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A comparative study of implicit Jacobian-free

Rosenbrock-Wanner, ESDIRK and BDF methods

for unsteady 
ow simulation with high-order 
ux

reconstruction formulations

Lai Wang� and Meilin Yuy

Department of Mechanical Engineering,
University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

We conduct a comparative study of the Jacobian-free linearly implicit
Rosenbrock-Wanner (ROW) methods, the explicit �rst stage, singly diago-
nally implicit Runge-Kutta (ESDIRK) methods, and the second-order back-
ward di�erentiation formula (BDF2) for unsteady 
ow simulation using spa-
tially high-order 
ux reconstruction/correction procedure via reconstruction
(FR/CPR) formulations. The pseudo-transient continuation is employed
to solve the nonlinear systems resulting from the temporal discretizations
with ESDIRK and BDF2. A Jacobian-free implementation of the restarted
generalized minimal residual method (GMRES) solver is employed with a
low storage element-Jacobi preconditioner to solve linear systems, includ-
ing those in linearly implicit ROW methods and those from linearization of
the nonlinear systems in ESDIRK and BDF2 methods. We observe that all
ROW and ESDIRK schemes (from second order to fourth order) are more
computationally e�cient than BDF2, and ROW methods can potentially be
more e�cient than ESDIRK methods. However, the convergence tolerance
of the GMRES solver for ROW methods needs to be su�ciently tight to
preserve the nominal order of accuracy. In general, ESDIRK methods al-
low a larger physical time step size for unsteady 
ow simulation than ROW
methods do.
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Reconstruction; High-Order Spatiotemporal Methods; Unsteady Flows

1 Introduction

High-order computational 
uid dynamics (CFD) methods have been
attracting much research attention in past decades due to their superior
numerical properties that enable high-�delity simulation of intricate 
ows.
High-order spatial discretization methods, such as discontinuous Galerkin
(DG) methods [1, 2, 3], and 
ux reconstruction/correction procedure via
reconstruction (FR/CPR) methods [4, 5, 6, 7], have shown their capabilities
of dealing with turbulent 
ows [8, 9, 10, 11, 12, 13, 14, 15]. Usually, the
high-order explicit strong stability preserving Runge-Kutta (SSPRK) meth-
ods [16] are used to integrate the semi-discretized governing equations for
unsteady 
ow simulation. However, due to the Courant{Friedrichs{Lewy
(CFL) number constraint, explicit time integration methods may not be the
optimal choice for e�cient numerical simulation of sti� 
ow problems, such
as wall-bounded turbulent 
ows at high Reynolds numbers.

The implicit time integration methods have a better stability property
than explicit ones. The backward di�erentiation formula (BDF) is very
popular for its ease of implementation. However, BDF methods are not
A-stable when the order of accuracy exceeds two. An alternative is the
implicit Runge-Kutta (IRK) method [17]. We note that fully coupled IRK
methods are not widely used in the CFD community due to the complica-
tion of solving fully coupled nonlinear systems. Solution strategies based
on the dual time stepping procedure [18] have recently been reported by
Jameson [19]. In that work, several fully coupled IRK methods have been
evaluated for unsteady 
ow simulation. To decrease computational complex-
ity, diagonally implicit Runge-Kutta (DIRK) and singly diagonally implicit
Runge-Kutta (SDIRK) can be used. A comprehensive review of DIRK meth-
ods by Kennedy and Carpenter can be found in Ref. [20]. A recent work by
Vermeire and Vincent [21] have analyzed dispersion and dissipation proper-
ties of fully-discrete high-order FR methods with two SDIRK schemes, and
provided insights on their suitability for implicit large eddy simulation. As
a special case of SDIRK, the explicit �rst stage singly diagonally implicit
Runge-Kutta method (ESDIRK) reduces the degree of the nonlinear sys-
tems of SDIRK by one. Comparisons of BDF and ESDIRK methods have
been performed in Refs. [22, 23]. ESDIRK methods are found to be more
e�cient than BDF methods. We note that for BDF and DIRK methods, a
nonlinear system needs to be solved at each step or each stage.

