere, each situation is reversed

because the sign of the lapse rate changes.

Regions where k(ν) is very small are known as window regions. Here, the gases

do not absorb or emit much radiation and photons can travel the entire length of

the atmosphere. An uplooking instrument would measure photons from space and

a satellite would measure photons traveling from the earth’s surface.

By making the substitutions listed above it becomes possible to integrate and

solve for the radiative transfer equation.

I(ν, psurf ) = ε(ν)[B(ν, T (ptop)τ(ν, ptop)] +

∫ psurf

p

B(ν, T (p)
∂τ(ν, p)

∂p
dp (2.4)

Equation 2.4 displays the integral version of the radiative transfer equation for

an uplooking instrument [86] under the assumption of no clouds. The first term

is not negligible but much smaller than the second term because T (ptop) ≈ 3K .

Equation 2.5 displays a simplified version of the RTE to better illustrate the role
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transmission has in determining radiation at an instrument.

I(ν, psurf ) =

∫ psurf

p

B(ν, T (p)
∂τ(ν, p)

∂p
dp (2.5)

There are two factors in the integrand in Equation 2.5: the source term

B(ν, T (p)), which is the Planck radiative energy emitted at a certain level, and

∂τ(ν, p)

∂p
is known as the weighting function or the kernel of the RTE. A weighting

function describes which parts of the atmopshere contribute radiation to a corre-

sponding portion of spectra (ν).

When the distribution of radiatively active gases for a spectral channel is

well known, the weighting function can be precomputed and B(ν, T (p)) can be

determined. If the temperature profile is known or determined from other channels,

then the weighting function can be determined for new channels. Figures 2.3(a)

and 2.3(b) show simulated weighting functions for AERI and AIRS CO spectral

retrieval bands respectively. These figures demonstrate that the upwelling radiation

measured by AIRS is a result of broad weighting functions in the mid-troposphere,

while downwelling radiation measured by AERI is primarily a result of more strongly

peaked weighting functions in the boundary layer.

Equation 2.5 is a Fredholm equation of the first kind [84, Ch.1]. A generalized

version of the the Fredholm equation is seen in Equation 2.6:

g(t) =

∫ b

a

K(t, s)f(s)ds (2.6)

where,
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Figure 2.3: (a) A simulated AERI weighting function created from kCARTA simulation

and apodized to AERI resolution. (b) A simulated AIRS weighting function

from kCARTA apodized to AIRS resolution. Both figures cover the spectral

range used in their respective CO retrievals [47].
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K(t, s) ≡ weighting function

=
∂τ(ν, p)

∂p
from equation 2.5

f(s) = B(ν, T (p))

At first inspection Equation 2.6 may look simple enough to look up the inverse

in a math formula book; however, the Fredholm equation does not allow for analytic

inverse solutions. The form of Equation 2.6 is very similar to a Laplace transform

and therefore it may be expected that a solution to the problem would be the same

as inversion for the Laplace transform. The equation for the Laplace transform and

its inversion can be seen in Equations 2.7 and 2.8 respectively. In Equation 2.7, g(t)

represents our measured radiance I (ν) from AERI. The integral in Equation 2.8 is

taken along the path lying to the right of any singularities in g(t); however, this

path does not exist because our measurement is real valued and cannot be evaluated

at imaginary points. Because the measurement g(t) is real valued and measured at

discrete locations, functional solutions to our problem cannot be used. This is why

the radiative transfer equation must be linearized about a base point and solutions

can be found using linear mapping methods.

g(t) =

∫ ∞

0

e−tsf(s)ds (2.7)

2πif(x) =

∫ α+i∞

α−i∞
etsg(t)dt (2.8)
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2.5 Forward Model

A forward model is required in all retrieval methods to simulate what an

instrument would measure based on a model atmosphere. Success of any retrieval

scheme is limited by the accuracy with which the forward model can represent

measurements from any instrument. kCARTA is used to take atmospheric profiles

and simulate measurements from AERI.

2.5.1 kCARTA

kCARTA is the radiative transfer code which uses profiles of temperature and

atmospheric constituents to produce synthetic spectra [13]. kCARTA is a lookup

table that is based on absorption line parameters determined from the HIgh reso-

lution TRaNsmission molecular absorption database (HITRAN) [69, 68]. kCARTA

can output gas optical depths, transmittances, Jacobians, and radiances at .0025

cm−1 resolution for uplooking and downlooking instruments [13]. The high spectral

resolution of synthetic spectra from kCARTA allows it to easily be convolved to

AERI’s spectral resolution of approximately .5 cm−1.

kCARTA has been used previously to simulate measured radiances from AERI

for studies that remotely sense trace gases [28, 34, 90] . The high spectral resolution

of kCARTA and its previous use in trace gases retrievals make it a good choice to

use as a forward model for this project. Two versions of kCARTA exist: (1) Version

114 which is based on the HITRAN 2004 molecular spectroscopic data base [69]

(2) Version 115 which is based on the HITRAN 2008 molecular spectrospcopic data
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base [68]. Synthetic spectra modeled by both versions is compared to measured

spectra from AERI. Version 115 was used to model spectra for the use in retrievals.

2.5.2 Carbon Monoxide Input Profiles

Carbon monoxide profile input to kCARTA is defined on layered grids where

each layer has its own average column density (
number of molecules

cm2
). The true

composite CO profiles from [90] are 12 - 15 point profiles defined in parts of CO per

billion parts of dry air (ppbv). True composite CO profiles encompass measurements

from tower, aircraft, and AIRS. The bottom CO measurement is on the 60 meter

tower (usually between 10 and 20 mb less than surface pressure) and the top of the

AIRSv5 CO profile (around 150-200mb).

Converting a profile defined by volume mixing ratio (VMR) to a profile defined

by layers of average column density is done by an algorithm known as KLAYERS.

For CO this program takes CO profiles defined in parts per million by volume (ppmv)

defined on a 101 level grid and outputs a 100 layered grid of column densitites.

The input profiles from [90] are not defined down to the surface or up to

the top of the atmosphere, nor are they defined on a fine enough grid for input to

KLAYERS. The process of converting CO profiles from 10-15 points defined by a

VMR to a 101 VMR point capable of being input to KLAYERS is described below:

1. The input profile is linearly interpolated by log pressure, from the input grid

to the finer grid used in KLAYERS. The fine grid layers that cover the input

CO pressure layers are used for the interpolation.
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2. The lowest CO profile measurement is on the 60 meter tower at the SGP site.

CO profiles were extrapolated linearly down to the surface on a finer grid. The

surface pressure is defined as the first pressure listed in the temperature and

water vapor retrievals from AERI.

3. The top of the input profile is linearly extrapolated, and then is forced to

relax back to a reference profile. There are characteristic profiles built for mid

latitude summer, mid latitude winter, and US standard. This is represented

in Figure 2.4(b). The large values near the top of atmosphere (TOA) occur

due to the low density of air.

Figure 2.4(a) displays two CO profiles used as input to KLAYERS. The first

guess CO is a priori and represents the 56 profiles from [90] interpolated to a

common grid and averaged together. The a priori measurement is one of the first

guess profiles used in SAAC. The true CO profile in Figure 2.4(a) is one of the true

composite CO profiles from [90].

Figure 2.4(b) displays the same true CO profile from Figure 2.4(a) after it has

been processed to the 101 level grid and converted to ppmv. The results of putting

this profile and others into KLAYERS is shown in Figure 2.5.

A short summary of the different representations of carbon monoxide used in

this dissertation are given below:

• True composite profiles: Provided by [90], These are the profiles made up

of 10-15 CO measurements taken from the three different platforms (AIRS,

tower, and aircraft). The CO measurements are VMR values measured in
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Figure 2.4: (a) True CO profile (blue) is 20070126 profile from [90]. The First Guess

CO profile is the a priori for the data set defined on a 101 level grid with

the surface defined at 980 mb. (b) This figure displays how the input CO

is merged from its grid of 10 - 15 levels to a 100 level grid that is read into

KLAYERS.
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ppbv.

• Merged profiles: Shown in Figure 2.4(b), these are the profiles of CO that

are ready to be input into the KLAYERS algorithm. The units for these

profiles are ppmv. Constructing these profiles come from both the true mea-

surement and a reference profile on a grid made up of 85 - 101 levels.

• RTP Profiles: CO profiles in this grid are average column density values

for a given layer. The units are
molecules

cm2
. If there are n CO values in the

merged grid then there will be n− 1 values for CO in the RTP profile.

2.5.3 Water Vapor Continuum Modeling

Because the physics of water is not completely understood, empirical fits

must be used to approximate foreign and self broadening features of water [82].

The continuum is usually determined experimentally, as the difference between the

absorption coefficient between measurement and a calculation based on a Voigt

line shape [23]. As experimental methods are improving, the empirical fits are

constantly being updated. The most popular versions of continuum models are

the CKD (Clough-Kneizys-Davies) or MT CKD (Mlawer-Tobin-Clough-Kneizys-

Davies) which are named after their creators [55]. The newest continuum model,

MT CKD version 1 has new multipliers for self and foreign broadening in a win-

dow ranging from 600 to 1400 cm−1 [56, 82]. Continuum models CKD version 2.4

[10, 25, 77] and MT CKD version 1.0 [82] are both used in kCARTA to create

synthetic spectra which is compared to measured spectra from AERI.
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2.5.4 kCARTA Grids

Important to a forward model’s accuracy is how the atmosphere is divided

up into layers. The grid layers closer to the observing instrument typically are

divided into smaller layers to increase the accuracy of the synthetic spectra from

kCARTA. Using smaller layers allows for a more accurate calculation of the change

in transmittance with height that then create more accurate weighting functions.

Six radiative transfer grids have been developed for kCARTA to simulate mea-

surements from the the AERI instrument [26]. Each grid is 101 levels with varying

surface pressure, allowing for a conversion to a 100 layer profile. The surface pres-

sures for each grid are listed in Table 2.2. In [34, 90] one standard grid was used

to simulate AERI spectra with kCARTA. SGP has a surface pressure that ranges

from 960 - 990 mb. This results in up to 15 layers not being used in the standard

1013 layering scheme. By using a kCARTA for a more accurate representation these

variable grids were used. The grid with the lowest surface pressure while still being

greater than the surface pressure of the instrument was used. This resulted in 6 -7

unused layers on the radiative transfer grid.

1033 1013 999

993 980 961

Table 2.2: Surface pressure in millibars (mb) for different grids developed for AERI.

Figure 2.4(b) displays how the input CO profiles are changed from true com-

posite profiles to the merged profiles that then input to the algorithm known as
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KLAYERS. KLAYERS converts profiles defined on levels by mixing ratios to layers

where each layer has it’s own average column density (
number of molecules

cm2
) [26].

This profile representation allows kCARTA to easily calculate the transmission co-

efficients needed to compute the radiance.

2.6 AERI

Spectral data is taken from the AERI-01 instrument run by the ARM program

at their SGP site [22]. AERI is an automated instrument measuring downwelling in-

frared radiance emitted from the atmosphere. It was developed by the Space Science

and Engineering Center (SSEC) at the University of Wisconsin - Madison to make

highly accurate radiance measurements in order to validate satellite measurements

[31]. Figure 2.6 displays AERI’s short-wave and long-wave channels along with por-

tions of the spectra sensitive to H2O, O3, CO2, and CO. The red and blue portions

of the spectrum are used in temperature and water vapor retrievals respectively

[72, 79, 22].

The interferometer used by the AERI is the commercially available MR-100

series by ABB/BOMEM. Exact details of the optics used in the bench design of the

MR -100 may be found in [30]. The setup of the interferometer acts as a Michelson

Interferometer, with two detectors each measuring different portions of the infrared

spectrum. AERI’s two detectors are cryogenically cooled, in a sandwich configura-

tion measuring infrared radiation from 3.3-19 µm. A picture of the interferometer

setup with the two detectors in a sandwich configuration is shown in Figure 2.7.
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!
Figure 2.6: (top) AERI long-wave channel. Portions of the spectra sensitive to certain

gases are labeled. Red portions of spectra are used in the temperature

retrieval and blue portions are used in the water vapor retrieval [72, 22].

(bottom) The short-wave channel of AERI with the CO region highlighted

as well.
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Figure 2.7: An illustration representing the setup of the AERI interferometer. Only the

shortwave portion of the radiation is absorbed by the InSb detector, and

allows the long-wave to pass through to the HgCdTe detector.
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Using the maximum path length difference of the MR-100 (1.037 cm) to solve

Equation 2.9 results in an AERI spectral point spacing of approximately .5 cm−1

[30]. The location of each spectral channel has an uncertainty of .01 cm−1 which is

a direct result of the stability of the helium neon laser used to sample each point on

the interferogram [30].

∆ν =
1

2X
(2.9)

where,

∆ν = spectral domain frequency point spacing (cm−1)

X = maximum optical path difference (cm)

AERI contains two blackbodies [30], one kept at 60◦C and the other which

can vary with ambient temperature. By using these highly accurate blackbodies

and applying a correction for non-linearity in the detector, unapodized spectra is

produced to 1% accuracy [31].

A normal AERI measurement cycle contains 3 minutes of sky viewing, 2 min-

utes at each blackbody, and approximately a minute of computations. Thus, a

normal AERI view cycle produces a calibrated spectrum every 7 - 8 minutes result-

ing in 178 calibrated spectra per day. The AERI used in this study (AERI-01) has

been running continuously at the ARM-SGP site since 1995 with only one stop in

coverage from 2005 - 2006 due to a malfunctioning sterling cooler [80].

36



2.6.1 Apodizing AERI and kCARTA

An interferogram measured by AERI (I(d)) is the inverse Fourier transform of

the incoming radiance (I(ν)). The channel i radiance produced by AERI (yAERI(νi))

is calculated by taking the Fourier transform of the product of the inteferogram with

an apodization function (A(d)) [85, Ch. 1]. Applying an apodization function to

spectra is similar to applying a running mean, which introduces correlated error

among channels [5, 34]. Without any numerical apodization techniques applied,

the normal apodization function for an interferometer of path length L is a boxcar

function (shown in the bottom of Figure 2.8(a)) where,

Aboxcar(d) = 1 for d ≤ L

Aboxcar(d) = 0 for d ≥ L

and d is optical path difference [85, Ch. 1].

Figure 2.8(b) shows that the sinc function ( sin(y)y ) has alternating side lobes

in between zeros located at y = ±nπ. The first four side lobes have heights of -21.7

%, 12.8 %, -9.1 %, and 7.1 % with respect to the central lobe [5]. In fact, only

45% of the area of SRFboxcar comes from the central lobe [5]. This demonstrates

that the contributions to the radiance at any given spectral channel have significant

contributions from other channels far away in the band. This will cause spectral

error to be correlated among channels, and the construction of an instrument error

covariance matrix will have have many off diagonal terms. Moreover, it has been

found that using boxcar functions to apodize kCARTA caused negative radiances in

the modeled spectra [34]. Therefore the Norton-Beer (NB) apodization function is
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Figure 2.8: (a) Top graph is Norton-Beer apodization function used in the convolution

of the interferogram of kCARTA and AERI spectra. Bottom graph is a

boxcar apodization function which is the natural apodization function of a

non-infinite FTIR such as AERI. (b) Response functions in spectral space

of the Norton-Beer (Blue) and Boxcar (Red) apodization functions.
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used on both kCARTA and AERI spectra [57, 58]. The NB apodization function is

ideal because it localizes noise correlation across channels and reduces ringing. This

effect is shown in Figure 2.8(b) where the side lobes of the Norton-Beer SRF are

comparatively smaller and the main lobe is comparatively wider to the sinc SRF.

Figure

It has been shown that the apodization function can be written as a matrix

where, yapodized(ν) = Myunapodized(ν) and for certain circumstances yunapodized(ν) =

M−1yunapodized(ν) [5]. This indicates that the process of apodization is not removing

information as transformations exist between apodized and unapodized spectra. In

this same study noise reduction (NR) factors and channel noise correlation coeffi-

cients are calculated for many apodization functions. The noise reduction factor

for NB (NR = 1.568738) and correlation coefficients are provided by [39] using the

methods and results from [5]. Figure 2.9 shows that noise correlation from NB

apodization is localized and drops to approximately zero after 3 terms.
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Figure 2.9: Noise Correlation coefficients measured as a function of distance away from

band center (vo) using units of wavenumber cm−1.
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Synthetic spectra from kCARTA must be convolved with the spectral response

function (SRF) of the AERI instrument to properly compare spectra from kCARTA

and AERI [34]. This creates synthetic spectra that has the same resolution and

sensitivity as an AERI instrument.

Figure 2.10: Process to apodize spectra from kCARTA or an AERI measurement. IFFT

stands for an Inverse Fast Fourier Transform and FFT stands for a Fast

Fourier Transform. ANB(d) is the NB apodization function used to multi-

ply the interferogram I(d), where d is path length. I(ν) represents spectra

from either AERI or kCARTA.

The apodization process for kCARTA and AERI spectra is shown in Fig-

ure 2.10. Both spectra are Fourier transformed to an interferogram (I(d)) and

multiplied by the NB apodization function (ANB) from Figure 2.8(a). An FFT is

performed on the inteferogram (I(d)) to produce apodized spectra (I ′(ν)).

2.6.2 AERI Meteorological Profiles and Other Uses

Temperature and water vapor retrievals have been developed which make use of

the sensitivity in AERI spectra to meteorological profile information in the boundary

layer (0-3km) [72, 22]. The AERI retrieval combines a statistical retrieval with the
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version 2 hourly Rapid Update Cycle (RUC) numerical weather prediction model

to create a first guess to the AERI physical retrieval. An optimal combination set

of satellite information, numerical weather prediction, and radiosondes collocated

in time with an AERI were used to develop the statistical profile [22]. The physical

retrieval then adjusts the first 3 km of the hybrid first guess profiles for temperature

and water vapor to fit the measured downwelling radiance [22]. Extensive validation

efforts have shown the temperature retrieval has RMS differences of 1K [72, 22],

approximately .005%. Water vapor retrievals have an absolute RMS differences of

5% [79]. Both temperature and water vapor retrievals were compared with Vaisala

radiosondes scaled by MWR measurements to account for known dry biases [65].

Validation results for temperature and water are shown in Figure 2.11. These results

are used in Chapter 3 to determine the error in modeled spectra resulting from errors

in the temperature or water vapor profiles used as input to the model.

High resolution temporal monitoring of temperature and water vapor in the

boundary layer allow AERI to nowcast stability indices of the atmosphere such

as convective available potential energy (CAPE) and convective inhibition (CIN)

[22]. One such study showed a rapid decrease in CIN just prior to thunderstorm

development near Purcell, Oklahoma on May 3, 1999 [21]. This led to an outbreak of

63 tornados across Oklahoma including one F5 tornado. Another study increased the

temporal resolution of AERI to 1 minute in order to measure the effect horizontal roll

verticies had on AERI retrieved water vapor profiles [53]. To run with the increased

temporal resolution (rapid sampling mode) Principal Component Analysis (PCA) is

used to remove uncorrelated error that is introduced by decreasing the view times of
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Figure 2.11: This figure, taken from [72], provides the validation results for the AERI

temperature water vapor retrieval. The error statistics shown here are used

in Chapter 3 to determine modeled spectral error due to errors in AERI

retrieved temperature and water vapor profiles.
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sky and blackbodies [81]. Other uses of AERI include providing accurate radiance

measurements to improve radiative transfer algorithms [82] and for the use in the

detection of clouds [80].

The term Feltz is used in this study when referencing the set of temperature

and WVMR profiles from the ARM site at SGP. This is because the temperature

and WVMR profiles provided by the ARM archive come in one data file named

Feltz.

2.7 MWR

The Microwave Radiometer (MWR) located at the SGP site provides time

series measurements of column integrated amounts of water vapor and liquid water.

MWR is a 2 channel radiometer measuring microwave radiation at 23.8 and 31.4 GHz

[45]. The MWR retrieval method combines radiance measurements with a statistical

retrieval to retrieve integrated liquid water and water vapor [35]. According to [45],

the accuracy of the MWR’s precipitable water vapor (PWV) measurement is on the

order of .1 cm.

It is well known that water lines dominate the fundamental CO band [76], and

errors in the water vapor profiles used by kCARTA can cause a significant amount

of error in relation to the size of the CO signal. A previous study showed that PWV

measured from retrieved water vapor profiles from AERI can be different by up to

20-40 % when compared to MWR retrieved PWV [90]. To overcome this difference

the retrieved water vapor profiles from AERI are scaled by MWR measurements as
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shown in Equation 2.10.

Constrained WVMR(p) =
PWVMWR

PWVAERI
WVMR(p) (2.10)

WVMR(p) in the equation above is the retrieved WVMR profile from AERI, and

it is multiplied by PWV measured by an MWR divided by PWV measured by an

AERI.

The top part of Figure 2.12 demonstrates the difference between PWV mea-

sured from AERI and an MWR. Retrieved PWV from AERI (purple) experiences a

sharp increase around 3 UTC while the MWR (grey) more smoothly changes; sub-

sequently, the version 1 CO retrieval using constrained water vapor profiles shows a

more natural and smooth change for the black time series in Figure 2.12.

2.8 Error Theory

Spectra measured by AERI or modeled by kCARTA each contain error when

compared to the true spectra produced from the radiation coming from the atmo-

sphere. As demonstrated in [67], any experimental error of a measurement or model

represents the state of knowledge about the measurement. In this view point, any

measurement y containing error has an expected value y described by a probability

distribution function (pdf) P (y). This all says that the probability that y is a value

between y and y+dy is P (y)dy. If the y and P (y) are well known the expected value

of y can be determined using Equation 2.11 and the variance of the measurement is

44



Figure 2.12: (a) Displays a time series for one day of retrieved PWV and retrieved

CO. The top part of the graph is the measured PWV measured by AERI

(purple) and MWR (grey) with its axis on the left. The bottom part of the

graph is the version 1 CO retrieval with its axis on the left. The red time

series represents the CO retrieval using water vapor profiles from AERI as

input to kCARTA. The black time series represents the CO retrieval using

constrained water vapor profiles as input to kCARTA. This figure is taken

from [90]
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calculated using Equation 2.12.

y =

∫
yP (y)dy (2.11)

ε2 =

∫
(y − y)2P (y)dy (2.12)

The pdf of y demonstrates knowledge about the precision of y and is not a distribu-

tion function of repeated measurements; however in the absence of the distribution

function, repeated trials provide a useful method to estimate probability and vari-

ance [67]. Repeated measurements of kCARTA simulations with small perturbations

to temperature and WVMR profiles are used in this work to determine the variance

(ε2) and uncertainty (ε), where the RMS error for the simulations represents the

uncertainty (ε).

2.9 Retrieval Theory

2.9.1 Problem Formulation

The radiative transfer equation that operates with no error is defined as the

forward function f(x) [67]. The forward function perfectly models atmospheric

radiation and is described by Equation 2.13.

yatm = f(x, b) (2.13)

where,
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yatm = true spectra (I(ν)) from atmosphere

f(x, b) = function which describes radiative transfer perfectly

x = atmospheric parameter of interest (i.e. CO profiles)

b = all other constituents in the atmosphere

In this project two different methods are used to determine the true atmo-

spheric radiation (yatm). (1) The AERI instrument measures downwelling infrared

radiation. (2) Atmospheric radiation is modeled by kCARTA using knowledge of

temperature and other constituents in the atmosphere. Each of these methods con-

tains some error between itself and true atmospheric radiation. If it was possible to

know the error on a case by case basis then perfect estimates of atmospheric radi-

ation could be obtained; however, there are only statistical estimates of the error.

Therefore, error is actually an uncertainty in each measurement.

The process for relating an AERI measurement to simulated kCARTA spectra

is described by Equation 2.14. Each ε is the uncertainty between the true atmo-

spheric state and either an AERI measurement or a kCARTA simulation. Therefore,

the total uncertainty between AERI and kCARTA is a combination of the two.

yAERI = yatm ± εAERI

ykCARTA = yatm ± εkCARTA

yAERI = ykCARTA ± (εAERI + εkCARTA)

y = F (x, b)± ε (2.14)
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where,

y = refers to AERI measurements

F (x, b) = refers to modeled spectra from kCARTA

x = variable to be retrieved (CO).

b = other parameters essential to the correct modeling of spectra (T,H2O).

ε = combined uncertainty between AERI and kCARTA spectra.

2.9.2 Jacobians

The inverse methods used to map measured spectra from AERI to measure-

ments of CO require the RTE to be written in a linear form [67]. As previously

stated, the RTE is a nonlinear function; however, for small changes in the state

variable (x), the RTE is approximately linear. Depending on the degree of linearity,

the linearized form of the RTE takes Equation 2.14 and writes it as y = Kx, or

∆y = K∆x. K represents the Jacobian and formally is the derivative of the RTE

with respect to a small change in the state vector. The Jacobian can be calculated

analytically; however for this work the Jacobian is calculated using Equation 2.15.

∂F (νm)

∂xn
=

F (xn + σnxn, νm)− F (xn, νm)

σnxn
= Kmxn (2.15)

where,
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F (xn, νm) = kCARTA spectra using base state input

F (xn + σnxn, νm) = kCARTA spectra using perturbed state input

νm = wavenumber (cm−1) with m channels

σ(n)xn = perturbed state as a function of n layers

xn = base state as a function of n layers

σn = size of perturbation as a function of n layers

In practice, σn varies in size and depends on the state variable being perturbed

and which part of the electromagnetic spectrum is being modeled. Determining the

magnitude of σn where the linear approximation of the RTE remains valid is required

to calculate the Jacobian and for limiting the size of changes to the state variable

from a retrieval. Also, σn may or may not be a function of pressure. In this work

the CO Jacobian is calculated with a constant 10% (σ = 0.1) perturbation to CO

column density values in RTP profiles.

2.9.3 Least Square Solution

This section provides the basis for the inversion process and formulates the

simple equation which solves the retrieval problem. To illustrate the role different

variables play in the inversion process a purely linear case will be presented first.

Then, the formal iterative solution will be given.

A purely linear case without error begins with Equation 2.16. The goal is to

minimize the difference between Kx and y.

y = Kx (2.16)
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This is done by finding the minimum in the cost function J shown in Equation 2.17.

Finding the minimum in the cost function is done by taking the derivative of J with

respect to x and finding its root. y is a nx1 vector, so J is a scalar value. Finding

the minimum in J requires taking a derivative of a scalar with respect to a vector.

J = (Kx− y)T (Kx− y) (2.17)

J = xTKTKx− yTKx− xTKTy + yTy (2.18)

∂J

∂x
= 0

Multiplying Equation 2.17 out shows that J is made up of matrices multiplied by

vectors.

The formal method for determining this derivative is given in [67, A.6] and

the result is shown in Equation 2.19

∂

∂x
[xTAx+ γ2bTx] = ATx+ Ax+ γ2b (2.19)

Now the terms from Equation 2.18 can be substituted into the general expression

for the derivative given above.

yTK = bT

KTK = A

γ2 = 1

(2.20)

The value of x which minimizes the cost function from Equation 2.19 is shown in
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Equation 2.21

∂J

∂x
= 2(KTKx̂−KTy) = 0

KTKx̂ = KTy

x̂ = (KTK)−1KTy (2.21)

This least square solution assumes all information about the state variable x

can be found from the measurements. It assumes no prior information about noise or

the state. A simple example using the least square solution, taken from [84, 73, 40],

demonstrates how the least squares solution works is now presented.

First, the assumption is made that an instrument and forward model exist

that have no error. The instrument makes two measurements termed ytrue given

below. The state variable xtrue is given below as well.

ytrue =




2

4.0001



K =




1.0000 1.0000

2.0000 2.0001



xtrue =




1

1





x̂ =
(
KTK

)−1
KTytrue =




1

1





With a perfect instrument the retrieved quantity was exactly the same as the true

quantity. What happens though if the instrument has a slight uncertainty in it?

yest = ytrue − ε =




2

4.0001



−




0

.0001



 =




2

4





x̂ =
(
KTK

)−1
KTyest =




2.000

0




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The uncertainty in yest was four orders of magnitude less than the measure-

ment, yet the retrieved quantity is over 100 percent in error. Let’s make another

example to compare:

ytrue =




4.0000

7.0000



K =




1 3

2 5



xtrue =




1

1





The same uncertainty in the measurement will again be applied:

yest = ytrue − ε =




4.0000

7.0000



−




0

.0001



 =




4.0000

6.9999





And the least square solution for this process is presented below.

x̂ =
(
KTK

)−1
KTytrue =




.9997

1.0001





The retrieved value of x̂ in this example is much more accurate then the previ-

ous example’s retrieved value for x̂. In fact, the error in the retrieved value of x̂ has

the same magnitude as the noise. In each case the same error was applied and values

of the true measurement were the same magnitude. The difference between the two

examples is from their respective Jacobians. To understand the difference between

the two examples, first define the gain as the linear mapping from measurement

space to state space. A calculation for least square gain matrix is shown in Equa-

tion 2.22. When error terms for the forward model or instrument are estimated,

the expected error in the state variable can be determined simply from Gε. For any

form of retrieval equation the gain matrix makes up all the variables preceding the
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multiplication of the measurement.

G =
(
KTK

)−1
KT (2.22)

The gain matrix for each example is shown below. It should be noted that

each term in the gain matrix for the first example is four orders of magnitude larger

then the terms in the second example’s gain matrix. Any error in the first example

will be multiplied by a factor of 1E4, causing the solution to be highly oscillatory.

G1 =




2.0001E4 −1.0000E4

−2.0000E4 1.0000E4



G2 =




−5.0000 3.0000

2.0000 −1.0000





The ideal K matrix is diagonal. If a diagonal K was an nxn matrix, then that

would correspond to n linearly independent equations to solve x for. If x had m

terms, and m ≤ n, then x could be completely determined from the measurement.

In the first example above, the K matrix was not diagonal. Close examination of

the K matrix reveals the second row is nearly 2 times the first row. This means the

Jacobian for this example is not a linearly independent quantity. The number of

linearly independent rows in the K matrix define its effective rank [67]. If this rank

is denoted p and the m quantities are greater than p, then some parts of x resides

outside the effective row space of the measurement. Parts of the state that cannot

be determined by the measurement are termed the null space of K [67].

Identification of the effective rank of K can be done with singular value de-

composition [67]. The form of the singular value decomposition is shown in Equa-

tion 2.23. The number of non-zero singular values in K is the rank of K.
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K = UΛV T (2.23)

where the singular values for each case are given below:

Λ1 =




3.1623 0

0 3.1622E − 5



Λ2 =




6.249 0

0 1.602E − 1





The second singular value for the first case is 5 orders of magnitude smaller

than the first singular value. In contrast, the second singular value for the second ex-

ample is only 1 order of magnitude smaller than its first value. Having rows that are

linearly dependent cause the singular values to decrease rapidly. Equation 2.21 can

be rewritten in terms of the singular value decomposition of K to examine the effect

of the singular values. As is shown in Equation 2.24, any x̂ value is a combination

of the singular vectors U and V , while being divided by the corresponding singular

value. In the first example, the second singular vector is on the order of 1E-5 and

causes the gain matrix to be highly oscillatory for even a tiny measurement error.

The higher singular values in the second example allow the second measurement to

be less sensitive to error.

x̂ = (KTK)−1KTy

KT = V ΛUT

x̂ = (V ΛUTUΛV T )−1V ΛUTy

x̂ = V Λ−1UTy

x̂i =
N∑

t=1

Vi,t(UTy)t
λt

(2.24)
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2.9.4 First Guess

When using inverse methods to map the state (CO profile) back to the mea-

surement (AERI) many parts of the state reside in the null space of the measurement

[67]. A well constructed first guess will constrict solutions of the retrieval equation

to reasonable answers in the parts of the state where the measurement is not pro-

viding any information [67, 87]. Components of the state space that are contained

in the effective row space are measured well enough that they are unaffected by

the choice of a first guess [67, 87]. A first guess can use a climatology of measure-

ments, models, or retrieval measurements from another instrument. A climatology

of measurements or model can also be used to create an a priori profile and a priori

covariance matrix for use in an optimal estimation method, where the a priori is

the mean state of all the measurements [87].

This work compares a static first guess profile using an a priori profile, defined

as the mean state of all 57 CO profiles from [90], to AIRSv5 CO used as the dynamic

first guess profile. The purpose of using AIRSv5 CO profiles as a first guess is to

improve the accuracy of retrieved CO in regions above 700 mb where SAAC has

no sensitivity and AIRSv5 CO retrievals provide a better estimate of the true CO

profile compared with the a priori.

Figures 2.13(b) and 2.13(b) present both averaging kernel matrices (AK) for

the AIRSv5 and SAAC 5 layer respectively. Figures 2.13(b) and 2.13(b) both show

that retrievals from either AERI or AIRS data only have one peak and only measure

one piece of information about the atmosphere. Using the AIRS v5 CO product as
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the first guess to SAAC makes use of the different sensitivity locations for each

instrument’s respective retrieval process.
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Figure 2.13: (a) AIRS v5 AK with the effective pressures for each row of the AK listed

in the legend. This plot comes from [87]. (b) SAAC averaging kernel. The

components for this retrieval use a diagonal constraint matrix called HTT

and a 5 layer retrieval grid. These components are defined in Chapter 4.

2.9.5 Information Content

Three different diagnostic variables were used to determine information con-

tained in the retrieval system are briefly described below:

1. SVD: The Jacobian matrix K was decomposed into its eigenvectors and eigen-

values described by equation 2.23. A transformation of the linear problem to

an orthogonal basis the number of pieces of information greater than measure-

ment error can be determined. The number of singular values greater than
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one from S−1/2
ε KS1/2

a is the effective rank of the measurement space [67, Ch

2.]

2. Degrees of Freedom (DOF): The degrees of freedom separate the mea-

surement signal into two components. The first component is the number of

degrees of freedom due to the signal ds, and the second component is the num-

ber of degrees of freedom due to error de. Results from this work use ds to

describe information of the SAAC retrieval.

3. Shannon information content: This concept was originally developed to

describe information carrying capacity of communication channels [70]. It

relates the entropy of the system before and after a measurement is made.

2.9.6 Degrees of Freedom, Gain Matrix, and the Averaging Kernel

The purpose in calculating the degrees of freedom (DOF) is to separate how

many independent pieces of information are contained in the signal (ds) from how

many independent pieces of information are contained in the noise (dn). DOF

are calculated under the assumption that the prior state pdf and error pdf have a

Gaussian distribution, and the mapping made by the retrieval is a linear process.

There are not enough CO profiles to create a pdf of the prior state; however, it has

been shown that CO has a log-normal distribution [14].

The expression for calculating the DOF for the signal is taken from [67, Ch.

2] and is given by:

ds = trace([KTS−1
e K + S−1

a ]−1KTS−1
e K) (2.25)

57



where Se and Sa are the error and a priori covariance matrices respectively. In

the least square solution from Section 2.9.3, a gain matrix is defined as all the

components that propagate the measurement to the retrieval. This is demonstrated

by the differential form of the gain matrix G =
dx̂

dy
. The general form of the gain

matrix in a retrieval is demonstrated below:

x̂− xa = G(y −Kxa)

, where for this case G = (KTSeK + S−1
a )−1KTS−1

e .

Substituting the gain matrix into Equation 2.25 simplifies the expression which

calculates the DOF for the signal, as seen below.

ds = trace(GK) (2.26)

A calculation for the DOF of the signal than is simply the trace of the gain matrix

G times the Jacobian matrix, K. This quantity is commonly known as the the

averaging kernel (AK) [3]. As it is shown in Equation 2.27, the AK maps changes

in the true state back to the retrieved state.

A =
dx̂

dx
(2.27)

The averaging kernel has two primary functions. First, it describes the sensitivity

that a retrieved state variable has in relation to the true profiles. The rows of the

averaging kernel describe the sensitivity a layer in the retrieved state has to changes

in the true state. An ideal averaging kernel would be a series of delta functions.

Thus each retrieved layer would be effected in the corresponding true layer. The
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solution for the averaging kernel (A) is

A = GK (2.28)

The DOF due to the signal can be calculated using Equations 2.25- 2.26. Equa-

tion 2.26 is easily derived by remembering that the gain matrix for any retrieval

problem is all the quantities that used to map the measurement vector y to the

retrieved state ĥat. This is shown in differential form with Equation 2.29.

G =
dx̂

dy
(2.29)

2.9.7 Shannon Information Content (HS)

The result of making a measurement improves the knowledge of a quantity.

Therefore, a pdf which describes the probability that x is in a certain state has its

variance and entropy reduced through measurement. Shannon used the entropy of

the system as a way to quantify the amount of knowledge of the state. Shown in

Equation 2.30, the entropy of a system defined by Shannon, is the same as the Gibbs

thermodynamic definition of entropy apart from the Boltzmann constant.

S(P ) = −k
∑

i

pilnpi (2.30)

If two pdfs, P1 and P2 correspond to states before, and after a measurement,

then the information content of the process is calculated as the reduction in entropy

[70]. This relationship is demonstrated below:

HS = S(P1)− S(P2) (2.31)
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In practice, the Shannon information content of the system (HS) is measured in bits

as it was first developed to describe the information carrying capacity of communi-

cation wires [67]. The relationship used to calculate HS is seen below:

HS = −1

2
|In − A| (2.32)

Beginning with the relation for a reduction in entropy shown in equation 2.31, it

is possible to relate Shannon information content (HS) to degrees of freedom (ds),

singular values (λ) of K, and the averaging kernel (A). Derivations of the relation-

ship between these values are straight forward when starting with the definition of

entropy for a Gaussian distribution as described in [67, Ch. 2]. The relationships

between all quantities used to determine information in the retrieval system are

shown in Equations 2.33 and 2.34.

HS = −1

2
|In − A| = 1

2

∑

i

ln(1 + λ2) (2.33)

ds = trace(A) =
∑

i

λ2
i

1 + λ2
i

(2.34)
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Chapter 3

Error Analysis

3.1 Cloud Filtering

Observed spectra from AERI is greatly affected when the FOV contains clouds.