Rosenbrock methods linearize the nonlinear equations in DIRK meth-
ods. Therefore, only one linear equation needs to be solved at each stage.
Besides, the Jacobian matrix for this type of multistage methods only needs
to be calculated once at the �rst stage. All these features can potentially
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make linearly implicit Rosenbrock methods more computationally e�cient
than DIRK methods. In traditional Rosenbrock methods, exact Jacobian
matrices [24, 25] need to be calculated to ensure accuracy. In many sti� 
ow
problems, analytical Jacobian is not easy to obtain; and matrix-based im-
plementation can consume tremendous memory, thus impeding e�cient sim-
ulation of large-scale 
ow problems. Rosenbrock-Wanner (ROW) methods
[26, 27, 28] can preserve the nominal order of accuracy with an approximate
Jacobian matrix. This 
exibility makes it possible to implement a Jacobian-
free Krylov subspace solver. The Rosenbrock-Krylov (ROK) methods [29]
reformulate the Rosenbrock/ROW method such that stage vectors are ob-
tained from the Krylov subspace using the modi�ed Arnoldi iteration. The
ROK methods naturally favor the matrix-free implementation. We notice
that even sti�y accurate Rosenbrock methods can su�er from order reduc-
tion for moderately sti� problems and improvements have been developed
in Ref. [30]. Recent research on the performance of Rosenbrock methods on
solving the Navier-Stokes equations with high-order DG-type schemes have
been reported in a series of works [31, 32, 33, 34].

If Jacobian-free implementation is used, the advantage that the Jacobian
matrix of Rosenbrock methods only needs to be evaluated once for each time
step does not hold anymore. In fact, the performance of ROW methods and
ESDIRK methods highly depends on how the linear and nonlinear systems
are solved. Blom et al. [35] have shown that ROW methods are not nec-
essarily more e�cient than ESDIRK methods when a second-order central
�nite volume method is used. Liu et al. [32] has conducted a comparative
study of some third-order ROW methods and a third-order ESDIRK (ES-
DIRK3) [22] method with a third-order hierarchical WENO (weighted essen-
tially non-oscillatory) reconstructed discontinuous Galerkin (rDG) method.
They observed that the third-order ROW methods tested are more e�cient
than ESDIRK3. Sarshar et al. [36] conducted a comparative study of various
matrix-free implicit time-stepping methods on solving two-dimensional (2D)
Navier-Stokes equations including SDIRK, Rosenbrock, ROW, and ROK
using a second-order spatial discretization. It is found that ROK can be a
competitive method compared to other implicit time integrations.

Contributions. In most numerical simulation of the unsteady Navier-
Stokes equations with the method of lines, numerical dissipation and disper-
sion are primarily emphasized for spatial discretization methods, assuming
that the in
uence of time integration methods on numerical simulation is
negligible compared to that of spatial discretization. However, the assump-
tion may not hold especially when large time steps, allowed by implicit time
integrators, are employed. Several recent works [37, 21, 38] have con�rmed
that time integration methods can have signi�cant impact on unsteady 
ow
simulation with high-order spatial formulations. This motivates the present
study to conduct a systematic comparison of accuracy and e�ciency between
several widely used implicit time integration methods, including Jacobian-
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free ROW (second-, third- and fourth-order schemes), ESDIRK (second-,
third- and fourth-order schemes) and BDF2, for unsteady numerical sim-
ulation of sti� 
ow problems. In this study, the high-order FR methods
are used to discretize the spatial domain. For ESDIRK and BDF2, the
pseudo-transient continuation [18] is used to solve the nonlinear systems.
The restarted GMRES solver [39] with the element-Jacobi preconditioner
serves as the linear solver. The Jacobian-free implementation decreases the
tremendous memory consumption of matrix-based implementation. The ac-
curacy and e�ciency of the implicit time integrators are compared using
several laminar and turbulent 
ows, including 2D isentropic vortex propa-
gation, 2D laminar 
ow over a cylinder, and three-dimensional (3D) Taylor-
Green vortex evolution.

Article Organization. The rest of the paper is organized as follows. Sec-
tion 2 gives a brief introduction of the governing equations. The FR method
is reviewed in Section 3. Section 4 introduces all the time integration meth-
ods tested in this study. Numerical results and corresponding discussions
are documented in Section 5. We summarize this work in the last section.

2 Governing Equations

The 3D unsteady compressible Navier-Stokes equations can be written
as

@q

@t
+r � F = 0; (1)

where q = (�; �uj ; E)T ; j = 1; 2; 3; is the vector of conserved variables,
and F is the corresponding 
ux tensor. Speci�cally, � is the 
uid density,
uj ; j = 1; 2; 3; are the velocities in three orthogonal directions, and E =
p


�1 + 1
2�
P3

k=1(ukuk) is the total energy per unit volume, where p = �RT is
the pressure, T is the temperature, R = Cp�Cv is the ideal gas constant, 
 is
the speci�c heat ratio de�ned as 
 = Cp=Cv, and Cp and Cv are speci�c heat
capacities at constant pressure and volume, respectively. In this study, 
 is
set as 1.4. The 
ux tensor F consists of the inviscid part and viscous part,
which can be expressed as F = Finv(q)�Fvis(q;rq). Note that Finv(q) and
Fvis(q;rq) can be rewritten in a vector format as: for any j; j 2 f1; 2; 3g;

Finv;j(q) =

0BBBB@
�uj

�u1uj + �1jp
�u2uj + �2jp
�u3uj + �3jp
uj(E + p)

1CCCCA ; and Fvis;j(q;rq) =

0BBBB@
0
�1j

�2j

�3jP3
k=1 uk�kj �Kj

1CCCCA ;

(2)
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where �ij is the Kronecker delta, �ij is the viscous stress de�ned as

�ij = �

�
@ui
@xj

+
@uj
@xi

�
� 2

3
�

3X
k=1

@uk
@xk

�ij with i = 1; 2; 3;

and following Fourier’s law, the heat 
ux Kj is de�ned as Kj = ��@T=@xj .
In this study, the thermal conductivity � is calculated from the Prandtl
number Pr as � = �Cp=Pr. The 
uid viscosity � and the Prandtl number
Pr are treated as constants.

3 Flux Reconstruction Methods

To achieve an e�cient implementation of Eq. (1), we transfer the Navier-
Stokes equations from the physical domain (x; y; z) to the computational
domain (�; �; �). Thus Eq. (1) can be expressed as

@Q

@t
+
@F

@�
+
@G

@�
+
@H

@�
= 0; (3)

where 8>>>><>>>>:
Q = jJ jq;
F = jJ j(f�x + g�y + h�z);

G = jJ j(f�x + g�y + h�z);

H = jJ j(f�x + g�y + h�z);

(4)

and

J =
@(x; y; z)

@(�; �; �)
; and jJ j = det(J): (5)

Herein, f = F1, g = F2, and h = F3 are 
ux vectors in the x, y, and
z directions of a Cartesian coordinate system. @�i=@xj ; i; j = 1; 2; 3; are
metrics in the coordinate transformation.

The 
ux polynomial reconstructed from the FR method consists of two
parts, one of which is the local 
ux polynomial and the other is the correction
polynomial. On solving Eq. (3), the reconstructed polynomials eF , eG andfH of F , G and H can be expressed as8><>:

eF = F l + F c;eG = Gl + Gc;fH = H l + Hc;

(6)

where the superscript ‘l’ stands for the local 
ux and ‘c’ stands for the
correction 
ux. Consequently, Eq. (1) can be rewritten as

@q

@t
+
@f l

@x
+
@gl

@y
+
@hl

@z
+

1

jJ j

�
@F c

@�
+
@Gc

@�
+
@Hc

@�

�
= 0 (7)
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For hexahedral elements, F c , Gc and Hc can be explicitly expressed as8><>:
F c(�; �; �) = (eF (�1; �; �)� F l(�1; �; �))gL(�) + (eF (1; �; �)� F l(1; �; �))gR(�);

Gc(�; �; �) = (eG(�;�1; �)�Gl(�;�1; �))gL(�) + (eG(�; 1; �)�Gl(�; 1; �))gR(�);

Hc(�; �; �) = (fH(�; �;�1)�H l(�; �;�1))gL(�) + (fH(�; �; 1)�H l(�; �; 1))gR(�);

(8)
where gL=R are the correction polynomials. In this study, we employ the

Radau polynomials to recover the nodal FR-DG method. eF , eG and fH at
element interfaces are referred as numerical 
uxes F num, Gnum and Hnum.
The inviscid common 
uxes can be obtained from approximate Riemann
solvers. In this study, the Roe approximate Riemann solver [40] is used to
calculate the common 
uxes at the cell interfaces in their normal directions
as

f comn;inv =
f+

n;inv + f�n;inv
2

�Rj�jR�1 q+ � q�

2
; (9)

where superscripts ‘�’ and ‘+’ denote the left of right side of the current
interface, the subscript n is the unit normal direction from left to right,
fn = fnx + gny + hnz is the 
ux projection in the n direction, � is a
diagonal matrix consisting of the eigenvalues of the Jacobian @fn=@q, and
R consists of the corresponding right eigenvectors evaluated with the Roe-
averaged variables. Numerical common 
uxes can be obtained as8><>:

F num = jJ jjr�jf comn sign(n � r�);
Gnum = jJ jjr�jf comn sign(n � r�);

Hnum = jJ jjr�jf comn sign(n � r�):

(10)

The common viscous 
uxes at the cell interfaces are f comn;vis = fvis(q
+;rq+; q�;rq�).