Portions of the spectra known as window channels, which normally receive radia-

tion from very high in the atmosphere, receive radiation from much lower in the

atmosphere during periods of cloudiness. Each different cloud type, ranging from

thin cirrus to the thicker cumulus clouds, has its own characteristic effect on AERI

spectra. Each AERI spectra results from an observation of the sky over a 3 minute

period of time and clouds may fill the FOV for either the total amount of time or

a fraction of that 3 minutes. Modeling the effect from each of the cloud scenarios

would be quite difficult with kCARTA. Therefore, a method which effectively identi-

fies cloudy spectra is required. This section gives an overview and directly compares

two different methods that identify cloudy spectra.

The first AERI cloud flagging technique looks for a spectral contrast of 40 K in

AERI spectra corresponding to the band between 2100 and 2200 cm−1 [28, 34, 90].

Spectra is converted from radiance to brightness temperature (K) by inverting the

Planck function from Equation 2.2 and solving for temperature.

Clouds emit radiation like a blackbody with a brightness temperature close

to its atmospheric temperature across all spectral channels. Therefore, an AERI
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spectra observing a cloud in its FOV will have a small contrast in measured spectra

converted to brightness temperature. Examples of cloudy spectra are shown in

Figure 3.1 as vertical lines of the same color. This time series of AERI spectra

shows clouds occurred from 0-3, 6-8, 12, and around 18 GMT. Searching for a

brightness temperature contrast of 40 Kelvin is successful when thick clouds under

5 km in height fill the AERI FOV [50]. This method does not identify thin cirrus,

or scenes that are only partially filled in time or space by clouds.

Figure 3.1: Time Series of AERI spectra converted to brightness temperatures for

20070106 from AERI-01 instrument located at SGP.

A new cloud flagging technique for AERI spectra has been developed that uses

a neural network trained on AERI spectra, ceilometer measurements, and LIDAR

measurements [80]. Figure 3.2 displays a histogram of measured AERI brightness

temperatures for the 985 cm−1 window channel taken from [80]. A tri-modal be-

havior is displayed in the total history of measurements represented by the black
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line. The neural network was applied to the spectra in order to differentiate clear

sky from cloudy sky. Thin and thick clouds are differentiated by averaging spectra

at 985 cm−1 for 70 minutes and either being less than or greater than 250 K. The

third peak in the total history is clearly shown to be from thick clouds while the

other two peaks are shown to be from a combinations of thin cloud and clear sky

conditions.

Figure 3.2: Cloud climatology plot from [80]. Clouds are flagged via a neural network,

and 250 (K) was chosen as a threshold between thin and thick clouds.

Shorthand notation will be used to describe each method of cloud flagging for

the remainder of this dissertation:

• BT: Cloud flags using the brightness temperature contrast of 40 K [28].

• NN: Cloud flags using the neural network in [80] are provided by [78].
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Both methods of cloud flagging are applied to 2007 AERI spectra. First, bad spectra,

those resulting from poor calibration or a closed hatch over the instrument, for the

2007 data set were identified by direct visual inspection and thrown out. Then,

the BT cloud flags were collocated in time with NN cloud flags provided from [78].

Table 3.1 shows that the neural network greatly reduces the number of spectra

classified as clear compared with BT.

Cloud Filter Total Spectra Spectra Analyzed Clear Days Percent Clear

BT 62964 57345 37319 65

NN 62964 58852 13735 23

Table 3.1: Summary of cloud analysis on 2007 AERI data

Following methodology from [80], a threshold of 250 K in the window channel

at 2133 cm−1 is used to differentiate thin clouds from thick clouds for the BT

cloud filter. Figures 3.3(a) and 3.3(b) are histograms of the 2133 cm−1 brightness

temperature for the AERI 2007 data set with the BT and collocated NN cloud flag

techniques applied. These two figures show that the 2133 cm−1 channel has the

same tri-modal behavior as in the 985 cm−1. Directly comparing Figure 3.3(a) with

Figure 3.3(b) reveals that the BT cloud filter misclassifies AERI spectra with thin

clouds in the FOV as clear. Previous studies using AERI spectra likely were affected

by the thin cirrus clouds in the spectra [34, 90]. In fact, the large increase in AERI

retrieved PWV shown around 3 UTC from Figure 2.12 is likely due to the presence
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of a cloud that was not flagged by the BT cloud flag. The NN cloud flag’s ability

to determine spectra affected by thin cirrus provides a significant improvement over

BT cloud filter and allows for a better examination of the error sources affecting

kCARTA modeling.
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Figure 3.3: (a) Histogram cloud analysis on all AERI-01 spectra by the neural network

method. (b) Histogram cloud analysis on all AERI-01 spectra using bright-

ness temperature contrast to search for clouds.

3.2 kCARTA Input Analysis

A forward model calculates radiance based on the radiative transfer equation

defined in Equation 2.4. The Planck function, B[ν, T (p)], and the transmittance

τ(ν,p) need to be calculated at every point in the atmosphere. An accurate calcula-

tion of the fractional transmittance τ(ν,p) requires knowledge of various atmospheric

constituents’ distributions by height, and the subsequent quantum mechanical tran-
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sitions for each molecule. For a given portion of the electromagnetic spectrum, only

certain gases are radiatively active. Therefore, three options exist for a gas’ inclusion

into the forward model:

1. Ignored: The gas molecule absorbs no energy at the given wavelength and

does not need to be included in the forward model.

2. Referenced: Absorption by the gas molecule is small or the variability of the

gas is small enough that a reference profile can be included to the forward

model.

3. Dynamically Included: The gas molecule has a significant absorption and

changes enough over time that no reference profile can be used. Thus the best

estimate of gas distribution must be included in the forward model as input

in order to achieve some desired accuracy.

A sensitivity study is presented here to determine which gases need to be dy-

namically included, referenced, or ignored. The study compares the size of the CO

Jacobians to the size of the Jacobians of other significant gases. The Jacobian ex-

pression from Equation 2.15 is used to calculate Jacobians for ozone, water, nitrogen

dioxide, and carbon dioxide. Temperature is calculated analytically by kCARTA.

Figure 3.4(a) shows that the results which compare temperature, water, and

CO radiances change corresponding to a small perturbation in their lower tropo-

spheric profile. Figure 3.4(a) shows that small perturbations in temperature and

water vapor profiles will dominate this region and can hide the CO signal. Includ-

ing reference profiles for temperature and water vapor does not provide the adequate
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accuracy that is needed to model spectra. Therefore temperature and water vapor

profiles retrieved from AERI spectra will be used in every kCARTA simulation.

Figures 3.4(b) - 3.4(d) compare the CO Jacobian to Jacobians for N2O, O3, and

CO2 respectively. These figures demonstrate that the CO signal is much larger than

the signal corresponding to small perturbations in other trace gases in this region.

Therefore, reference profiles from the 1976 US standard atmosphere is used for N2O,

O3, CO2, and many other gases in kCARTA. The spectral channels corresponding

to the two peaks in Figure 3.4(d) are not used to retrieve CO. This avoids possible

errors in simulated spectra due to errors from the CO2 profile used.

3.3 Error Simulations

A computer simulation was setup which simulates how error in the AERI

retrieved temperature and water vapor profiles input into kCARTA project onto

simulated spectra. This simulation examined the entire 2007 data set of AERI

retrieved temperature and water vapor profiles from SGP. Cloud free profiles are

determined by collocating in time the AERI retrieved profiles with the NN cloud

flags. This resulted in 13735 sets of profiles to build the simulation with. The bias

and RMS values for both temperature and water vapor retrievals from Figure 2.11

are propagated randomly through the kCARTA set to determine error due to profiles

input to kCARTA.
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Figure 3.4: (a) Temperature, water vapor, and CO Jacobians. Water and CO Jaco-

bians are multiplied by a 10 percent variation of their gases column amount.

Temperature Jacobian is for a 1K difference. Noise level is simulated as

1 percent of the measured radiance. (b) N2O Jacobian is calculated using

Equation 2.15 with a 1% perturbation.(c) O3 Jacobian is calculated using

Equation 2.15 with a 1% perturbation. (d) CO2 Jacobian is calculated using

Equation 2.15 with a 1% perturbation. For (b) - (d) CO Jacobian calculated

by Equation 2.15 using a 10% perturbation. The perturbation sizes are cho-

sen to assure the radiative transfer equation is approximately linear for a

given percent change in gas amount.
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3.3.1 Temperature Simulation

The process for adding error randomly to the 13735 temperature profiles starts

by defining two parameters, a(h) and b(h), which are both functions of the validated

[72] bias and RMS values for temperature. Tbias and TRMS are found by examining

Figure 2.11.

a(h) = TBias(h)− αTRMS(h) (3.1)

b(h) = TBias(h) + αTRMS(h) (3.2)

Each of these parameters are defined on the same geopotential height grid (h) that

is standard output with the AERI retrieved temperature and water vapor retrievals

[22]. Figure 3.5 displays the bias (red) and RMS (blue) used as input to a(h) and

b(h).
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Figure 3.5: Bias and RMS profiles for the AERI retrieved temperature product taken

from an AERI temperature and water vapor validation study [72].

The bias and RMS values in Figure 3.5 are taken from the AERI temperature
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and water vapor validation study [72]. Bias and RMS values of -.45 K and 1.3 K

were used above 3000 meters respectively.

Once the parameters a(h) and b(h) are created they are input into Equation 3.3

in order to create 13735 temperature error profiles.

∆T (hi) = a(hi) + [(b(hi)− a(hi))N(hi)] (3.3)

The variable N inside Equation 3.3 is a vector containing a uniform distribution

of 13735 random numbers between 1 and 0. Computation of ∆T (hi) is carried out

with a for loop that circulates over the height index i.

The set of temperature profiles with simulated error is easily calculated since

both the temperature profiles (T ) and the temperature error profiles (∆T (h)) are

the same size matrix (lxN), where l is the total number of heigh layers in the

geopotential grid h and N stands for the 13735 profiles.

Terror = T +∆T (3.4)

Terror in Equation 3.4 represents the set of temperature profiles with the validated

RMS and bias errors mapped onto them. When Equation 3.4 was first calculated it

was found that the output RMS was too small and did not match the input RMS

from Figure 3.5. For this reason a scaling term (α) is used in Equations 3.1 and 3.2

to increase the output RMS values. For the temperature simulation this factor is

found to be 1.66. Figure ?? shows that the RMS and bias computed from the set

of 13735 temperature and temperature with error profiles is a good match to the

validated RMS and bias profiles in Figure 3.5.
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Figure 3.6: Output profiles of RMS and bias once error is added to the temperature

profile. Bias is calculated as the mean of T − Terror

3.3.2 Water Vapor Profile Simulation

Adding error to the 13735 AERI retrieved water vapor profiles is a process

similar to the temperature simulation; however, because water vapor mixing ratio

(WVMR) profiles are much smaller in magnitude, simply adding random error causes

some profiles to contain negative values. Therefore, the error must be added as a

percentage change to the profile.

The process for adding error randomly to the 13735 WVMR profiles starts by

defining the mean WVMR profile (W ) in Equation 3.5, with N equaling 13735.

W (h) =
1

N

N∑

i=1

W (h) (3.5)

Next, profile parameters a(h) and b(h) are defined in equations 3.6 and 3.7

respectively. These parameters are functions of the mean profile from equation 3.5

and the bias and RMS profiles shown in Figure 3.7(a). Bias and RMS profiles are
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based on the results from the AERI validation study in [72].

a(h) =
W −WBias

W
− α

WRMS

W
(3.6)

b(h) =
W −WBias

W
+ α

WRMS

W
(3.7)

Once the parameters a(h) and b(h) are created they are input into Equation 3.8

in order to create 13735 fractional WVMR error profiles. The variable N inside

Equation 3.8 is a vector containing a uniform distribution of 13735 random numbers

between 1 and 0. Computation of ∆W (hi) is carried out with a for loop that

circulates over the height index i.

∆W (hi) = a(hi) + [(b(hi)− a(hi))N(hi)] (3.8)

The set of WVMR profiles with simulated error is easily calculated since both the

WVMR profiles (W ) and the WVMR fractional error profiles (∆W (h)) are the same

size matrix (hxN). Werror in Equation 3.9 represents the set of WVMR profiles

with the validated RMS and Bias errors mapped onto them. RMS and Bias Output

profiles from this simulation are displayed as the solid red and blue lines respectively

in Figure 3.7(b).

Werror = W∆W (3.9)

3.3.2.1 MWR Constraint Simulation

To simulate the effect of constraining WVMR profiles with MWR data, Equa-

tion 2.10 , that describes how to constrain the water vapor profile from AERI, is

adjusted. In order to get Equation 3.10 from Equation 2.10, W is substituted for
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Figure 3.7: (a) Bias and RMS profiles for the AERI retrievedWVMR product taken from

an AERI temperature and water vapor validation study [72]. These are used

in Equations 3.6 and 3.7. (b) Bias and RMS statistics calculated between W

and Werror. The constrained RMS and bias profiles are calculated from W

and Werror, where Werror is constrained by a simulated MWR measurement.

Equation 3.10 demonstrates how the WVMR profile is constrained by use of

an MWR. Bias is calculated as the mean of W −Werror.
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MWR data and Werror is substituted for AERI WVMR data.

Constrained Werror =
TPW (W )

TPW (Werror)
Werror (3.10)

As shown in the dashed profiles in Figure 3.7(b), constraining the WVMR profile

with MWR data shifts the bias to the left (making it more negative). The con-

strained RMS (dashed red) profile in Figure 3.7(b) is smaller above 1000 meters

when compared with the normal RMS profile (solid red). Therefore the simulation

shows that MWR does improve the accuracy of the profile, but the improvement is

above 1000 meters. The improvement in modeled spectra from using MWR is likely

to be small because the effect that errors in the WVMR profile have on modeled

spectra decreases with height.

3.3.3 kCARTA Model Error

The uncertainty in synthetic spectra from kCARTA due to uncertainty in mod-

eling absorption lines represents an imperfect knowledge of the underlying physics

in radiative transfer. Absorption line parameters for atmospheric constituents that

make significant contributions in the CO band (2100-2200 cm−1) are perturbed in

order to understand how the uncertainty propagates through kCARTA. There are a

total of 4 variables to perturb, with three dealing with modeling water, and one from

the modeling of CO. Due to the complexity of modeling a water molecule, modeling

its absorption coefficients is separated into water lines, self absorption, and foreign

broadening [23]. Percent uncertainty for all species modeled is shown in Table 3.2

and were determined from [27].
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Source H2O Foreign Self CO

Percent Uncertainty 10 10 10 5

Table 3.2: Percent changes to absorption coefficients used to calculate σ terms.

One set of AERI retrieved temperature and WVMR profiles in September is

chosen to run this modeling simulation. The PWV from this day had its average

annual value. The uncertainty in a kCARTA simulation due to one of the absorption

coefficients from Table 3.2 is the difference between a base state simulation and a

perturbed state simulation. This calculation is demonstrated in equation 3.11.

εa(ν) = F (aσa, ν)− F (ν) (3.11)

where,

εa(ν) = kCARTA uncertainty spectra (brightness temperature or radiance)

F (ν) = Spectra produced from kCARTA

F (aσa, ν) = Spectra produced from kCARTA with perturbation to abs. coeff.

a = A constituent from Table 3.2

σa = Multiplicative factor for constituent a(ex. a = CO, σa = 1.05)

ν = Wavenumber cm−1

Figure 3.8(a) displays the results from the simulation as brightness tempera-

ture. This figure demonstrates that the uncertainty in water is the most dominant

term followed by self and foreign broadening, while uncertainty in CO lines have

a small but non-negligible effect. Because each kCARTA modeling error term is

independent of one another the error terms are added in quadrature. Quadrature

75



addition for the errors give:

εtotal(ν) =

√√√√
N∑

i=1

ε2i (ν) (3.12)

On water lines the total modeling error is shown in Figure 3.8(a) to be around 1K

in the CO band, with decreasing values past 2140 cm−1. Figure 3.8(b) displays

the error terms in radiance units. This figure compares total error, total water,

and CO. Total water is the sum of water, foreign, and self broadening features and

demonstrates that the total uncertainty in modeling water dominates the entire

band, and uncertainty in CO is only comparable in a small band from 2160 -2190

cm−1.

3.3.4 AERI Error Simulation

Principal Component Analysis (PCA) is an effective technique for reducing

the dimensionality of large data sets that are characterized by many interdependent

variables [1] and has shown to be an effective method for removing uncorrelated

error that exists in AERI spectra [81]. In this study PCA is used to estimate the

error rather than remove it.

The process begins by taking many spectra measurements from AERI, where

each spectra produced by AERI contains an atmospheric component and a noise

component. This is demonstrated in equation 3.13.

yAERI(νn) = yatm(ν)± ε(ν) (3.13)

The entire AERI-01 data set for 2007 comprised 62964 AERI measurements of which

58852 could be collocated in time with the NN cloud flag. Removing AERI spectra
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Figure 3.8: (a) All the different terms used to model the uncertainty kCARTA modeling

error measured in brightness temperature (K). (b) Total modeled error, total

water error, and error terms from CO are presented here in radiance units.

Total water is the uncertainty in water lines, self broadening, and foreign

broadening. Total is all the terms added together. Error terms are added

together using equation 3.12
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that observes clouds results in 22679 cloud free spectra that each contain roughly 500

spectral channels. This provides sufficient amount of data to meet the requirement

that there be at least two times as many sets of spectra as there are spectral points

[1].

The entire set of AERI measurements is written as a matrix, Lmxn, where m

is the number of AERI spectra and n is the number of spectral channels. The mean

spectrum for all AERI measurements is then calculated in using equation 3.14.

L1xn =
1

M

M∑

i=1

Lixn (3.14)

The mean spectrum then is used to create an Lmxn mean matrix that is used in

Equation 3.15 to calculate deviation from the mean (L̃mxn) for each spectrum.

L̃mxn = Lmxn − Lmxn (3.15)

Principal components usually are calculated as the eigenvectors determined from

the nxn spectral covariance matrix (Cnxn) [81]. Eigenvectors of C are the same as

the eigenvectors of Lmxn [44] and are easier to create because C is a symmetric real

valued matrix. The spectral covariance matrix is given by

Cnxn = L̃T L̃ (3.16)

Singular value decomposition (SVD) is used to determine the eigenvectors and

eigenvalues of Cnxn. The standard SVD routine provides a numerically stable and

well behaved approach to calculating the eigenvectors and eigenvalues [64]. The com-

putation is done using the standard Matlab svd routine: UnxnSnxnV T
nxn = svd(C ),

where the eigenvectors are the row vectors in Unxn and the eigenvalues (λ) are the
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diagonal in S. Eigenvalues describe the variance of the measurement set and are

ordered such that they are sequentially decreasing (λ0 > λ1 > λ2 > ....λn). Large

eigenvalues contain information about the variance of the atmopshere, while smaller

eigenvalues describe variance due to noise of the instrument [1]. The next step is to

determine which eigenvectors relate to atmospheric variation, and then to use only

them to reconstruct the original data set [1].