Here we need to de�ne the common solution qcom and common gradient
rqcom at the cell interface. By simply taking average of the primitive vari-
ables, we get

qcom =
q+ + q�

2
: (11)

The common gradient is computed as

rqcom =
rq+ + r+ +rq� + r�

2
; (12)

where r+ and r� are the corrections to the gradients on the interface. The
second approach of Bassi and Rebay (BR2) [8] is used to calculate the cor-
rections. For the hexahedral element, the correction terms are de�ned as

r = 
(qcom � qL=R)n; and 
 = jr$jg0L=R($) sign(n � r$); (13)

where $ 2 f�; �; �g, and qL=R is the local solution on the interface. If the
interface is the left boundary of the element, then the local solution qL is

6



used, and $ is �1; if the interface is the right boundary of the element,
then the local solution qR is used, and $ is 1. In this study, g(�1) =
�(P + 1)(P + 2)=2 is used to stabilize the FR method [41], where P is the
polynomial degree of the solution.

4 Time Integration Methods

To solve Eq. (7), we rewrite this equation in a semi-discretized form as

@q

@t
= R(q); (14)

for the convenience of notation. We use the method of lines approach to
solve this equation: the partial di�erential equation is �rst discretized in
space with the FR formulation in Section 3, and then is marched in time
with the time integrators described below.

4.1 The backward di�erentiation formula

The BDF method for solving Eq. (14) can be expressed as

qn+1 = �t!R(qn+1) +
sX
j=1

ajq
n+1�j ; (15)

BDF methods are not A-stable when the order of accuracy exceeds two. In
this study, we only consider the BDF2 method for comparison. For BDF2,
s = 2, ! = 2=3, a1 = 4=3 and a2 = �1=3.

4.2 The explicit �rst stage, single diagonally implicit Runge-
Kutta method

The ESDIRK methods can be written as(
qn+1 = qn + �t

Ps
i=1 biR(qi);

qi = qn + �t
Pi

j=1 aijR(qj); i = 1; : : : ; s;
(16)

where s is the number of stages. The second-order, three-stage ESDIRK2 [20],
third-order, four-stage ESDIRK3 [22] and fourth-order, six-stage ESDIRK4 [22]
methods are studied in this paper. All the ESDIRK methods investigated
in this study have the feature that

aii =

(
0; i = 1;

!; i 6= 1:
(17)

Therefore, we can rewrite Eq. (16) as8><>:
qn+1 = qn + �t

Ps
i=1 biR(qi);

q1 = qn;

qi = �t!R(qi) + qn + �t
Pi�1

j=1 aijR(qj); i = 2; : : : ; s:

(18)
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4.3 Linearly implicit Rosenbrock methods

The general form of Rosenbrock methods for solving Eq. (14) from time
step n to n+ 1 can be written as(

qn+1 = qn +
Ps

j=1mjY j ;�
I
!�t �

@R
@q

�n
Y i = R

�
qn +

Pi�1
j=1 aijY j

�
+ 1

�t

Pi�1
j=1 cijY j ; i = 1; 2; : : : ; s;

(19)
where s is the number of stages. Rosenbrock-Wanner methods have the

exibility of evaluating the Jacobian matrix approximately while preserving
the accuracy of the schemes. In this study, we restrict our attention to three
popular sti�y accurate Rosenbrock-Wanner methods, i.e., the second-order,
three-stage ROS2PR [27], the third-order, four-stage ROS34PW2 [26] and
the fourth-order, six-stage RODASP [28]. We note that it has been shown
in Ref. [30] that ROS34PW2 and RODASP can su�er from order reduction.
To simplify the notation, we use ROW2, ROW3 and ROW4 to denote them,
respectively.

4.4 Iterative methods

The nonlinear equations in Eq. (15) and Eq. (18) can be written as

F (q�) = 0; (20)

where q� is qn+1 for BDF and qi for ESDIRK, respectively. For BDF meth-
ods,

F (qn+1) =

�
1

!�t
qn+1 �R(qn+1)

�
� 1

!�t

sX
j=1

ajq
n+1�j : (21)

For ESDIRK methods,

F (qi) =

�
1

!�t
qi �R(qi)

�
� 1

!�t

0@qn + �t

i�1X
j=1

aijR(qj)

1A ; i = 2; : : : ; s:

(22)
In this work, the pseudo-transient continuation is employed to solve the

nonlinear equations [18, 22, 19]. The pseudo-transient continuation is an
alternative of inexact Newton’s method to solve the steady state equation
F (q�) = 0 iteratively as

qk+1;� � qk;�

��
= �F (qk+1;�); (23)

Herein, k is the iteration step for the pseudo-transient continuation. Eq. (23)
can be linearized as �

I

��
+
@F

@q

�k
�qk;� = �F (qk;�): (24)

8



For a steady problem, as k ! 1, � ! 1 and �qk ! 0. Therefore,
F (qk;�) ! F (q�). The Jacobian matrix for fully implicit methods can be
expressed as �

@F

@q

�k
=

�
I

!�t
� @R

@q

�k
: (25)

Substitute the Jacobian matrix into Eq. (24) to obtain the �nal form of the
linear system in the pseudo-transient continuation procedure as follows�

I

��
+

I

!�t
� @R

@q

�k
�qk;� = �F (qk;�): (26)

The pseudo-transient continuation procedure requires an adaptation algo-
rithm of the pseudo time step size to complete the method. In this study,
we employ successive evolution relaxation (SER) algorithm [42] as

�0 = �init;��
k+1 = min

 
��k
jjF jjk�1

L2

jjF jjkL2

;��max

!
: (27)

As the pseudo time marches forward, a series of linear equations (26) are
successively solved until convergence. Ideally, we would expect that when
�� approaches ��max =1, the residual of the pseudo-transient procedure
will gradually converge to machine zero. However, in our practice of simu-
lating wall-bounded 
ows with grids clustered in near wall regions, we have
to choose a moderately large ��max to ensure that the residual of the linear
solver (e.g., the restarted GMRES as will be explained in the next subsec-
tion) can at least drop by one magnitude when �� equals to ��max. Once
the linear solver fails, we would reject the current pseudo-transient continu-
ation iteration and decrease ��max by half to continue. In this study, if not
speci�cally mentioned, ��init = �t and ��max = 1020.

4.5 Jacobian-free implementation of GMRES

The restarted GMRES is employed to solve Eq. (26) as well as the linear
system in Eq.(19). All linear systems can be expressed as

AX = b; (28)

where

A = D(�t;��)� @R

@q
: (29)

The �rst term D(�t;��) on the right-hand side of the above equation is a
diagonal matrix related to �t and �� . The GMRES method approximates
the exact solution by a vector xn 2 Kn that minimizes the Euclidean norm
jjAxn � bjj where Kn is the n-th Krylov subspace

Kn = spanfb; Ab;A2b; � � � ; An�1bg: (30)
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In the GMRES solver, the sparse matrix @R
@q in A only appears in the matrix-

vector product. For an unknown vector X, the matrix-vector product can
be approximated as�

@R

@q

�
X =

R(q + �X)�R(q)

�
+O(�): (31)

� = 10�8 in this study. Interested readers are referred to Ref. [43] for more
discussions on this approximation.

The performance of the Newton-Krylov methods substantially depends
on the preconditioner. In the context of Jacobian-free implementation, the
diagonal blocks of the Jacobian matrix, i.e., the element-Jacobi precondi-
tioner, can be an e�ective choice among low-storage preconditioners, such
as the matrix-free LU-SGS (Lower-Upper Symmetric-Gauss-Seidel) precon-
ditioner [44], and p-multigrid preconditioner [45]. In this study, only the
element-Jacobi preconditioner is considered. The restart number of the GM-
RES solver is set as 60.

5 Numerical Results

All the simulations presented in this section are performed on the High
Performance Computing Facility (HPCF) of the University of Maryland,
Baltimore county (UMBC). All nodes used in simulations have two Intel
E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors with eight cores
apiece, for a total of 16 cores per node. A quad data rate (QDR) In�niband
switch connects all the nodes. Ideally the system can achieve a latency
of 1.2 �sec to transfer a message between two nodes, and can support a
bandwidth of up to 40 gigabits per second (40Gbps). Every node possesses
64 GB RAM. All nodes are running Red Hat Enterprise Linux 6.4. We
employ g++ (GCC) 4.8.4 with mpich-3.1.4 to compile the code for parallel
simulation.

5.1 Vortex propagation

The 2D isentropic vortex propagation problem is employed as a bench-
mark test test case to investigate the accuracy and e�ciency of di�erent
time integrators in this subsection. The free stream 
ow conditions are set
as (�; u; v;Ma) = (1; 1; 1; 0:5) and the ideal gas constant R is set as 1:0 for
this case. The perturbation is de�ned as [31]8>>>><>>>>:

�u = � �
2� (y � y0)e�(1�r2);

�v = �
2� (x� x0)e�(1�r2);

�T = ��2(
�1)
16�
�2 e

2�(1�r2);

dS = 0;

(32)
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where � = 1
2 and � = 5 are parameters that de�ne the vortex strength,

and r = (x � x0)2 + (y � y0)2 is the distance to the center of the vortex
(x0; y0) = (0; 0) at t = 0. The periodic domain is de�ned as 
 = [�10; 10]2.
We simulate this problem on a uniform mesh of 50 � 50 elements with the
P 6 (i.e. 7th order) FR method for one period. The time step size �t is
re�ned from T=100 to T=800. The error of any variable s is de�ned as

Error(s) =

sR

(sexact � snum)2dV

V
; (33)

where sexact is the exact value, snum is the numerical value, and V is the
volume of the domain 
.