The minimum in an empirical function, called the factor indicator (FI) [43],

is used to determine how many principal components to use in reconstructing the

AERI data set. This function defined by

FI(k) =
RE(k)

(n− k)2
(3.17)

where,

RE(k) =

n∑

i=k+1

λi

m(n− k)
(3.18)

is solely determined on the the magnitude of the eigenvalues (λ), the number of

spectra (m), and the number of spectral channels (n) in Lmxn. The number k states

how many eigenvalues describe atmospheric variation, and eigenvalues 1→ k are

retained in the data set.

Equation 3.18 describes the real error in the data set [44]. Computations for

RE and then FI are computed for values of k, ranging from 1 → n − 1. The

computation begins and k = 2 because the first eigenvalue is assumed to describe

real atmospheric variation. Then the value of k that corresponds to the minimum

in the FI function is used to reconstruct the data set. For a data set with uniform
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random error (Gaussian distributed error with constant standard deviation for all

spectral points and times) the minimum in the FI function is the correct choice for

k [43].
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Figure 3.9: (a) FI function (red) for apodized AERI data set with the blue star corre-

sponding to the minimum.(c) FI function (red) for unapodized AERI data

set with blue star corresponding to the minimum.

Plotted in Figures 3.9(a) and 3.9(b) are calculations of the FI function for

eigenvalues corresponding to apodized and unapodized AERI data sets respectively.

In each figure the blue star represents the minimum. The minimum in the FI

function for the apodized AERI data corresponds to 23 eigenvalues and the minimum

for the unapodized AERI data set corresponds to 30 eigenvalues. Less variation is

described in the lower eigenvalues corresponding to the apodized data set because

apodization acts like a running mean across the spectral channel, thereby reducing

the spectral variation.
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Figures 3.10(a) and 3.10(b) show that the eigenvalues not used in the recon-

struction carry little information. The long flat part of Figures 3.10(a) and 3.10(b)

represents eigenvalues describing variation due to the instrumental noise of the data

set. Noisy eigenvalues for the unapodized AERI data set are approximately an order

of magnitude higher than the noisy eigenvalues for the apodized AERI data set. A
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Figure 3.10: (a)Eigenvalues (Red) for apodized AERI data set with blue star corre-

sponding to the minimum in the FI function. (d) Eigenvalues (Red) for

unapodized AERI data set with blue star corresponding to the minimum

in the FI function.

low rank eigenvector matrix is created from the full set of eigenvectors (Unxn) once

the appropriate number of eigenvalues is determined from the FI function. If the

FI function determines that k eigenvalues have contributions from the atmosphere,

then the low rank eigenvector matrix is Ûnxk = Unx(1→k) and the estimated AERI
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data matrix is calculated as:

Llow
mxn = L̃mxnÛnxk(Û

T )kxn + Lmxn (3.19)

Figure 3.11(a) takes one spectrum and demonstrates the similarity between the

reconstructed AERI and the original AERI data. The RMS error is calculated in

Equation 3.20 to determine the amount of uncertainty (εy) of the apodized and

unapodized AERI data sets.

εy(ν) = 2

√√√√ 1

m

m∑

i=1

[Lixn(ν)− Llow
ixn(ν)]

2 (3.20)

Figure 3.11(b) demonstrates that the uncertainty in an AERI measurement is

on the order of .004 and .007

(
mW

m2 sr cm−1

)
for apodized and unapodized spectra

respectively. It should be noted that the reduction in error by a factor of approx-

imately 1.7 between apodized and unapodized spectra does not correspond to an

increase in the signal by 1.7. This is due to the apodizing process which slightly

degrades the amount of signal in a measurement.

3.3.5 Error Simulation Final Results

Presented in Figure 3.12 are the results from all the different error simulations.

These include the error simulations due to the temperature and WVMR profiles,

modeled spectra from kCARTA, and measured spectra from AERI. The simulation

study on the AERI retrieved temperature and WVMR profiles contains 3x13735

sets of profiles. The three sets correspond to:

1. Base State (Fmxn
base (ν)): 13735 spectra produced from the AERI retrieved

temperature and WVMR profiles input to kCARTA.
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Figure 3.11: (a) Reconstruction example of apodized AERI spectra (b) RMS error from

the difference between the original AERI (Lmxn) and the reconstructed

datasets (Llow
mxn).

2. TEMP (Fmxn
temp(ν)): 13735 spectra produced by kCARTA using the perturbed

AERI retrieved temperature from section 3.3.1 and normal WVMR profiles.

3. WVMR (Fmxn
h2o (ν)): 13735 spectra produced by kCARTA using the perturbed

AERI retrieved WVMR from section 3.3.2 and normal temperature profiles.

The perturbed profiles were not fixed by simulated PWV measurements.

In the series of matrices relating to the input profiles, m corresponds to the 13735

profiles and n corresponds to the approximately 180 spectral channels that were

modeled in the CO band with each kCARTA simulation. Uncertainty in kCARTA

spectra due to errors in temperature and WVMR profiles is calculated as the RMS

between the perturbed profile (Fmxn
temp(ν) or F

mxn
h2o (ν)) and the base profile (Fmxn

base (ν)).
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The calculation is shown in equation 3.21 and 3.22

εtemp(ν) = 2

√√√√ 1

m

m∑

i=1

[F ixn
temp(ν)− F ixn

base(ν)]
2 (3.21)

εwvmr(ν) = 2

√√√√ 1

m

m∑

i=1

[F ixn
h2o (ν)− F ixn

base(ν)]
2 (3.22)

Figure 3.12 shows the results of all error simuations conducted. All modeled terms

(Water,Self,Foreign,CO) are added in quadrature (Equation 3.12) and represented as

the ”modeled” term in Figure 3.12. The results show that in relation to uncertainty

from modeled parameters and input profiles, instrumental uncertainty from AERI is

an order of magnitude less. Uncertainty due to the input profiles is smaller compared

with uncertainty from modeling; however, they do make significant contributions in

the spectral region from 2165 - 2190 cm−1 where most of the retrieval points (Green

Dots) reside.

3.4 Direct Comparison: AERI vs kCARTA

This section shows the results from a direct comparison between synthetic

spectra from kCARTA and measured spectra from AERI. Different variations of

kCARTA (versions 114 and 115), continuum models (CKD 2.4 and MTCKD 1.0),

and cloud flagging techniques (none, BT, and NN) are used to create synthetic

spectra in order to compare with measured spectra from AERI. In combinations

listed above, synthetic spectra from kCARTA is found to be biased low. Therefore,

another set of comparisons is made with the bias removed from kCARTA synthetic
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Figure 3.12: Estimated error terms used to constrain the CO retrieval. Modeled repre-

sents all error terms estimated from kCARTA modeling added in quadra-

ture. Input temp and Input Water are the estimated error terms that are

created from the large random number simulation involving propagation of

validated error in the Feltz data set. Instrument displays the instrument

error resulting from PCA performed on the 2007 apodized AERI data set.

Ret Indices are channels used in the retrieval.
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spectra. There are a total of 48 different combinations used to model spectra for

this comparison study.

The 57 true composite CO profiles [90] measured from 2007 and 2008 are used

as input to kCARTA. The flight of the aircraft which measures part of the CO

profile takes roughly one hour to complete. A Feltz data set that matches up with

the center of this time period is an input to kCARTA as well. Output of kCARTA

is compared with AERI spectra matching up with the same time period as the Feltz

data set.

Synthetic spectra are biased low for every combination used in this study.

Figures 3.13(a), 3.13(b), and 3.13(c) show the bias (red) and standard deviation

(blue) for non cloud filtered, BT cloud filtered, and NN cloud filtered respectively.

kCARTA version 115 and continuum model MTCKD 1.0 are used to model synthetic

spectra for these cases.

The bias is calculated in Equation 3.23 using Lmxn(ν) to describe them number

of AERI measurements with n spectral channels, and Fmxn to describe them number

of kCARTA measurements with n spectral channels. The non cloud filtered data

set uses all 57 (m = 57) coincident measurements of AERI measured spectra and

synthetic spectra from kCARTA using true composite CO as input. Fifty-four (m =

54) of the 57 coincident measurements are left once BT cloud filtering is performed.

Twenty eight (m = 28) of the 57 coincident measurements are left after NN cloud

filtering is performed.
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(b) BT cloud filter (m=54)
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Figure 3.13: (a) Bias and standard deviation measured for all 57 profiles. (b) Bias and

standard deviation measured for 54 profiles filtered by BT contrast method.

(c) Bias and standard deviation measured for 28 profiles filtered by the NN.
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B(ν) =
1

m

m∑

i

Lixn(ν)− Fixn(ν) (3.23)

With each combination of kCARTA version, continuum model, and MWR usage,

a bias spectrum is calculated relating to non cloud filtered, BT cloud filtered, and

NN cloud filtered. The process of adding the bias spectrum to kCARTA spectra is

called centering.

The simulation study showed that error in AERI is more than an order mag-

nitude lower than error in kCARTA. Thus AERI is considered as truth when its

compared to kCARTA spectra. A spectral score, which is the mean standard de-

viation of AERI spectra minus kCARTA spectra, is used to assess the accuracy

of kCARTA modeled spectra. The spectral score has the same units as radiance
(

mW

m2 sr cm−1

)
.

Table 3.3 displays the results of testing all different combinations of modeling

spectra. Moving left to right across the table shows the standard deviation reducing

dramatically compared with moving top to bottom. This demonstrates that the

most critical component to accurate forward modeling is cloud filtering. Using

brightness temperature contrast or neural network cloud filters reduces noise by 2.5

and 3.5 times respectively when compared to simulations where no cloud filtering

took place. Cloud filtering with the NN reduces the uncertainty between spectra

from AERI and kCARTA by 45 - 50% when compared to BT cloud filtered data.

This is for simulations where spectra from kCARTA is centered. Using the new cloud

filter assures that true variability of the difference between AERI and kCARTA is
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Name Combination No cloud clearing BT Cloud Clear NN Cloud Clear

raw centered raw BT centered raw NN centered

KC114 ckd24 noMWR .2537 .2428 .0956 .0766 .0692 .0422

KC114 mtckd1 noMWR .2540 .2430 .0957 .0768 .0691 .0422

KC115 ckd24 noMWR .2537 .2429 .0956 .0767 .0691 .0424

KC115 mtckd1 noMWR .2540 .2431 .0957 .0769 .0690 .0423

KC114 ckd24 MWR .2556 .2463 .0888 .0702 .0652 .0365

KC114 mtckd1 MWR .2556 .2463 .0890 .0704 .0651 .0365

KC115 ckd24 MWR .2556 .2464 .0888 .0704 .0652 .0368

KC115 mtckd1 MWR .2558 .2466 .0890 .0707 .0651 .0368

Table 3.3: Mean standard deviation calculations

(
mW

m2 sr cm−1

)
between AERI and

kCARTA simulations for different models, cloud clearing, and MWR input.

For each combination of kCARTA version, continuum model, MWR input,

and cloud filter, the bias is calculated and added to the simulated kCARTA

spectra. Spectral score calculations for these kCARTA simulations represent

the centered column.
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captured and effects from clouds are removed.

Centering the observations shows the second largest effect on reducing error.

Adding the bias spectrum increases the accuracy by 5, 23 and 64 percent to non cloud

filtered, BT cloud filtered and NN cloud filtered data respectively. The largest effect

is clearly from the thick clouds. A histogram of unfiltered brightness temperature

differences is shown in Figure 3.14. Two days with large error are evident with a

mean absolute brightness temperature error of 22 and 26 Kelvin respectively. This

is the cause of the large uncertainty between AERI and kCARTA measurements

shown in columns 1 and 2 of Table 3.3.
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Figure 3.14: Histograms of the mean absolute brightness temperature difference between

2107 - 2189 cm−1. No cloud filtering is performed and synthetic observa-

tions were created using kCARTA version 115, mtckd1, and no constraints

from the MWR.

Inclusion of MWR data to constrain input profiles of water vapor proved to

have the third largest effect. Table 3.3 is color coded to emphasize trials that used
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or not did not use the MWR to constrain input water vapor profiles. The unfiltered

data, represented by the trial with no cloud filtering, actually got slightly worse

with the inclusion of MWR data. The possible reason is from the MWR sensing the

water in the cloud.

Using the MWR from a day with thick clouds may increase the WVMR pro-

file too much. For both BT filtered and NN filtered techniques the spectral score

improved by 6 percent under non-centered simulations. Including MWR data into

simulations where the BT or NN cloud flags improved the spectral score by 10 and

13% respectively. Comparing similar trials with different kCARTA versions or con-

tinuum models in Table 3.3 showed no significant difference, as typical changes in

the spectral score was on the order of .1%.

Figure 3.15(a) is the seasonal variation of MWR measurements for this data

set and shows the typical temporal variation where more humidity exists during

the summertime and the atmosphere is drier during wintertime. Figures 3.15(b)

- 3.15(d) display time series for the mean difference between AERI measurements

and synthetic spectra from kCARTA. Each of these figures show the same seasonal

variation as shown with MWR measurements in Figure 3.15(a). The affect of con-

straining the WVMR profile by MWR data is seen by comparing results using non

constrained profiles in Figure 3.15(b) and constrained profiles in Figure 3.15(c).

Using the MWR data reduces some of the variation, but does not remove the sea-

sonality of the error. If the dominant source of error was due to uncertainty in water

vapor profiles, using the MWR would have removed the seasonal variation; however,

each figure has a seasonal variation quite similar to total precipitable water vapor
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measured by the MWR. Figure 3.15(d) shows that when synthetic spectra from

kCARTA is not fixed, kCARTA spectra is still biased low even for the coldest and

driest parts of the year.

3.5 Error Analysis Conclusions

Its been shown that using the NN cloud filter reduces the uncertainty between

AERI and kCARTA spectra by 45 - 50% compared to using the BT cloud filter.

This is a result of the NN cloud filter catching 40% more of the cloudy scenes than

the BT cloud filter. Even a thin cloud in the AERI FOV will reduce the off line on

line spectral contrast between CO lines and is one cause for why the version 1 CO

retrieval has a systematic low bias.

The simulation study shows that uncertainty in modeling absorption lines of

water is more than an order of magnitude larger than uncertainty from AERI, and

2 to 3 times larger than the uncertainty resulting from errors in Feltz profiles.

For the estimated uncertainty terms shown in the simulation study WVMR is

not fixed by MWR data. The total uncertainty in the simulation study has a mean

of .049

(
mW

m2 sr cm−1

)
. This value compares well to the .042 mean standard devi-

ation

(
mW

m2 sr cm−1

)
for the direct comparison trials that are setup using centered

kCARTA spectra, NN filtered measurements , and non MWR fixed WVMR profiles.

The similarity between the simulation and direct comparison demonstrates that the

simulation study includes all the significant error terms.

Direct comparisons of spectra from AERI and kCARTA still exhibited a bias
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Figure 3.15: (a) Seasonal variation of MWR collocated with the CO measurements.

(b) - (d) represent time series of mean difference between spectra from

AERI and kCARTA for the spectral region 2107 - 2189 cm−1. The model

combinations are: (b) Centered and not constrained by MWR (c) Centered

and constrained by MWR (d) Non centered and constrained by MWR. All

cases are computed using kCARTA version 115, MT CKD 1, true composite

CO profiles, and were not cloudy as determined by the NN cloud flags. (b)

and (c) are centered by adding the the bias corresponding to NN filtered

data.
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once the effect of clouds are effectively removed by the NN cloud flag. Centering

spectra removes the bias contribution and shows improvements of 40% and 45%

for non MWR fixed and MWR fixed trial respectively. This suggests that a small

portion of the bias comes from WMR profiles. As demonstrated in [82], modeling

absorption by water is complex and causes systematic errors. This type of bias

will scale with the amount of water in the atmosphere. Time series of mean radi-

ance error in the CO band shows the same seasonality as the amount of water in

the atmosphere. This suggests that systematic errors in both continuum models

(MT CKD 1 and CKD 2.4) exist in the CO band. It’s not entirely clear how this

contributes to the systematic error on the version 1 CO retrieval.

All error terms estimated in this analysis are added together in quadrature

to get a total error term. This assumes that each error term is independent of

one another. The seasonality of radiance differences demonstrates the error due to

modeling is correlated to the amount of water in the atmosphere. It has not been

determined whether retrieved WVMR profiles from AERI has a systematic bias that

is correlated with the amount of water in the atmosphere; however, it is known that

vertical limitations in the AERI WVMR retrieval limit its ability to resolve large

gradients of WVMR in the atmosphere [90]. If both types of error scale with the

amount of water in the atmosphere then they certainly are not independent of one

another; however, the quadrature addition seems reasonable from this study as error

simulation and direct calculation of error are within 15%, with some of the difference

likely due to the un-estimated error in the true composite profiles themselves.

This error analysis is beneficial for the use of any ground based sensor measur-
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ing in the CO band with weighting functions peaking near the surface. Comparing

this type of sensor to kCARTA or any radiative transfer algorithm which is based

on HITRAN and some form of the CKD continuum model will be effected by the

problems of modeling water.
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Chapter 4

SAAC Retrieval Setup

This chapter gives all the necessary details to understand how to setup the

stand alone AERI CO retrieval (SAAC). This includes a description of the retrieval

grid that is a reduced representation of the RTP CO grid. The linearity of the radia-

tive transfer equation as a function of change in CO is examined. The construction

of two covariance matrices that contain the statistical descriptions of uncertainty in

the spectral measurements and variations in the CO profile is demonstrated. These

covariance matrices are used in two different retrieval equations that make different

assumptions about the linearity of the radiative transfer equation.

A novel channel selection method is presented that makes use of the Shannon

information content to determine the optimal channels to use in the retrieval. This

new channel selection method accounts for the off-diagonal correlation in the error

covariance matrix. Information content of the retrieval system is examined through

calculating the degrees of freedom (ds) and averaging kernels (A) for the different

retrieval grids and retrieval equations. Finally, the two types of first guess profiles

used, that provide the starting point for SAAC retrievals are presented.
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4.1 Retrieval Grid

Results from this dissertation show that spectra from AERI contain little

vertical information about the distribution of CO in the atmosphere. Therefore,

retrieval grids are created that are reduced representations of the RTP grids defined

in 2.5.2. The reduced RTP representation for CO is calculated on grids with 1-5

layers (excluding 4) where CO is defined on each layer by an average column density.

A retrieval for column density CO is chosen because this representation is used as

input to kCARTA. Errors by converting back and forth between column density and

ppbv are then avoided and Jacobians are easily calculated using column density.

The new layering scheme is made up of super layers that are created by sum-

ming up the CO column densities (x) located in the RTP profiles. The calculation

for this is shown in Equation 4.1, where t corresponds to the first RTP layer in the

new super layer L, and N corresponds to the last RTP layer in the new super layer

L. In Equation 4.1, z(L) is a Px1 vector, where P is the total number of super

layers in the retrieval grid, and L is a range of values from 1 → P .

z(L) =
N∑

i=t

x(i) (4.1)

In order to speed up the calculation of z(L), matrix multiplication is used from

a summing matrixW . W is an Px101 matrix made up of 1s and 0s, where the 1s and

0s in Lth row of W corresponds to values of x(i) summed to produce z(L). If x(t)

is included in z(L), then WL,t = 1, otherwise WL,t = 0. The matrix equation that

calculates the average CO column density in the retrieval grid is displayed below:

z = Wx (4.2)
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Heights and effective pressures of each layer vary from one RTP profile to another

RTP profile. Therefore, every combination consisting of the 56 RTP profiles and

retrieval grid contains its’ own summing matrix (W ). The standard heights for each

representation, shown in Table 4.1, are picked such that the mean of each retrieval

grid CO profile contains roughly the same amount of CO molecules in each layer.