To monitor the convergence of the nonlinear system (20) and linear sys-
tem (28), two convergence criteria are set up: one is for pseudo time it-
erations, denoted as tolrel;nonlinear; the other is for the restarted GMRES
linear solver, denoted as tolrel;linear. Herein, the subscript ‘rel’ stands for
‘relative’. This is due to that the relative residual with respect to that at the
�rst step (i.e., the residual at the �rst step in pseudo time iterations for a
nonlinear system, and the residual at the �rst step in the restarted GMRES
for a linear system) is used in this study.

5.1.1 E�ect of pseudo-transient continuation convergence crite-
rion and GMRES convergence criterion on ESDIRK and
BDF2

The pseudo-transient continuation does not require exact solution of the
linear system at each iteration. We �rst employ a relative big tolerance
tolrel;linear = 10�1 for GMRES to investigate the e�ect of tolrel;nonlinear on
accuracy and e�ciency of fully implicit methods. The convergence study
of ESDIRK and BDF2 of di�erent tolrel;nonlinear, i.e., 10�2, 10�4, 10�6 and
10�8, is presented in Table 1. We observe that when tolrel;nonlinear is re�ned
from 10�2 to 10�4, all ESDIRK methods studied here will preserve the nom-
inal order of accuracy except that ESDIRK4 shows slightly order reduction
when �t is re�ned from T=400 to T=800. ESDIRK methods have shown
better accuracy and e�ciency than BDF2. Generally, the higher the order
of accuracy of ESDIRK is, the more e�cient ESDIRK is (see Figure 1).

We have also conducted a study on the e�ect of tolrel;linear on e�ciency
when a small enough tolrel;nonlinear = 10�6 is employed. tolrel;linear spans
in f10�1; 10�2; 10�4; 10�6g. The timing results are presented in Table 2.
For this speci�c problem, all values of tolrel;linear lead to the same numer-
ical errors as expected since the accuracy of ESDIRK and BDF2 methods
solely depends on the convergence of pseudo-transient continuation. As doc-
umented in Table 2, the computational cost will keep on increasing when we
re�ne the tolerance tolrel;linear. This indicates that in order to save compu-
tational cost, tolrel;linear for ESDIRK and BDF2 needs not to be tight.
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Table 1: The convergence study for ESDIRK and BDF2 with di�erent
tolrel;nonlinear when tolrel;linear is set to 10�1.

tolrel;nonlinear = 10�2, tolrel;linear = 10�1

�t EL2(�) order EL2(u) order CPU time(s)

ESDIRK2

T/100 4:4097� 10�4 5:7334� 10�3 317
T/200 1:1313� 10�4 1.97 1:4622� 10�3 1.97 603
T/400 2:8315� 10�5 2.00 3:6523� 10�4 2.00 1159
T/800 7:0714� 10�6 2.00 9:1104� 10�5 2.00 2247

ESDIRK3

T/100 1:5341� 10�4 1:7108� 10�3 398
T/200 2:3518� 10�5 2.71 2:6017� 10�4 2.90 734
T/400 3:1802� 10�6 2.89 3:4016� 10�5 2.94 1392
T/800 1:0661� 10�6 1.58 9:7414� 10�6 1.80 2478

ESDIRK4

T/100 4:5157� 10�6 3:2613� 10�5 425
T/200 7:7894� 10�7 2.54 4:7845� 10�5 2.77 773
T/400 6:0568� 10�8 3.68 3:2420� 10�7 3.88 1511
T/800 2:2122� 10�8 1.45 1:5485� 10�7 1.07 2802

BDF2

T/100 1:9170� 10�3 3:0021� 10�2 292
T/200 8:1561� 10�3 1.23 1:1195� 10�2 1.42 548
T/400 2:1372� 10�4 1.93 2:8983� 10�3 1.95 1074
T/800 5:6824� 10�5 1.91 7:3097� 10�4 1.99 2133

tolrel;nonlinear = 10�4, tolrel;linear = 10�1

�t EL2(�) order EL2(u) order CPU time(s)

ESDIRK2

T/100 4:4088� 10�4 5:7335� 10�3 375
T/200 1:1278� 10�4 1.97 1:4549� 10�3 1.98 723
T/400 2:8267� 10�5 2.00 3:6420� 10�4 2.00 1323
T/800 7:0691� 10�6 2.00 9:1040� 10�5 2.00 2504