This is done to avoid large changes in CO from small retrieved percentage changes.

This situation occurs when one layer contains many more CO molecules than the

other layers.

5 layer 0 - 1365 1365 - 3210 3210 - 5630 5630 - 9100 9100 - TOA

3 layer 0 - 1500 1500 - 5500 5500 - TOA

2 layer 0 - 4000 4000 - TOA

1 layer 0 - TOA

Table 4.1: Height Boundaries for the different retrieval grids in meters. TOA means top

of atmosphere as defined in each RTP profile.

A total of 4 different retrieval grids are tested in this dissertation. The first

is a total column measurement where the super layer is the summation of an entire

RTP profile. Next, 3 retrieval grids are used that contained 2, 3 and 5 super layers.

A visualization of the retrieval grids and their corresponding super layers are shown

in Figures 4.1(a), 4.1(b), and 4.1(c) respectively.
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Figure 4.1: (a) Two layer retrieval grid used for the retrieval of CO. (b) Three layer

retrieval grid used for the retrieval of CO. (c) Five retrieval layer grid used

for the retrieval of CO. In each figure blue stars represent the RTP profiles

read by kCARTA. The colored lines represent the super layers described

above.
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4.1.1 CO Layer Linear Dependence

Two examples of retrieval problems for the least square solution are shown

in section 2.9.3. The rows of the Jacobian in the first example are close to being

linearly dependent on each other. Consequently, the gain matrix amplified the noise

be a few orders of magnitude and solutions from the retrieval were very poor. A

second example was shown where rows of the Jacobian were linearly independent

resulting in the affect from noise to be much smaller compared to the first example.

Examination of Figure 4.2 shows that Jacobians from different layers in the

atmosphere have the same shape, but are just different scaled versions of each other.

This indicates that Jacobians for CO are close to being linearly dependent and are

highly affected by measurement noise. In this case, measurement noise is the result

of differences between AERI spectra and kCARTA spectra when the best estimate

of the atmospheric state is used as input profiles.

4.1.2 a priori Variance

The a priori covariance matrix (Sa) describes the variance and covariance of

the state variable. a priori covariance matrices are built using the 56 true composite

profiles. The 56 true composite CO profiles are converted to the merged profiles and

input to KLAYERS which create 56 RTP profiles (x). Equation 4.2 is used to convert

each profile to the retrieval grid representation for 1 ,2, 3 and 5 layers respectively. a

priori CO profiles are calculated for all retrieval grid representations and are defined

as the mean profile (za =
1
N

N∑

1

zi, where N = 56). The a priori CO profile is used
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Figure 4.2: A three layer Jacobian comparison. This three layer Jacobian corresponds

to the 3 layer scheme shown in Figure 4.1(b). Each Jacobian is calculated

by perturbing the CO in the RTP layers encapsulated in the super layer by

10%.

in Equation 4.3 to calculate the covariance for a retrieval grid with P super layers.

Sa(P ) =
1

N − 1

N∑

i

(
zi − za
za

)(
zi − za
za

)T

(4.3)

Each CO profile on the retrieval grid (z) is a Px1 vector therefore, Sa is an PxP co-

variance matrix, where each element is weighted by the mean state. The diagonal of

this matrix is the squared percent variation of the a priori state (σ2
a). Tables 4.2, 4.3,

and 4.4 display the percent variation (x100 to change from decimal to percent) and

the a priori measurement of CO for each retrieval grid scheme.

A layer is defined by its top (ptop) and bottom (pbottom) pressures. The defini-
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peff (mb) 912 760 587 399 29

σa (%) 19.4 18.5 20.1 20.6 10.3

za (# mol. x1017

cm2 ) 4.15 4.19 4.18 4.18 4.05

Height (m) 1365 3210 5630 9100 TOA

Table 4.2: 5 Layer a priori : Note that the a priori is on the order of 1017. peff is the

mean peff for all 57 retrieval grids in a 5 layer scheme.

tion of the effective pressure for a layer is shown below:

peff (L) =
pbottom − ptop

ln

(
pbottom
ptop

) (4.4)

peff (mb) 856 581 41

σa (%) 18.1 19.9 13.3

za (# mol. x1017

cm2 ) 6.88 6.88 6.96

Height (m) 1500 5500 TOA

Table 4.3: 3 Layer a priori : Note that the a priori is on the order of 1017. peff is the

mean peff for all 57 retrieval grids in a 5 layer scheme.

The single layer has a σa = 15.2% and a mean of za = 2.0718 (# mol. x1018

cm2 ).

4.2 Linearity

Inverse methods which operate under linear assumptions are used to retrieve

CO from measured atmospheric radiance, where the forward function (RTE) that
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peff (mb) 785 55

σa (%) 18.4 14.8

za (# mol. x1018

cm2 ) 0.99 1.08

Height (m) 4000 TOA

Table 4.4: 2 Layer a priori : Note that the a priori is on the order of 1018. peff is the

mean peff for all 57 retrieval grids in a 5 layer scheme.

governs the relationship between CO and radiance is non-linear. kCARTA approx-

imates the non-linear forward function and therefore it must be understood over

what range in CO is the forward function still linear. A qualitative set of definitions

for linearity have been developed in [67] and are presented below:

• Linear: The forward model can assume the form y = Kx and a solution can

be reached without any knowledge of a priori. Few inverse problems are of

this nature.

• Nearly Linear: The problem is non-linear, however a linearisation about

some base state allows for adequate solutions.

• Moderately non-linear: Linearisation around a base state allows for error

analysis, however the step size in reaching a solution results in unacceptable

errors from the Jacobian.

• Grossly non-linear: Problems are non-linear in the range of errors.
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Examples of linear, nearly linear, and moderately non-linear functions are all shown

in Figure 4.3. For both the nearly linear and moderately non-linear case, a tangent

Figure 4.3: Examples of linear, nearly linear, and moderately non-linear functions. Also

shown is how the Jacobian would calculate y for a given step size of ∆x.

The Jacobian is not shown for the linear case because it would be the same

as f(x).

line is drawn on the surface of the function f(x). The slope of the tangent line

represents K, and the dashed blue line connecting to y = K∆x represents the

approximation to f(x) by using a linear assumption (In this scenario K represents

the instantaneous derivative, which for radiative transfer is the analytic solution to

the derivative of the RTE). The difference between y and f(x) is the error due to

this assumption.
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A violet colored line labeled M is drawn from f(xo) to f(x) in Figure 4.3.

The slope of this line represents what the true linear approximation would be to

correctly approximate f(x). The calculation of this slope is shown in Equation 4.5.

M =
F (xo +∆x)− F (xo)

∆x
(4.5)

For the linear case M equals K for any base state xo and the exact solution

can be attained from any assumption of a base state. In the nearly linear case,

K’s approximation to M improves as xo is moved closer to x. In the moderately

non-linear case, K does not necessarily improve by moving the base state xo close

to x.

The degree of linearity for the RTE is tested by examining the percent differ-

ence between the K and M for different sizes of ∆x, where the difference of K from

M is the error for a given step size in approximating the RTE as linear. For this

linearity test the step size is measured as a percent change to part of an RTP profile

for CO. The RTP profile for CO represents the base state xn, where it is defined on

n pressure layers. The relationship for the step size is seen in Equation 4.6.

∆xn(σn) = σnx(pn) (4.6)

Equation 4.7 displays the calculation for M , where F () represents a mx1 vector of

synthetic spectra calculated by kCARTA.

M(νm, σn) =
F (xn + σnxn, νm)− F (xn, νm)

σnxn(σn)
(4.7)

This expression is identical to the expression forK shown in Equation 2.15; however,

M is different from K in that M is calculated for many different values of σn. The
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step size (σn) forK is small enough such thatK can be approximated as the analytic

solution to the instantaneous derivative. A step size of 1% (σn(L) = .01) is used to

calculate K. This form is used because kCARTA at this time can not produce

analytic Jacobians for super layers.

Percent difference is calculated as a percent change to CO in a layer. The

calculation takes absolute difference between K and M and averages it over 172

channel indices that range from 2107 - 2190 cm−1. The exact calculation is shown

in Equation 4.8. The factor of 100 changes the decimal error to percent error. The

spectrum representing the base state F (xo) is calculated using profiles of temper-

ature, water, and carbon monoxide from May 20, 2007. CO step sizes range from

1-40% (σn : .01 → .40). This calculation is done for two layers.

Percent Error (σn) =
100

N

N∑

i=1

∣∣∣∣
M(νm, σn)−K(νm)

K(νm)

∣∣∣∣ (4.8)

Figure 4.4 displays the results from the linearity test described above. It is

immediately obvious that the forward model, kCARTA, is not linear for any given

change in CO. If it were, the percent difference would be zero, or at least not increase

with positive changes in CO.

Results from Section 4.1.2 show that for any layer the percent variation is 20%.

This results in a 1 and 2% error for the Jacobians in layers 1 and 2 respectively. On

first inspection, this may not seem significant, however the measurement error from

chapter 3 was around 1%. As layers are increased higher in the atmosphere, the error

from this approximation increases. Therefore, the step sizes in CO for retrievals are

constrained to 15%. Because the percent variation is larger than the step size, 2 or
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Figure 4.4: Two level linearity analysis. Each figure represents the percent difference be-

tween using a linear approximation (K) and true linear relationship (M) for

a given step size in CO (∆xn). The top graph is the result from perturbing

the first 23 layers in the RTP CO profile (979-890mb). The bottom graph is

the result from perturbing the layers with pressures between 878 and 729 mb

in the RTP CO profile. In the Legend, ”New−base” represents the 10% per-

turbation that is used to calculate kCARTA Jacobians. ”Manual − Base”

represents the percent uncertainty calculation from Equation 4.8
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3 iterations will be needed to reach a reasonable solution. This classifies the forward

modeling process somewhere between non-linear and moderately non-linear. In each

case the error analysis is linear [67] and the forward model is linearized by expanding

it about an a priori value shown in Equation 4.9

y − F (xo) ≈
∂F

∂x
(x− xo)

∆y ≈ K∆x (4.9)

4.3 Retrieval Equations

The previous section classified the forward problem as nearly linear or mod-

erately non-linear (MNL). Therefore, two forms of retrieval equations are used to

measure CO. The first form is derived under the nearly linear assumption and al-

lowed to iterate to a solution. A second solution is derived that assumes that the

forward model is moderately non-linear.

4.3.1 Nearly Linear Solution (LSQ)

A solution to the nearly linear problem is presented first. Equation 4.9 dis-

played that the final form of the nearly linear case is ∆y = K∆x . While deriving the

retrieval equation the ∆ will be dropped for the simplicity of writing and the final

solution will be adjusted accordingly in the end. The cost function for the nearly

linear forward problem is defined in Equation 4.10, where the error covariance ma-

trix (Se) is included to reduce the effect of uncertainty between AERI and kCARTA
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spectra, and xTHx is a constraint matrix which adds information to the null space

of the measurement.

JNL = (Kx− y)TS−1
e (Kx− y) + xTHx (4.10)

As seen in Equation 4.11, the nearly linear cost function (JNL) looks quite

similar to the linear case once the terms in the cost function are multiplied out. The

inclusion of terms S−1
e and xTHx is the difference between the nearly linear case

and the linear case.

JNL = xTKTS−1
e Kx− yTS−1

e Kx− xTKTS−1
e y + xTHx (4.11)

Next, the value of x is found that minimizes JNL. This is done by setting
∂JNL

∂x
=

0 and solving for x̂. Because it is necessary to take derivatives of matrices, the

derivative relation from [67, A.6] is used again to evaluate the derivative of JNL.

This relation is presented below:

∂

∂x
[xTAx+ γ2bTx] = ATx+ Ax+ γ2b

Terms xTHx and xTKTS−1
e Kx are combined to xT (KTS−1

e K + H)x and is sub-

stituted into xTAx, where A = KTS−1
e K + H. Next, yTS−1

e K is substituted for

bT . After making the substitutions above the derivative of JNL with respect to x is

displayed in Equation 4.12.

∂JNL

∂x
= 2(KTS−1

e Kx̂+Hx̂−KTS−1
e y) = 0 (4.12)

Next, solving Equation 4.12 for x̂ yields the relationship shown in Equation 4.13.

x̂ = (KTS−1
e K +H)−1KTS−1

e y (4.13)
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Substitutions from the Taylor expansion (x̂ = ∆x) and (y = ∆y) are put back in

for x̂ and y. The Taylor expansion in Equation 4.9 showed that ∆x = x − xo and

∆y = y − F (xo). After these substitutions are made, the solution is written in

Equation 4.14. In Equation 4.14 the terms x̂i and x̂i+1 are used in place of xo and

x respectively. These forms are used because the retrieval equation here is allowed

to iterate to the solution; however, at iteration 1 the xi equals the base state (First

Guess) CO profile.

x̂i+1 = x̂i + (KTS−1
e K +H)−1KT [y − F (xi)] (4.14)

Two final steps must be made to assure that the inverse in Equation 4.14 can

be evaluated with Matlab, and that changes to the state vector are in the linear

regime (≈ 20%).

First, the retrieval equation is reformed so that percentage changes to xi are

retrieved. This change is needed because column density Jacobians from kCARTA

are in units of
Radiance

Kilomole
and have a magnitude on the order of 1E8. The retrieved

quantity, x̂, has units of
molecules

cm2
and has typical values from 1E16 to 1E18 de-

pending on the size for a retrieval layer. Computational roundoff error made the

inverse not usable when retrieving the absolute change in column density for CO.

To change the retrieval equation to measure percent changes a substitution is

made in Equation 4.14 such that K̃ = xiK. This is not a matrix multiplication;

rather, each layer’s Jacobian is multiplied by the corresponding layer’s partial col-

umn density in xi. This scaling changes the Jacobian and the retrieval equation

from raw change in column density to a percentage change.
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The substitution process begins with Equation 4.15 where the term xi is mul-

tiplied and divided throughout the equation so the retrieval equation is reformed

rather than changed.

xi+1 = xi + (
xi

xi
KTS−1

e K
xi

xi
+

x2
i

x2
i

H)−1KT xi

xi
S−1
e [y − F (xi)] (4.15)

Next, the substitution of K̃ = xiK is shown in Equation 4.16.

xi+1 = xi + (
1

x2
i

K̃TS−1
e K̃ +

x2
i

x2
i

H)−1K̃T 1

xi
S−1
e [y − F (xi)] (4.16)

The term (
1

x2
i

K̃TS−1
e K̃+

x2
i

x2
i

H)−1 is equivalent to x2
i (K̃

TS−1
e K̃+x2

iH)−1, thus Equa-

tion 4.16 is reformed and written out in Equation 4.17

xi+1 = xi + xi(K̃
TS−1

e K̃ + x2
iH)−1K̃TS−1

e [y − F (xi)] (4.17)

The next step is done to assure that changes to xi are not more than 20%.

An ad hoc term is factored through Equation 4.17 that has 100 values between 0.01

and 1. This term (a) is factored through Equation 4.17 in the same way that xi

was above and results in 100 retrieval results for xi+1. Equation 4.18 displays the

retrieval equation once a is factored through it.

xi+1 = xi + a2xi(K̃
TS−1

e K̃ +
x2
i

a2
H)−1(aK̃T )S−1

e [y − F (xi)] (4.18)

Both terms in the right hand side of Equation 4.18 contain the term xi. This can

be factored out, and the final form of the retrieval is shown below:

xi+1 = (1 + α)xi (4.19)

where,

α = a2(K̃TS−1
e K̃ +

x2
i

a2
H)−1(aK̃T )S−1

e [y − F (xi)]
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For each iteration i, Equation 4.19 has 100 solutions corresponding to the 100

values of a. The α created with the largest value while not being greater than a

linear step size is chosen to update xi. It should be pointed out that at iteration

i+ 1 in the retrieval the Jacobian is recalculated with xi as its base point. LSQ is

a shorthand reference used in the rest of the dissertation to reference the solution

to the nearly linear problem in equation 4.19.

4.3.2 Moderately non-linear (LSQwAP)

One more solution is developed for the moderately non-linear problem. The

moderately non-linear problem starts with the equation y = F (x ) + ε. The cost

function for the moderately non-linear (MNL) problem is displayed below:

JMNL = (y − F (x))TS−1
e (y − F (x)) + (x− xa)

TH(x− xa) (4.20)

The value of x which minimizes JMNL is presented in Equation 4.21.

x̂i+1 = xa + (KT
i S

−1
e Ki +H)−1KT

i S
−1
e [y − F (xi) +Ki(xi − xa)] (4.21)

Details for deriving this solution are found in [67, 5.3]. In deriving this solution [67,

5.3] states that ∇xKT is sufficiently small and can be ignored for moderately non-

linear problems. The ∇xKT term is a vector that represents the second derivative

of the forward model. Each value in this vector is a matrix. Once this term is

ignored, Gauss-Newton iteration methods are used to solve the non-linear least

square problem.

Just as in Section 4.3.1 the substitutions K̃ = xiK, and the factor a are put

into the retrieval equation. The retrieval equation with these substitutions made is
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shown in Equation 4.22:

x̂i+1 = xa + a2xi(K̃
T
i S

−1
e K̃i +

x2
i

a2
H)−1(aK̃i

T
)S−1

e [y − F (xi) + aK̃i(1−
xa

xi
)] (4.22)

The relationship representing the percentage change update to the previous iteration

is in Equation 4.23.

x̂i+1 = xa + αxi (4.23)

where, α = a2(K̃T
i S

−1
e K̃i +

x2
i

a2
H)−1(aK̃i

T
)S−1

e [y − F (xi) + aK̃i(1−
xa

xi
)]

To ensure that changes are in the linear regime one final reorganization of the

previous equation is made

xi+1 = βxi (4.24)

where, β = (xa
xi

+ α)

The difference between the retrieval equation for the nearly linear problem in

Section 4.3.1 and the retrieval equations shown here is inclusion of the first guess

term xa. This means that the solution here is constrained to the a priori CO profile,

where the size of the constraint is determined by H. LSQwAP is used as a reference

to solution of the moderately non-linear problem in equation 4.24.

4.3.3 Constraint Matrix (HTT )

The proper form of the constraint matrixH from both retrieval equations (LSQ

and LSQwAP) is found by analyzing themaximum a posteriori (MAP) solution from

[67]. This solution is found using Bayes theorem and is the expected value x from a

Gaussian distribution of states governed by its conditional probability P(x|y). The
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solution, taken from [67, Ch.2], is shown below in Equation 4.25.

x̂ = xa +
[
KTS−1

e K + S−1
a

]−1
KTS−1

e (y −Kxa) (4.25)

The solution for x̂ shown below is quite similar to the one derived by maximizing a

cost function seen in Equation 4.14. The solution in Equation 4.25 is constrained

by the inverse of the apriori covariance S−1
a . Parts of the state x which vary little

from their expected value x have a small variance. Smaller percent variations will

greater constrain Equation 4.25 to the first guess. This constraint adds information

to the null space of the measurement [40].

Equation 4.18 showed that an ad hoc constraint matrix H is used in the formal

solution. This is chosen over the a priori covariance matrix because there is not

enough true CO profiles to capture the true atmospheric variability in CO. This is

demonstrated by calculations of the weighted covariance matrix which showed layer

to layer correlations as high as 80%.

Factoring xi out of Equation 4.25 produces a constraint term x2
iS

−1
a that is

very similar to the term x2
iH, which is found in the LSQ and LSQwAP retrieval

equations. This redefines the units in the a priori covariance from ∆
Molecules

cm2

to the square of percent variation (σ2
a). Therefore, the apriori percent variations

(σa) from Tables 4.2, 4.3 and 4.4 are used to build the constraint matrix. For each

retrieval grid defined on P layers, a diagonal constraint matrix (HTT ) is created.

The calculation for the diagonal of HTT is shown in Equation 4.26, where σa(L)

comes from the a priori percent variation from Tables 4.2, 4.3 or 4.4. For the single

layer retrieval grid, HTT is defined as σa for 1 layer.
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HTT (L,L) =
1

σ2
a(L)

(4.26)

4.4 Error Covariance Matrix

The total error covariance matrix (Se) contains the variance and covariance of

the spectral channels due to the uncertainty between the forward model kCARTA

and AERI measurements. Each measurement technique has its own error covariance

matrix (Sy for AERI and Sf for kCARTA) due to the uncertainty between its own

measurement and the true atmospheric state yatm. The relationship of the total

error covariance matrix to the instrumental covariance matrix (Sy) and the model

covariance matrix (Sf ) is shown below:

Se = Sy + Sf (4.27)

The model covariance matrix (Sf ) can be further broken down so that the total

error covariance matrix is calculated with Equation 4.28.

Se = Smod + Sh2o + Stemp + Sy (4.28)

where,

Se = refers to the total error covariance

Smod = estimated from uncertainties in line parameters inside of kCARTA

Sh2o = estimated from uncertainties in WVMR profiles used as input to kCARTA

Stemp = estimated from uncertainties in temperature profiles used as input to kCARTA

SAERI = estimated from uncertainties in measured spectra from AERI
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Figure 4.5: (a) - (d) represent the full error covariance (Se) calculated using Equa-

tion 4.28. The full CO band from 2080 - 2197 (cm−1 is broken up into

4 spectral intervals.)
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The total error covariance (Se) is broken up into four subsections of the entire

CO band and is shown in Figures 4.5(a) through 4.5(d).Correlation of off-diagonal

terms goes to zero after the first few terms, thus Se is a highly diagonal matrix and

is easily invertible using standard computer programs.

4.4.1 Total Model Error Covariance (Sf)

Six different quantities contributing to the uncertainty in synthetic spectra

from kCARTA are modeled. These six quantities are broken down into two separate

groups:

1. Inputs to kCARTA: Temperature, WVMR, and carbon monoxide profiles

are used as inputs to kCARTA. Simulated error is added onto 13735 tempera-

ture and WVMR retrievals from a year’s worth of AERI data. A description of

the simulation for temperature and water is covered in sections 3.3.2 and 3.3.1

respectively. The error covariances for temperature and water are termed Stemp

and Sh2o respectively.

2. Modeled Physics Uncertainties Uncertainties in the absorption line pa-

rameters are given in Table 3.2 for water, CO, and the self and foreign broad-

ening of water. These represent a lack in knowledge of the physics governing

radiative transfer for this region. The combined error covariance from these

terms is called Smod for this dissertation.
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4.4.1.1 kCARTA Input Covariance (Stemp,Sh2o)

Both error covariance matrices (Stemp,Sh2o) due to the uncertainty in one of

Feltz profiles (temperature or water) are calculated using Equation 4.29, where

∆Fb(ν) = Fb(ν, b + ∆b) − Fbase(ν, b). Fbase(ν, b) refers to the mxn base state ma-

trix referenced in Section 3.3.5, and consists of m = 13735 kCARTA simulations.

Fb(ν, b +∆b) refers to either one of mxn perturbed matrices (Ftemp, Fh2o) from the

same section relating to perturbations in temperature or WVMR. In Equation 4.29

T denotes the transpose of a matrix.

Sb(ν) =
1

m− 1
∆F T

b ∆Fb (4.29)

Figures 4.6(a) through 4.6(d) show the results from simulating errors to the tem-

perature profiles used by kCARTA and Figures 4.7(a) through 4.7(d) represent the

results from the water simulation. Each set of subplots when put together represent

the entire 172 channel error covariance matrix for each term. The error covariance

for water has many significant off-diagonal terms indicating a strong correlation of

uncertainty between channels. The Jacobians in Figure 3.4(a) show that water does

not have many window channels, therefore an error to input water would offset the

entire band to some degree. The temperature Jacobians shown in Figure 3.4(a)

have more separation between absorption lines. Thus spectral error resulting from

errors in the temperature profile is less correlated from channel to channel com-

pared to the water; however, as seen in Figure 4.7(d), the R branch in the CO band

does have strong off-diagonal terms for temperature indicating spectral error due to
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Figure 4.6: (a) through (d) represent the error covariance from uncertainties in temper-

ature profiles used by kCARTA (STemp). The full CO band from 2080 - 2197

(cm−1 is broken up into four spectral intervals.)
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Figure 4.7: (a) through (d) represent the error covariance from uncertainties in water

profiles used in kCARTA (Swater). The full CO band from 2080 - 2197 (cm−1

is broken up into four spectral intervals.)
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uncertainty in temperature profiles is correlated.

4.4.1.2 kCARTA Model Covariance (Smod)

An error covariance matrix is calculated using Equation 4.30, where εmod is a

1xn error vector whose values are taken from the total modeled uncertainty values

in Figure 3.8(b), and C is an nxn matrix of Beer apodization correlation coefficients

displayed in Figure 4.8. The ⊗ is used to represent element by element multiplica-

tion between two matrices. The Beer correlation matrix, displayed in Figure 4.8,

describes correlations between channels when spectra is Beer-apodized and is con-

structed using known correlation coefficients [39]. Beer correlation coefficients have

significant correlation up to 3 channels away from the central channel.

Smod = C ⊗ εmod(ν)ε
T
mod(ν) (4.30)

Large off-diagonal correlations are found when using the typical calculation of an
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Figure 4.8: Displays the correlation among channels from a Beer apodization [39]

error covariance matrix for Smod (Smod = εmodεTmod). Because Smod makes the biggest

contribution to Se, it too had large off-diagonal correlation. This form of Se is found
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to not be invertible as is required by retrieval equations. Therefore, the ad hoc form

of Smod in Equation 4.30 is used because it preserves the covariance of the first few

off-diagonal terms, while allowing Se to be invertible.

Figures 4.9(a) through 4.9(d) show modeled covariance matrix (Smod). This

matrix is highly diagonal and easily inverted. Because this matrix dominates the

contributions to the total error covariance matrix, it too is easily invertible.

4.4.2 AERI Error Covariance (Sy)

The instrumental error covariance for AERI is determined from the unapodized

estimated uncertainty shown in Figure 3.11(b), and the theoretical correlation coef-

ficients from Beer apodization. This ad hoc method is logical as the primary source

of error in AERI measurements results from scene to scene variation in the black

body stability of AERI and is likely to be random. Thus, the off-diagonal terms are

a result of the Beer apodization of the random scene to scene blackbody error. The

calculation of the AERI error covariance is displayed in Equation 4.31.

Sy = C ⊗ εAERI(ν)εTAERI(ν)

NR
(4.31)

where,

Sy = AERI instrumental error covariance

C = Beer correlation matrix from Figure 4.8

εAERI = Unapodized uncertainty in AERI as shown in Figure 3.11(b)

NR = Theoretical noise reduction factor due to Beer apodization. NR = 1.568738
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Figure 4.9: (a) through (d) represent the error covariance from uncertainties in absorp-

tion lines used by kCARTA to calculate synthetic spectra (Smod). This is the

total of all different modeling terms (Smodwater, Sself , Sforeign, SCO). The full

CO band from 2080 - 2197 (cm−1 is broken up into four spectral intervals.
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4.5 Channel Selection

An iterative algorithm based on the Shannon information content of a retrieval

system is created that determines what AERI channels to use in the SAAC retrieval.

A similar iterative scheme for choosing channels in a measurement was first described

by [18], where the information content of each individual channel is calculated. The

iterative scheme begins by selecting the channel that adds the highest amount of

information to the retrieval system, and then information content for each channel

is recalculated. The process continues until some desired goal is reached, or no

channels are left to sort through. Information content is described by the Shannon

information content (HS), or degrees of freedom (DOF).

The method from [18] works well for error covariance matrices that are purely

diagonal indicating that the spectral error is not correlated. Unfortunately, the error

covariance in the CO band has channel to channel correlation that is demonstrated

by the off-diagonal terms in the error covariance plots from Section 4.4. A new

iterative scheme is presented here which modifies the scheme from [18] to incorporate

the channel to channel spectrally correlated error from the error covariance matrix,

and then selects the appropriate channels for use in retrievals.

The process begins by first sorting the channels using a signal to noise term

which is similar to the term S−1/2
e KS1/2

a . This term is described in [67, Ch. 2] as

being comprised of singular values made from both signal and noise, whose values

greater than one signify independent pieces of information. The signal to noise term

used in this work is displayed below in Equation 4.32. This produces a symmetric
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matrix where each diagonal element represents the square of a signal to noise term.

SN =
√
trace [(S−1

e KTSa)(S−1
e KTSa)T ] (4.32)

Once the channels are sorted, the routine simulates what the Shannon infor-

mation content of the retrieval system would be with a subset of channels. The

full error covariance from Figures 4.5(a)-4.5(d) can be broken down into the indi-

vidual uncertainties of from their channels (εi) and the correlation between them

(corr(l, j)). This decomposition is shown in Equation 4.33 and represents an ele-

ment representation of the new error covariance matrix. Each channel’s uncertainty

is calculated by taking the square root on the diagonal of Se.

Se(l, j) = εlεjcorr(l, j) (4.33)

At each iteration (i) a new channel is tested by building a new error covari-

ance matrix (Se), gain matrix (Gi), Jacobian matrix (K̃i), and averaging kernel

(Ai). Then the Shannon information content (HS(νi)) is calculated. The subset of

channels determined from iteration (i−1) plus the new channel is used to select the

appropriate rows in Gi and Ki which are mxn matrices. Each element in the new

error covariance matrix is calculated using the product of uncertainty between the

two channels times their correlation coefficient found from Equation 4.33. Iterative

calculations for HS, Gi, and Ai are shown below.

HS(i) = −1

2
|Ii − Ai| (4.34)

Gi = (K̃T
i S

−1
i K̃ +HTT )

−1K̃TS−1
i (4.35)

Ai = GiK̃i (4.36)

125



Using these calculations the routine proceeds as listed below:

1. Calculate HS for the channel with the highest signal to noise as defined by

Equation 4.32.

2. Calculate HS(i = 1) for the channel with the next highest signal to noise. If

HS increase by 0.02 then include in set of channels used for the retrieval.

3. Repeat step 2 for all subsequent channels sorted by signal to noise.

Including a channel never decreases the knowledge about a state, therefore

a small threshold was chosen to distinguish channels which added almost nothing.

At iteration i, if the Shannon information content is not more than 0.02 greater

than the previous iteration, then the channel is not included. Figure 4.10(a) shows

the channel selection process and the increase in information as each channel is

included. Figure 4.10(b) shows a plot of a Jacobian versus the spectral indices. The

P branch contains many more water lines and therefore contains more uncertainty

in the measurement. This method is effective in placing most of the spectral indices

in the R branch where the influence of errors due to water is diminished.

This method identifies 19-21 channels which added the most information from

the 172 channels in the CO band. Two and three layers have the 19 channel in-

dices listed in Table 4.5, and the five layer retrieval grid has the same 19 channels

plus channel indices 795 and 798. The channel indices along with the respective

wavenumbers are displayed in Table 4.5. The similarity among the channels gives

further indication that only one real piece of information exists in the retrieval sys-

tem. Table 4.6 shows the DOF results from all 3 layering schemes. It is seen that
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Figure 4.10: (a) Plot of indices that increased H by more than 0.02. (b) The first layer

Jacobian defined on the 2 layer retrieval grid. The retrieval indices used

are plotted in red as well.

Channel 665 666 681 745 760 765 766 768

Wavenumber (cm−1) 2100.2 2100.7 2107.9 2138.8 2146.0 2148.4 2148.9 2149.9

Channel 769 775 777 781 782 783 789 790

Wavenumber (cm−1) 2150.4 2153.3 2154.2 2156.2 2157.1 2159.5 2160.0 2160.5

Channel 796 807

Wavenumber (cm−1) 2163.4 2168.7

Table 4.5: The channel indices and corresponding wavenumber from the AERI instru-

ment used in the retrieval are shown. These are the base 19 channel indices

that were common to all of the different layer and constraint schemes.
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increasing the number of layers in the system adds little information.

2 Layer 1.02

3 Layer 1.06

5 Layer 1.07

Table 4.6: DOF are shown here for the different layering schemes using the HTT con-

straint matrix.

4.5.1 Final Error Covariance Matrices

Figures 4.11(a) through 4.11(c) present the error covariance matrices for all

forward model terms after the channel selection process from Section 4.5 is done.

Uncertainty in water profiles and line parameters are the dominating terms, both

having variances higher compared with the variance temperature; however, in the

region near the last retrieval indices, variance from temperature and water are nearly

the same. Comparing Figure 4.11(a) to Figure 4.11(d) reveals that the total error

covariance is highly diagonal and mostly made up of contributions from the modeled

error covariance.

Estimated error from uncertainty in absorption lines strongly resembles the

WVMR Jacobian plots shown. Therefore, it is reasonable to assume that the model

error covariance should strongly resemble WVMR input error covariance. A pro-

cedure using many trials, such as the method used to estimate uncertainty in the

input profiles would improve the error estimate and result in the correct channel
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to channel correlation coefficients; however, a highly diagonal error matrix is easily

invertible and therefore quite useful in the retrieval equation.

The error covariance matrix shown in Figure 4.12 shows that the variance due

to error from AERI is much smaller than the total error, and at its maximum is

only comparable in size to the smallest variances seen in the input temperature error

covariance matrix.

4.6 Information Content of the Retrieval

Figures 4.13(a)- 4.13(c) are averaging kernels described by the gain matrix

from Equation 4.18 and calculated using the relationship for the averaging kernel

(A = GK). These figures demonstrate that the CO retrieval is mostly sensitive to

changes in parts of the atmosphere with pressures greater than 800 mb. Moreover,

the averaging kernels from Figures 4.13(b) and 4.13(c) indicate that differences

between true upper atmospheric CO and first guess upper atmospheric CO cause

changes to the retrieved CO profile below 800 mb.

Figures 4.14(a)- 4.14(c) are the corresponding cumulative sum DOF for 2,

3 and 5 layer retrieval grids. These figures demonstrate that the majority of the

information that AERI retrieves comes near the surface. Comparisons of the 3 and

5 layer schemes show that a slight amount of information is contained around 600

mb. Figures 4.14(a) - 4.14(c) have DOF’s ranging from 0.72 - 0.81.

At maximum, the DOF of the retrieval system is 0.95. The requirement that

retrieval updates are linear is the primary reason for the difference of the DOF
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(b) WVMR Input Error
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(c) Temperature Input Error
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(d) Total Error

Figure 4.11: (a) through (d) show the covariance matrices for modeled kCARTA error,

Input Water, Input Temperature, and total error respectively. Retrieval

indice # correspond to the 21 channel indices listed in table 4.5. Retrieval

indice # 1 starts with AERI channel index 665.
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Figure 4.12: The estimated error covariance matrix (Sy) due to instrumental uncer-

tainty.

between retrievals, and why DOF in retrievals are not at their maximum. When

changes to xi are outside the linear regime, that solution is disregarded, and a smaller

change corresponding to a smaller linearity factor (a in Equations 4.19 or 4.24) is

chosen. Consequently, the DOF for the retrieval are smaller then the maximum.

The original goal of this work was to create a product capable of monitoring

boundary layer venting. In order to do boundary layer venting the vertical resolution

needed is less than 1 km [16]. Because AERI CO measurements are sensitive to the

first 2 - 3km, and contain around 1 piece of independent information, it is not

possible to monitor boundary layer venting of CO.

4.7 Retrieval Update

Both retrieval equations presented in Section 4.3.2 calculate a percent change

to CO column density distributed on retrieval grids made up of super layers. Mea-
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Figure 4.13: (a) 2 layer AK for 20070218. (b) A 3 layer AK for the same day. (c) A 5

layer scheme for the same day. All three averaging kernels are calculated

using Equation 2.28.
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Figure 4.14: (a) 2 layer cumulative DOF for 20070218. (b) 3 layer cumulative DOF for

20070218. (c) Same as (a) and (b), except for 5 layers. Each cumulative

sum is calculated along the diagonal of the corresponding averaging kernels

shown in Figures 4.13(a)- 4.13(c).
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sured percentage changes defined on 1, 2, 3 or 5 layers are linearly interpolated to

the full RTP profile grid; specifically, CO values defined on the effective pressures

corresponding to the super layers are linearly interpolated to the effective pressures

of layers on the RTP profile grid. Retrieved CO values on the RTP grid are then

correlated due to the linear interpolation.

Below is a summary of the two different equations used to update the RTP

CO profile described in Section 4.3.2:

Nearly Linear (LSQ)xi+1 = (1 + α)xi

Moderately Nonlinear (LSQwAP xi+1 = xa + αxi = (α +
xa

xi
)xi = βxi

A summary of the steps to update the RTP CO profile using the LSQ equation is

provided below:

1. Percentage change (α) from iteration i to i+1 is determined from Equation 4.19

at either 1 ,2, 3 or 5 super layers.

2. The percentage change (α) is interpolated from the super layers to the full

RTP grid using the effective pressures of each grid system.

3. xi+1 is updated using the relation for LSQ written above.

4. If the number of iterations is less than 4 and the RMS error among the spectral

channels is more than .001 than the process is repeated.

Next, a summary of the steps used to update the RTP CO profile using the LSQwAP

is presented below:
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1. Percentage change (α) from iteration i to i+1 is determined from Equation 4.24

at either 1, 2, 3 or 5 super layers.

2. β is calculated from α, xi, and xa, and interpolated to the RTP grid.

3. xi+1 is updated using the relation for LSQwAP written above.

4. If the number of iterations is less than 4 and the RMS error among the spectral

channels is less than .001, then the process is repeated.

4.7.1 First Guess profiles

The two first guess profiles used in this dissertation are AIRSv5 retrieved CO

or an a priori profile defined as the mean of the 56 RTP profiles defined on one of

the retrieval grids. Each first guess has small differences in how they are created for

use in the retrieval.

• a priori : The mean of the merged CO profiles is used as the first guess profile

input to KLAYERS. The output, an RTP CO profile from KLAYERS, is

converted to the retrieval grid through the relationship z(L) = Wx(n). The

fractional difference between z(L) and za(L) is calculated as θ(L) =
za

z(L)
.