ESDIRK3

T/100 1:5167� 10�4 1:6911� 10�3 537
T/200 2:3024� 10�5 2.72 2:5401� 10�4 2.74 956
T/400 3:0921� 10�6 2.90 3:3171� 10�5 2.94 1685
T/800 3:9376� 10�7 2.97 4:1908� 10�6 2.98 2890

ESDIRK4

T/100 3:4484� 10�6 3:1216� 10�5 597
T/200 2:1713� 10�7 3.99 1:9593� 10�6 4.00 1046
T/400 1:3573� 10�8 4.00 1:2257� 10�7 4.00 1920
T/800 1:1691� 10�9 3.54 7:6729� 10�9 3.81 3193

BDF2

T/100 1:9126� 10�3 3:0095� 10�2 329
T/200 8:4137� 10�4 1.18 1:1454� 10�2 1.39 627
T/400 2:3001� 10�4 1.87 2:9892� 10�3 1.94 1179
T/800 5:8417� 10�5 1.98 7:5360� 10�4 1.99 2294

To be continued on next page.
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Continuation of Table 1,

tolrel;nonlinear = 10�6, tolrel;linear = 10�1

�t EL2(�) order EL2(u) order CPU time(s)

ESDIRK2

T/100 4:4088� 10�4 5:7335� 10�3 464
T/200 1:1278� 10�4 1.97 1:4549� 10�3 1.98 814
T/400 2:8267� 10�5 2.00 3:6420� 10�4 2.00 1503
T/800 7:0691� 10�6 2.00 9:1041� 10�5 2.00 2672

ESDIRK3

T/100 1:5165� 10�4 1:6911� 10�3 692
T/200 2:3021� 10�5 2.72 2:5399� 10�4 2.74 1138
T/400 3:0914� 10�6 2.90 3:3165� 10�5 2.94 1877
T/800 3:9326� 10�7 2.97 4:1867� 10�5 2.99 3369

ESDIRK4

T/100 3:4502� 10�6 3:1249� 10�5 780
T/200 2:1706� 10�7 3.99 1:9593� 10�6 4.00 1310
T/400 1:3584� 10�8 4.00 1:2270� 10�7 4.00 2156
T/800 8:4961� 10�10 4.00 7:6728� 10�9 4.00 3751

BDF2

T/100 1:9126� 10�3 3:0096� 10�2 389
T/200 8:4141� 10�4 1.18 1:1454� 10�2 1.39 708
T/400 2:3010� 10�4 1.87 2:9890� 10�3 1.94 1230
T/800 5:8409� 10�5 1.98 7:5350� 10�3 1.99 2463

tolrel;nonlinear = 10�8, tolrel;linear = 10�1

�t EL2(�) order EL2(u) order CPU time(s)

ESDIRK2

T/100 4:4088� 10�4 5:7335� 10�3 546
T/200 1:1278� 10�4 1.97 1:4549� 10�3 1.98 930
T/400 2:8267� 10�5 2.00 3:6420� 10�4 2.00 1601
T/800 7:0691� 10�6 2.00 9:1041� 10�5 2.00 3003

ESDIRK3

T/100 1:5165� 10�4 1:6911� 10�3 891
T/200 2:3021� 10�5 2.72 2:5399� 10�4 2.74 1373
T/400 3:0913� 10�6 2.90 3:3164� 10�5 2.94 2138
T/800 3:9326� 10�7 2.97 4:1867� 10�5 2.99 3867

ESDIRK4

T/100 3:4502� 10�6 3:1249� 10�5 971
T/200 2:1706� 10�7 3.99 1:9593� 10�6 4.00 1550
T/400 1:3584� 10�8 4.00 1:2270� 10�7 4.00 2543
T/800 8:4976� 10�10 4.00 7:6747� 10�9 4.00 4370

BDF2

T/100 1:9126� 10�3 3:0096� 10�2 455
T/200 8:4141� 10�4 1.18 1:1454� 10�2 1.39 786
T/400 2:3010� 10�4 1.87 2:9890� 10�3 1.94 1393
T/800 5:8409� 10�5 1.98 7:5350� 10�3 1.99 2651

End of Table 1.
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Table 2: The e�ect of tolrel;linear on computational cost of ESDIRK.