The next step takes θ(L) and linearly interpolates it to the RTP grid (θ(n)).

Finally, the a priori on the RTP grid is calculated as xa(n) = θ(n)⊗ x(n). xa

is the RTP profile that is updated at the first iteration of the retrieval.

• AIRS : The profiles used from the AIRSv5 are gridded on 100 levels. Above 150

mb, the profile is chopped off and merged to a reference profile. This profile is
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then converted to the merged profile representation and fed into KLAYERS.

Finally, KLAYERS outputs the CO profile on the RTP grid. This CO profile

is used as xa in the retrieval equations as the first guess.

136



Chapter 5

SAAC Retrieval System

This chapter presents results from the SAAC retrieval system using the a

priori profile (za) defined on 1, 2, 3 and 5 super layers. Results presented here meet

the goal of modifying the existing AERI CO retrieval in order to better determine

carbon monoxide distribution in the atmosphere.

57 true composite CO profiles over 2007 and 2008 are used here to determine

the quality of the AERI CO retrieval system [90]. Table 5.1 list the 28 dates that

correspond to each true composite CO profile case that have been determined to be

cloud free by the neural network.

20070123 20070126 20070216 20070218 20070307 20070309

20070402 20070404 20070826 20070827 20070828 20071001

20071106 20071108 20071203 20080227 20080310 20080413

20080721 20080804 20080928 20081001 20081016 20081027

20081030 20081108 20081116 20081118

Table 5.1: 28 dates corresponding to true composite CO profiles which were determined

to be free of clouds by the NN cloud flag. Each date contained one measured

true profile around local noon at the SGP site.
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5.1 Spectral Tuning Effect (Centering)

The error analysis from Chapter 3 demonstrates that synthetic spectra from

kCARTA is biased low when it is compared with measured AERI spectra. Two bias

spectrums are created from the direct comparisons between AERI and kCARTA

spectrums that remove bias for either the BT or NN cloud flagged data sets. As

demonstrated in Chapter 3, the BT bias spectrum is larger across the CO band

compared to the NN bias spectrum. This section presents the results from centering

with BT or NN bias spectrums.

The single super layer retrieval grid is chosen to examine the effect of adding

bias to synthetic spectra. Single super layer measurements are equivalent to measur-

ing the total column CO column density. The total column measurement is chosen

to avoid effects from smoothing and oscillations from unconstrained portions of mul-

tilevel retrievals, thereby providing the best metric to determine best bias spectrum.

Table 5.2 presents the results from retrievals that use no bias spectrum, a

BT bias spectrum, or a NN bias spectrum on kCARTA spectra. A trial with each

one of the bias spectra is used with the two different retrieval equations (LSQ and

LSQwAP), where a trial consists of performing the CO retrieval for the entire 28

cloud-free days. Results in Table 5.2 are the linear regression coefficients found

from the lines of linear fit along with RMSE between the retrieved total column CO

measurement and the true composite CO measurement. The scatter plots for the

trials that used bias spectrums are seen in Figures 5.1(a) - 5.1(d). For both LSQ,
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LSQ LSQwAP

Bias Spectrum Slope Intercept R2 RMSE (%) Slope Intercept R2 RMSE (%)

No Bias 0.92 -.05 0.90 12 0.87 .06 0.89 11

BT bias 1.05 -0.14 0.89 6 0.99 0.01 0.89 6

NN bias 1.09 -0.18 0.89 6 1.02 -0.05 0.89 6

Table 5.2: Linear regression coefficients for retrieval trials using no bias, BT bias, and

NN bias spectrums. These trials compute linear regression coefficients from

retrieved vs. in situ total column CO measurements, where both LSQ and

LSQwAP retrieval equations are used. Root mean square error (RMSE) com-

puted as a percent error (%) as well.

and LSQwAP retrieval equations, using no bias spectrum is found to produce the

worst results. RMSE errors are the approximately the same for all combinations of

bias spectrum and retrieval equation.

These results show that retrievals run using the BT bias spectrum measured

the total column with less bias and more accuracy compared to retrievals using NN

bias spectrum; however both agree very well with in situ total column measure-

ments. Lastly, the results show that LSQwAP retrievals agree better with in situ

measurements compared to the retrieval results using the LSQ retrieval equation.

The trial using LSQwAP and the BT bias spectrum is the most successful of all the

trials.
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Figure 5.1: Scatter plots and linear fit coefficients using (a) LSQwAP and BT bias spec-

trum (b) LSQ and BT bias spectrum (c) LSQwAP and NN bias spectrum

(d) LSQ and NN bias spectrum.
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5.2 SAAC vs. Version 1 CO Retrieval

Figure 5.2(c) presents the version 1 CO retrieval measured as a total column

CO measurement and compared to true composite CO profiles. The version 1 CO

retrieval reports one VMR in ppbv that represents a constant tropospheric VMR

profile. The single VMR is used to create a merged profile with a constant VMR.

This merged profile is input into KLAYERS to create an RTP profile and then is

summed up to create the Version 1 total column measurement.

Comparing Figure 5.2(c) to Figures 5.2(a) and 5.2(b) shows that total column

CO, measured by either retrieval equation, exhibits the same systematic bias as

the version 1 CO. This bias exists even after the data set, consisting of the true

composite CO profiles, is cloud flagged by NN. This is the same systematic bias

found in version 1 CO validation study [90] and demonstrates that spectral tuning is

needed for SAAC or Version 1 CO retrievals to account for the modeling deficiencies

in the water vapor continuum and kCARTA.

5.3 Retrieval Grid Layer Analysis

This section examines trials using LSQ and LSQwAP retrievals for the 2, 3

and 5 layer retrieval grids.

5.3.1 LSQ Trials

This section presents the retrieval results for the LSQ retrieval equation on

2, 3 and 5 layered retrieval grids. RMS and bias calculated from the difference
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Figure 5.2: Scatter plots and linear fit coefficients using (a) LSQwAP and no bias spec-

trum (b) LSQ and no bias spectrum (c) Version 1 CO Retrieval.
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between the retrieved CO value (z) and the true composite CO value mapped onto

the same retrieval grid. Figures 5.3(a) - 5.3(f) present the error analysis. Fig-

ures 5.3(b), 5.3(d), and 5.3(f) all show a decrease in the RMS error below 800 mb

of at least 10% when compared to the RMS error for the a priori.

The RMS error for the 2 layer case improves from 15 to 8%. The improvement

is explained by the interpolation process used to update the retrieved profile, where

interpolation creates correlation among layers which is similar to the correlation

from the true composite CO profiles. The improved RMS in the three layer case

at 600 mb is partially due to the measurement, as AERI averaging kernels indicate

small amounts of information come from the region just above 800 mb. The five

layer case shown in Figure 5.3(f) demonstrates that the RMS error is reduced from

23% to 10% near the surface, and has improvements of 2-3% for values above 600

mb. Again, some of the improvement is due to the interpolation process which

correlates the layers.

By definition of the a priori, a bias should not exist for the a priori profile;

however, the a priori profile is built on all 56 profiles, and not the subset of cloud-

free days. This explains why a bias is present in Figures 5.3(a), 5.3(c),and 5.3(e).

In all cases a bias of approximately 5% exists in the a priori value for the first layer

in each retrieval grid. Figures 5.3(a) show that the LSQ retrieval reduces the bias

to zero in the first retrieval layer; however, the bias in the second retrieval layer

increases to 5%. The 3 and 5 layer retrievals change the bias from an approximately

6% to -3%. This oscillation coincides with an induced positive bias for both 3 and 5

layer retrievals. This oscillatory pattern is a result of the lack of vertical information
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(c) LSQ BT 3 Layer Bias
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(d) LSQ BT 3 Layer RMS
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(e) LSQ BT 5 Layer Bias
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(f) LSQ BT 5 Layer Bias

Figure 5.3: RMS and bias calculations for the 28 days determined to be cloud-free for

LSQ on the 2, 3 and 5 layer retrieval grid. True composite CO profiles

are mapped to the retrieval grid representation through relation z = Wx

described in Section 4.1. All results presented here use the LSQ retrieval

equation, a priori first guess, and the BT bias spectrum. The retrieval grids

used in each figure are (a) and (b) 2 layer, (c) and (d) 3 layer, and (e) and

(f) 5 layer.
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from AERI spectra.

Table 5.3 presents the results from applying lines of linear fit to scatter plots

of retrieved total column CO vs. true composite CO profiles converted to total

column. The total column measurement is calculated as the sum of the RTP CO

profile (x̂) for 2,3 and 5 layered retrievals. Moving left to right across Table 5.3

shows the the linear regression coefficients and RMSE for retrievals with NN or

BT bias spectrums. Comparing left to right reveals no difference for RMSE and

little difference for linear regression coefficients; thus, indicating that there is little

difference in effect from using either BT or NN bias spectrums. Moving from the

top of Table 5.3 to the bottom reveals that as more layers are added to retrieval grid

the total column measurement increases in RMSE error; however, the 5% RMSE for

the 2 layer retrieval grid may not be totally representative for larger CO data sets

with less vertical correlation.

5.3.2 LSQwAP Trials

This section presents the retrieval results for the LSQwAP retreival equation

on 2,3 and 5 layered retrieval grids. RMS and bias calculated from the difference

between the retrieved CO value (z) and the true composite CO value mapped onto

the same retrieval grid. Figures 5.4(a) - 5.4(f) present results for the error analysis,

where the BT bias spectrum is used to tune kCARTA spectra. Trials using the

NN bias spectrum are nearly identical to trials using the BT bias spectrum, and

therefore not shown here.
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LSQ

BT NN

Ret. Grid Slope Intercept R2 RMSE (%) Slope Intercept R2 RMSE (%)

2 Layer 0.86 .25 0.89 5 0.88 0.23 0.88 5

3 Layer 0.55 0.90 0.85 8 0.53 0.95 0.85 8

5 Layer 0.47 1.06 0.85 10 0.40 1.21 0.83 10

Table 5.3: Linear regression coefficients for retrieval trials using 2, 3 and 5 layer retrieval

grids. These trials compute linear regression coefficients from retrieved vs. in

situ total column CO measurements, where both BT or NN bias spectrums

are used. Root mean square error (RMSE) computed as a percent error (%)

as well. All results in this table are for the LSQ retrieval.
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Examining bias results in Figures 5.4(a), 5.4(c), and 5.4(e) reveal different

results for LSQwAP trials compared with LSQ trials. Just as it is in the LSQ

trial, the bias in the first layer for the 2 layer retrieval grid layer is reduced to

zero; however, unlike the LSQ case, layer 1 biases are reduced to zero for both

the 3 layer and 5 layer retrieval trials. Also unseen in the bias results for trials

using 3 and 5 layers is the induced positive bias for the upper parts of the profiles

resulting in the retrieval process. This observation is a result of the LSQwAP

retrieval equation’s constraint to the first guess CO profile, where the size of the

constraint is determined by the diagonal of the constraint matrix H. The fact that

Figures 5.4(a), 5.4(c), and 5.4(e) all present near zero bias for all retrieval layers

suggests that the magnitude of the diagonal terms in constraint matrix appropriately

models the variation in this CO data set. The two exceptions are the 2% biases

shown for layer 3 in Figures 5.4(c) and 5.4(e).

Comparing the RMS results for the LSQwAP trials (Figures 5.4(b), 5.4(d), 5.4(f))

to the RMS results for the LSQ trials (Figures 5.3(b), 5.3(d), 5.3(f)) two general

results trends are seen:

1. Compared to the LSQwAP retrieval trials, RMS error is lower in the LSQ

retrieval trials for retrieval layers greater than 1 in all retrieval grids.

2. RMS error is 1-2% less for the LSQwAP trials compared to the LSQ trials in

the first layer; specifically, for the 3 and 5 layer case.

This shows that the LSQwAP is only constrained to the first guess in portions of the

atmosphere where the retrieval has little sensitivity; however this constraint allows
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(a) LSQwAP 2 Layer Bias

5 10 15 20

0

100

200

300

400

500

600

700

800

RMS difference (percent error)

P
re

s
s

u
re

 (
m

b
)

RMS Difference on Retrieval Grid

 

 
First Guess
Retrieval

(b) LSQwAP 2 Layer RMS
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(c) LSQwAP 3 Layer Bias
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(d) LSQwAP 3 Layer RMS
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(e) LSQwAP 5 Layer Bias
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(f) LSQwAP 5 Layer RMS

Figure 5.4: RMS and bias calculations for the 28 days determined to be cloud-free for

LSQ on the 2,3 and 5 layer retrieval grid. True composite CO profiles are

mapped to the retrieval grid representation through relation z = Wx de-

scribed in Section 4.1. All results presented here use the LSQwAP retrieval

equation, a priori first guess and the BT bias spectrum. The retrieval grid

used in each figure is (a) and (b) 2 Layer, (c) and (d) 3 Layer, and (e) and

(f) 5 layer.
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the LSQwAP to measure CO near the surface.

LSQwAP

BT NN

Ret. Grid Slope Intercept R2 RMSE (%) Slope Intercept R2 RMSE (%)

2 Layer 0.72 0.56 0.88 6 0.73 0.55 0.88 6

3 Layer 0.46 1.10 0.83 9 0.45 1.13 0.84 9

5 Layer 0.43 1.15 0.83 9 0.40 1.25 0.80 10

Table 5.4: Linear regression coefficients for retrieval trials using 2, 3 and 5 layer retrieval

grids. These trials compute linear regression coefficients from retrieved vs. in

situ total column CO measurements, where both BT or NN bias spectrums

are used. Root mean square error (RMSE) computed as a percent error (%)

as well. This is for the LSQwAP retrieval equation

Table 5.4 presents the results from applying lines of linear fit to scatter plots

of retrieved total column CO vs. true composite CO profiles converted to total

column for LSQwAP trials. The total column measurement is calculated the same

way it was for the Table 5.3. Moving left to right across Table 5.4 reveals that there

is little difference in using the BT or NN bias spectrums. Moving from the top of

Table 5.4 to the bottom shows that adding layers reduces the effectiveness of the

total column measurement from AERI. This observation is made because retrievals

performed with more layers corresponds to worse coefficients of linear fit between the

true total column of CO and a total column of CO calculated from AERI retrievals.
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This is the same trend as is seen in the LSQ trials; however, it is more pronounced

here. This is because the LSQwAP retrieval equation sticks to the first guess, and

as more layers are added, the retrieved profile becomes more like the a priori profile.

5.4 Single Day Profile

To demonstrate the retrieval a single case from 20070126 is presented. Merged

profile representations are created from retrieved RTP CO profiles and are presented

as a VMR. The resulting VMR is then listed on a pressure level corresponding to

the effective pressure of the layer.

Figure 5.5(a) shows that the version 1 CO retrieval (cyan) measures a VMR

of 120 ppbv. This displays the vertical uncertainty of the version 1 retrieval, as

120 ppbv represents a weighted average of the true Composite CO profile (green).

Figures 5.5(a) and 5.5(c) show the LSQ and LSQwAP retrievals, converted from

the RTP profiles to the merged profiles. Merged profiles are created by taking the

column density CO amount for each layer in the RTP profile and dividing by the

total amount of air molecules in the layer. Both LSQ and LSQwAP overestimate the

surface value by approximately 30 ppbv while relaxing back to the first guess profile

above 800 mb. Figures 5.5(b) and 5.5(d) are the corresponding normalized averaging

kernels for the LSQ and LSQwAP retrievals respectively. These averaging kernels

display that any perturbations to the true atmospheric profile cause the retrieved

profile to have its largest change in the first layer.
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(c) LSQwAP Merged Profile Grid
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(d) LSQwAP

Figure 5.5: (a) CO retrieval on the merged profile grid (ppbv) using a 5 layer LSQ

retrieval equation and the NN bias spectrum for 20070126 (b) Averaging

kernel for the 5 layer retrieval grid using LSQ and the NN bias spectrum

for 20070126. (c) CO retrieval on the merged profile grid (ppbv) using a 5

layer LSQwAP retrieval equation and the NN bias spectrum for 20070126.

(d) Averaging kernel for the 5 layer retrieval grid using LSQwAP and the

NN bias spectrum for 20070126.
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The retrieval equation can be broken down into three components:

ẑ = Aztrue + (In − A)za +Gε (5.1)

where, Az represents how the true profile is smoothed by the averaging kernel,

(In − A)za represents the the contribution from the first guess, and Gε represents

how measurement error is propagated to the retrieved solution (ẑ).

Using this breakdown it’s possible to understand the contributions to the over-

estimated retrieved solutions seen in Figures 5.5(a) and 5.5(c).

Figure 5.6 presents the retrieval profile (red), true composite CO profile (green),

and first guess profile (blue). Also shown in black is the convolved truth profile which

is calculated as (z̀ = Az+(In−A)z). The convolved truth represents the true profile

after it is smoothed by the retrievals vertical sensitivity. Examining Equation 5.1

reveals that the convolved truth represents the retrieval minus contributions from

error. Using this relation it is seen that the convolved true profile in Figure 5.6

overestimates the true profile, indicating that the LSQwAP retrieval compensates

for the difference in layers 2-5 between the truth and first guess profiles by per-

turbing the first layer (bottom layer). The difference in the bottom layer between

the retrieved value and the convolved true profile is a result from the measurement

errors contribution to the retrieved value.

5.5 SAAC Conclusions

Using a 1 super layer retrieval grid it is demonstrated that SAAC retrievals can

measure total column CO to better than 6%. This is a significant improvement over
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Figure 5.6: CO retrieval on the 5 layer retrieval grid using the LSQwAP retrieval equa-

tion and the NN bias spectrum for 20070126. The first guess profile is the a

priori profile.

the 15% variation from the a priori. Both LSQ and LSQwAP retrieval equations

measure the single layer CO (total column) to within 6% of the true total columns.

The range of slopes from true total column vs retrieved total columns scatterplots

are 0.99-1.09 for any combination of bias spectrum (NN,BT) or retrieval equation

(LSQ, LSQwAP). The best total column measurement is found when using the

LSQwAP retrieval equation with the BT bias spectrum.

Direct comparisons of the 28 cloud-free true composite CO profiles showed

that the systematic bias that existed in [90] still persists for the version 1 retrieval.

SAAC retrievals using LSQ and LSQwAP had the same systematic low bias when

no bias spectrum is used. This indicates the reason for the systematic low bias in

the previous AERI CO study is a result of the bias present in modeling the CO

band from kCARTA. Version 1 total column results indicated a 17% RMSE. LSQ

and LSQwAP single layer retrievals both showed no systematic bias and a much
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greater accuracy and therefore are superior to the version 1 CO retrieval.

When retrieving profiles the biggest improvement came in the first layer of

each retrieval grid. The improvement in RMS error ranged from 10 - 13%, with the

biggest improvement coming for the 2 layer retrieval grid. RMS error improved by

2-3% over the a priori for retrieval grid layers above the first layer. Some of this

improvement comes from the linear interpolation method used to update the RTP

CO profile. This causes correlation between the layers. Using the five layer grid

scheme is the best choice to effectively decouple the atmosphere into portions that

AERI is sensitive to (≥ 700 mb), from portions it’s not sensitive to.

Bias results suggest LSQwAP better constrains the top profiles. This suggests

that the constraint matrix is providing proper amounts of constraint for this data

set. An independent data set is needed to better characterize whether the constraint

matrix works and no bias will exist again. Also, LSQwAP does a better job removing

bias compared to the LSQ, which says that by constraining the top to the a priori

rather than letting it oscillate, allows for a better solution to the bottom.

Trials using retrieval grids of 2, 3 and 5 layers to calculate total column mea-

surements showed degrading results in comparison to total column calculated from

true composite CO profiles. These results saw decreases in slopes from approxi-

mately .8 for 2 layers to approximately .4 for 5 layers. This further demonstrates

the lack of vertical information in AERI spectra with respect to CO.

The new retrieval system creates averaging kernels that characterize the verti-

cal sensitivity SAAC has with respect to the true atmospheric profile. Through the

use of these averaging kernels, it is shown that both LSQ and LSQwAP retrievals
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compensate for differences between the first guess free tropospheric values and the

true CO free tropospheric values by perturbing the layer closest to the surface. This

illustrates the need to include more information in the retrieval, either by introduc-

ing correlation coefficients in the off-diagonals of HTT or through a dynamic first

guess.

Lastly, the LSQ and LSQwAP retrieval equations provided nearly identical

RMS error and bias results, for all cases and trials shown in this chapter.
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Chapter 6

SAAC plus AIRS

This chapter presents results from using AIRSv5 retrieved CO [47] as the

first guess to the SAAC retrieval. As demonstrated in Chapter 5 AERI spectra

has limited sensitivity above 3km (less than 700 mb); therefore, AIRS is used as a

first guess to better constrain portions of the atmopshere where SAAC has limited

sensitivity. The two different retrieval equations are presented again below:

Nearly Linear (LSQ)xi+1 = (1 + α)xi

Moderately Nonlinear (LSQwAP)xi+1 = xa + αxi = (α +
xa

xi
)xi = βxi

These are the same equations developed in Chapter 4 and used in Chapter 5 however,

AIRS first guess profiles are now used for xa and xi for LSQwAP and LSQ retrieval

equations respectively. A new constraint matrix is made for use with the AIRSv5

first guess. A nominal variation of 30% is used which corresponds to a diagonal

constraint matrix with values of 0.09 on the diagonal.

The version of AIRS retrieved CO profiles used to create the true composite

CO is on a 9 level grid. This is different than the version used to create the first

guess which is gridded onto 100 levels. For this work, it is assumed that the AIRS

CO retrievals used to create the upper portions of the true composite CO profiles

accurately represent truth. In reality they are not, and even contain a 10% bias
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[47]; however, for assessing the quality of the retrieval it is important to use days

where the first guess provides an accurate representation of the upper atmosphere.

Therefore, only cases where the two different AIRS versions are in agreement are

used.

The 28-day cloud-flagged profiles from chapter 5 are examined to assure the

similarity between the two AIRS data sets. Good cases are chosen by examining

the similarity between the two different types of AIRS profiles above 600 mb. This

results in 13 possible days to use AIRSv5 CO retrievals as the first guess CO profile

for LSQ and LSQwAP retrieval equations. The specific days to use are listed in

Table 6.1.

20070218 20070307 20070404 20070826 20070828 20071001 20071106

20071108 20080227 20080721 20080721 20081016 20081030

Table 6.1: Cloud-free dates where AIRS first guess profiles from [89] match up well with

the upper portion of the true composite CO profiles. Cloud clearing is done

using the neural network discussed in Section 3.1.

6.1 An Example Profile

This section presents a single retrieval case using AIRSv5 CO as the first guess.

The single case chosen is taken from 20070218. Both LSQwAP and LSQ retrieval

equations are examined below.
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(a) AIRS First Guess LSQwAP (SAAC+AIRS)
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Figure 6.1: (a) Retrieval using the LSQwAP retrieval equation with the NN bias spec-

trum, and AIRSv5 first guess. (b) Retrieval using the LSQwAP retrieval

equation with the NN bias spectrum, and the a priori profile used as the

first guess. Both retrieval results take the RTP CO profiles and convert them

to merged profiles.

Figures 6.1(a) and 6.1(b) show merged profile retrieval results for the LSQwAP

retrieval equation using either a AIRSv5 CO profile or the a priori as the first guess

profile. Figure 6.1(a) shows that the version 1 CO retrieval significantly underesti-

mates any portion of the true profile and clearly is affected by errors in synthetic

spectra.

One result from Chapter 5 states that when CO is underestimated by the

first guess above 700 mb, the resulting effect is to perturb the bottom portion

of the retrieved profile. The inclusion of the AIRS retrieval as a first guess is
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shown in Figure 6.1(a) to provide a better first guess compared with the a priori

first guess, and removes the large perturbation in retrieved CO below 800 mb seen

in Figure 6.1(b). The first guess profile in Figure 6.1(a) displays that AIRSv5

underestimates the first layer of the true profile by 30%, however the retrieval in

SAAC+AIRS is able to measure that 30%. Therefore, through comparisons for

retrieved merged profiles in Figures 6.1(a) and 6.1(b), it is determined that in this

case SAAC+AIRS is superior to either SAAC or AIRS.

6.1.2 LSQ and Type of Problem

The functional difference between the retrieval equation LSQ, and LSQwAP

is that at each iteration LSQwAP is constrained to the first guess, whereas LSQ is

constrained to the previous iteration. Figures 6.2(a) and 6.2(b) present the retrieval

of CO for the LSQwAP on the merged grid when using AIRS or the a priori as a first

guess profile. Comparing the LSQ retrieval solution from Figures 6.2(a) and 6.2(b)

to the results for the LSQwAP solution in Figures 6.1(a) and 6.1(b), no noticeable

difference is found for either choices of first guess profiles (AIRSv5, a priori).

Examining the retrieval equations for LSQ and LSQwAP gives insight to why

there is no significant difference. The same first guess profile (xa) is used at the

first iteration for both retrieval equations. Through substitution of xa = xi into

Equations 4.21 and 4.14 respectively, a comparison between the retrieval equations

at the first iteration can be made.

First, the substitution is made into Equation 4.21 that represents the solution

159



110 120 130 140 150 160 170 180

300

400

500

600

700

800

900

CO (ppbv)

p
re

s
s

u
re

 (
m

b
)

070218LSQ
TT

 Mixing Ratios  on 5 Layer RET. Grid

 

 
Retrieved
FG = AIRS
Truth
Version 1

(a) AIRS First Guess LSQ (SAAC+AIRS)
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Figure 6.2: (a) Retrieval using the LSQ retrieval equation with the NN bias spectrum,

and AIRSv5 first guess.(b) Retrieval using the LSQ retrieval equation with

the NN bias spectrum, and the a priori profile used as the first guess. Both

retrieval results take the RTP CO profiles and convert them to merged pro-

files.
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to the moderately non-linear problem:

xi+1 = xa + (KT
i S

−1
e Ki +H−1KT

i S
−1
e [y − F (xa) +Ki(xa − xa)]

xi+1 = xa + (KT
i S

−1
e Ki +H−1KT

i S
−1
e [y − F (xa)]

Next, the substitution of xa = xi for the nearly linear case represented by

Equation 4.14 is done but not presented here. By inspection of Equation 4.14 it’s

easy to confirm that this substitution yields the identical solution as the moderately

non-linear problem shown above. Therefore, at the first iteration both LSQ and

LSQwAP retrieval solutions are identical. As the retrieval continues on to the

next iteration the LSQ and LSQwAP retrievals have their normal forms given by

Equations 4.14 and 4.21 respectively. If the variation in the true state of CO is large

enough that it required multiple iterations to reach the solution, then the results

from LSQ and LSQwAP would be different; however, all results display that the

solutions are within 1% of each other. This is true even for results using AIRSv5

CO as the first guess, where the AIRSv5 CO percent error for the atmospheric

region greater than 800 mb can be as high as 30% for this data set. Therefore, over

the range of true composite CO profiles shown in this data set (variation ≈ 20%

from the a priori profile) the forward problem is nearly linear; however, this data

set does not contain the same variation as locations that have significant amounts

of pollution outflow. These regions are shown to vary 50-100% [17, 52]. In these

locations the LSQwAP retrieval is expected to work better because it does not make

assumptions about linearity.
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6.2 Error Statistics

The RMS error for the 5 layer retrieval grid is presented in Figures 6.3(a), 6.3(b), 6.3(c),

and 6.3(d). The trial here consists of calculating the RMS difference between true

composite CO and retrieved CO profiles on the retrieval grid for different first

guesses, bias tuning spectrums, and channels included in the retrieval.

Next, the retrieval is adjusted to use all 172 channels between 2107 - 2189 cm−1.

It was found that every channel carried some information as defined by the Shannon

information content (Hs), and the degrees of freedom is approximately 1.1 when all

channels are used. The error covariance for this whole band retrieval trial uses the

full error covariance matrix shown in Chapter 4 on page 116 (Figures 4.5(a)- 4.5(d)).

As shown in Figure 6.3(d), the retrieved first layer RMS error is 12%, which is more

than the 9% from the trial using the selected channels and the BT bias spectrum

(Figure 6.3(c)). Moreover, the error in retrieval layer 2 doubles for the trial using

the whole band and the rest of the retrieval layers increase in error as well. These

results validate the use of the channel selection method in this retrieval.

Comparing either figure using the AIRS first guess (Figures 6.3(a), 6.3(a)) to

the trial using a priori (Figure 6.3(b)) reveals the improvement by using the AIRSv5

CO first guess. The layer 1 retrieval RMS error improves from approximately 11%

to 8-9% by using AIRSv5 CO as the first guess. Therefore, it is possible to estimate

the effect of using a free tropospheric guess which is in error by 10 - 15%. This

effect contributes 1 -2% in the layer 1 results. Thus, the 10% systematic high bias

in AIRS [47] should result in a 1% bias in layer 1 retrieval grid.
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(a) AIRS First Guess NN bias spectrum
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(b) a priori NN bias spectrum
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(c) AIRS First Guess BT bias spectrum
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(d) AIRS First guess Whole Band NN Bias

Spectrum

Figure 6.3: RMS error calculations for LSQwAP retrieval equation on the retrieval grid.

(a) AIRS first guess and NN bias spectrum (b) a priori and NN bias spec-

trum(c) AIRS first guess and BT bias spectrum (d) AIRS first guess, NN

bias spectrum, and using all channels from 2107-2189 cm−1.
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The largest improvement resulting from using the AIRSv5 CO is in layer 2,

which reports an RMS error of approximately 4%. This is less than half the RMS

error from layer 2 which is 13 - 14%. This region represents the overlap where

retreivals from AIRS and AERI both contain small amounts of information. Layers

3 - 5 show an improvement because SAAC has no sensitivity there and is entirely

made up of whatever first guess profile is used.

Finally, some context must be given about the 4% RMS error seen in Fig-

ures 6.3(a) and 6.3(c). Because different versions of AIRS CO retrievals are used

for the first guess, and the SAAC retrieval does not change layers 3-5, then this

represents the agreement between the two versions of AIRS CO retrievals. Layers

3-5 in the SAAC retrieval will contain the same error as the AIRS CO profile, or

whatever first guess profile is chosen.

Figures 6.4(a) and 6.4(b) both show the total column calculations from the 5

layer retrievals using an AIRSv5 first guess and the a priori first guess respectively.

All three linear fit parameters improve by using the AIRSv5 first guess. Furthermore,

the linear fit parameters and RMS error are comparable to SAAC using a priori on

1 super layer to retrieve total column.

6.3 Future Uses and Work

The satellites AIRS [47], IASI [83, 42], TES [6, 38], and MOPITT [14] are all

instruments that retrieve CO profiles and can be used as a first guess to SAAC. These

satellites have been measuring global CO data since 2000. Table 6.2 gives the data
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Figure 6.4: (a) Total column CO scatter plot and linear regression coefficients for re-

trieval vs in situ using LSQwAP, AIRS first guess, and bias spectrum for

days listed in Table 6.1. (b) Total column CO scatter plot and linear regres-

sion coefficients for retrieval vs true composite CO using LSQwAP, a priori,

and bias spectrum for days listed in Table 5.1.
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taking periods for the different satellites. With each one of these satellites providing

nearly daily global CO profiles, there is ample opportunity to get multiple profiles

per day, create diurnal trends going back to 2000, and do inter-comparisons with

different satellite first guess profiles. Moreover, different satellites can be combined

with tower and aircraft measuring in situ CO. This would create the independent

CO profile data set needed to truly validate the SAAC retrieval scheme. Also,

more information can be added to the SAAC retrieval by using optimal estimation

retrievals [67]. In order to create an optimal estimation retrieval method, many more

CO profiles should be used to develop true layer-to-layer correlation for the SAAC

retrieval grids. The layer-to-layer correlation is then described by the off-diagonal

terms in the constraint matrix used in the retrieval.

MOPITT IASI TES AIRS

2000 - present 2007 - present 2004 - present 2002 - present

Table 6.2: Data taking periods for satellites measuring CO profiles [9].

The SGP site in Oklahoma contains all the necessary instruments to analyze

the error in the CO band. In fact, other parts of the band have been analyzed [82]

using AERI data to better constrain the LBLRTM. Results here showed that part

of the error in the AERI retrievals are due to undetermined amounts of error in the

CO band, and could be improved with such a study.
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6.4 Conclusion

An in depth error analysis on each point of the retrieval system finds that the

dominate sources of error for CO come from cloud contamination and the modeling

of water from kCARTA. This is in contrast of previous studies which assumed the

dominant source of error in modeled spectra was from errors in water vapor profiles

input to kCARTA [28, 90], or from scattered solar photons [90]. This conclusion was

drawn from observing that even by constraining the input water vapor profile with

MWR, the error between model and measurement still exists and has a seasonal

variation correlated to MWR measurements. The cloud effect is observed from the

side by side observations of a brightness temperature contrast method [28, 34] and

a neural network used to filter out clouds. [80]. Using the neural network as a cloud

flag reduced the uncertainty between modeled spectra and AERI measured spectra

by 30%. This improvement does not vary when comparing kCARTA models 114

and 115, or continuum models MTCKD1 and CKD24.

A new channel selection method is created which accounts for the channel-to-

channel correlated error. Using this channel selection, it is found that one degree of

freedom is contained in the retrieval system using AERI measurements. One degree

of freedom is similar to that of the AIRS satellite [47]; however, the degree of freedom

for AERI measurements is heavily weighted to the portions of the atmosphere greater

than 700 mb, whereas AIRS is weighted to 500 mb.

A retrieval system using AERI measurements is created that uses two types

of first guess profiles and follows a constrained least square retrieval methodology
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in [67]. In both cases, the retrieval results are shown to be highly sensitive to the

first guess profile due to the limited information content from carbon monoxide. An

a priori profile has been constructed from the mean of 56 composite CO profiles.

For the 2, 3 and 5 layer cases the variance in the a priori was between 20% at the

surface and between 12 and 20% for the layers above 800 mb. Using the a priori

as the first guess and a diagonal constraint matrix in the retrieval the improved the

RMS error was between 7 and 12% for the first retrieval layer (≈ 910 mb). As more

layers are added to the system the RMS error relaxes back to the a priori RMS

error.

A total column CO measurement from AERI is developed by using one super

layer to represent the entire atmosphere. This total column measurement demon-

strates the importance of centering modeled spectra by adding in a bias spectrum.

It has been demonstrated that using the BT or NN bias spectrum reduces percent

error in total column measurements from 12 to 6%. No significant difference in

RMSE is found between using NN or BT bias spectrums; however, the coefficients

of linear fit are slightly better for the BT bias spectrum. This may suggest a larger

bias is present in modeled spectra from kCARTA that is not completely accounted

for by the NN bias spectrum. The Using the a priori as a first guess, a BT bias

spectrum, and LSQwAP retrieval methodology, it has been found that the linear fit

statistics between true and measured total column CO has a slope of 0.99 with an

intercept of 0.01 and an R2 value of 0.89. Using this set of parameters showed the

best overall results for the total column CO retrieval.

A dynamic first guess profile from AIRSv5 CO retrievals [47] improves the
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upper and lower atmospheric retrieval RMS error. A direct comparison between

the five layer retrieval using the two different first guess profiles indicate that below

800 mb the RMS error is improved by 3% when using the AIRSv5 CO as a first

guess profile rather than the a priori. The upper atmosphere RMS error is improved

between 5 and 15% when using the AIRSv5 CO profile. A constrained least square

with a priori method proved unsuccessful due to the constraint matrix chosen;

however this analysis was able to classify the retrieval problem as nearly linear for

the variance shown in the data set; however, more data is needed to make a general

statement about linearity of this problem.

This retrieval system improves upon previous CO retrievals from AERI [28, 90]

through error analysis and algorithm implementation. With each retrieval, averaging

kernels, gain matrices, and degrees of freedom are output which provide the infor-

mation about sensitivity to CO distribution and error propagation in the system.

Furthermore, by following the methods presented in the dissertation, the retrieval

is easily updated when new error estimations are determined from research into

forward modeling or AERI.

The original goal of this work was to create a product capable of monitoring

boundary layer venting. In order to do boundary layer venting the vertical resolution

needed is less than 1 km [16]. The vertical resolution of the first layer in AERI is

more than 1 km. Therefore monitoring boundary layer venting is not possible.
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Appendix A

AIRSv5 vs A priori First Guess
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(a) AIRS First Guess
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(b) a priori
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(c) AIRS First Guess
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Figure A.1: 5 layer retrieval using the NN bias spectruum and the LSQwAP retrieval

equation on the merged profile grid measured in ppbv. (a) and (c) represent

the retrieval days using AIRSv5 CO as the first guess profile. (b) and (d)

represent the retrieval results using an a priori first guess.
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(b) a priori
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(d) a priori

Figure A.2: 5 layer retrieval using the NN bias spectruum and the LSQwAP retrieval

equation on the merged profile grid measured in ppbv. (a) and (c) represent

the retrieval days using AIRSv5 CO as the first guess profile. (b) and (d)

represent the retrieval results using an a priori first guess.
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(d) a priori

Figure A.3: 5 layer retrieval using the NN bias spectruum and the LSQwAP retrieval

equation on the merged profile grid measured in ppbv. (a) and (c) represent

the retrieval days using AIRSv5 CO as the first guess profile. (b) and (d)

represent the retrieval results using an a priori first guess.
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(b) a priori
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(c) AIRS First Guess
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(d) a priori

Figure A.4: 5 layer retrieval using the NN bias spectruum and the LSQwAP retrieval

equation on the merged profile grid measured in ppbv. (a) and (c) represent

the retrieval days using AIRSv5 CO as the first guess profile. (b) and (d)

represent the retrieval results using an a priori first guess.
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(c) AIRS First Guess
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(d) a priori

Figure A.5: 5 layer retrieval using the NN bias spectruum and the LSQwAP retrieval

equation on the merged profile grid measured in ppbv. (a) and (c) represent

the retrieval days using AIRSv5 CO as the first guess profile. (b) and (d)

represent the retrieval results using an a priori first guess.
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