CPU time (second)

tolrel;linear 10�1 10�2 10�4 10�6

ESDIRK2

T/100 464 503 693 1041
T/200 814 856 1109 1551
T/400 1503 1563 1909 2501
T/800 2672 2875 3334 4203

ESDIRK3

T/100 692 686 1036 1041
T/200 1138 1128 1584 2419
T/400 1877 1865 2580 3695
T/800 3369 3526 4430 5908

ESDIRK4

T/100 780 875 1326 2095
T/200 1310 1410 2133 3004
T/400 2156 2439 3277 4844
T/800 3751 4136 5527 7636

5.1.2 E�ect of GMRES convergence criterion on ROW

A comparison of di�erent convergence criteria of the restarted GMRES
solver is conducted to study its impact on the accuracy and e�ciency of the
ROW time integrators. It is observed that when the convergence criterion
is not tight, such as tolrel;linear = 10�2 and 10�4, the ROW methods cannot
preserve the nominal order of accuracy. This is not a surprise considering
that the residual convergence is directly related to the accuracy of the solu-
tion in ROW. When tolrel;linear is tight, such as tolrel;linear = 10�6 and 10�8,
all ROW methods can preserve the nominal order of accuracy, excepted that
ROW4 shows order reduction when the time step is re�ned from T=400 to
T=800. We also notice that when tolrel;linear is re�ned from 10�6 to 10�8,
no signi�cant di�erences in errors are observed. Another observation is that
when tolrel;linear is overre�ned, the CPU time of the simulation is notice-
ably increased. In general, we do not recommend machine zero convergence
criterion for tolrel;linear. A relatively tight value such as 10�6 is su�cient to
preserve the accuracy of high-order Rosenbrock methods for this problem.
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Table 3: The convergence study for ROW methods with di�erent tolrel;linear.

tolrel;linear = 10�2

�t EL2(�) order EL2(u) order CPU time(s)

ROW2

T/100 Diverged { { {
T/200 2:3615� 10�4 3:3198� 10�3 537
T/400 9:9393� 10�5 1.25 1:3753� 10�3 1.27 1052
T/800 5:5248� 10�5 0.85 7:4627� 10�4 0.88 2073

ROW3

T/100 2:6132� 10�4 2:6888� 10�3 300
T/200 8:8493� 10�5 1.56 8:3870� 10�4 1.68 564
T/400 3:3446� 10�5 1.40 4:0554� 10�4 1.05 1124
T/800 9:1969� 10�6 1.86 1:1447� 10�4 1.82 2191

ROW4

T/100 3:6161� 10�5 4:1926� 10�4 344
T/200 9:0325� 10�6 2.00 8:3350� 10�5 2.33 638
T/400 2:7913� 10�6 1.69 2:7282� 10�5 1.61 1194
T/800 3:9397� 10�6 -0.50 5:1692� 10�5 -0.92 2282

tolrel;linear = 10�4

�t EL2(�) order EL2(u) order CPU time(s)

ROW2

T/100 Diverged { { {
T/200 8:6277� 10�5 1:1163� 10�3 641
T/400 2:1800� 10�5 1.98 2:8024� 10�3 1.99 1189
T/800 5:4708� 10�6 1.99 7:1383� 10�5 1.97 2255

ROW3

T/100 1:5467� 10�4 1:7185� 10�3 449
T/200 2:3151� 10�5 2.74 2:5539� 10�4 2.75 779
T/400 3:1137� 10�6 2.89 3:3395� 10�5 2.94 1382
T/800 4:0729� 10�7 2.93 4:2406� 10�6 2.98 2565

ROW4

T/100 4:0016� 10�6 3:8660� 10�5 487
T/200 3:5565� 10�7 3.49 3:4725� 10�6 3.47 846
T/400 2:7298� 10�8 3.70 1:6676� 10�7 4.38 1563
T/800 1:8642� 10�8 0.55 2:2003� 10�7 -0.40 2769

To be continued on next page.
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Continuation of Table 3,

tolrel;linear = 10�6

�t EL2(�) order EL2(u) order CPU time(s)

ROW2

T/100 Diverged { { {
T/200 8:6820� 10�5 1:1229� 10�3 767
T/400 2:1813� 10�5 1.99 2:8148� 10�4 2.00 1377
T/800 5:4628� 10�6 2.00 7:0399� 10�5 2.00 2500

ROW3

T/100 1:5474� 10�4 1:7185� 10�3 690
T/200 2:3165� 10�5 2.74 2:5534� 10�4 2.75 1036
T/400 3:1047� 10�6 2.90 3:3251� 10�5 2.94 1712
T/800 4:0081� 10�7 2.95 4:1768� 10�6 2.99 3004

ROW4

T/100 3:9102� 10�6 3:6770� 10�5 682
T/200 2:5386� 10�7 3.95 2:3433� 10�6 3.97 1091
T/400 2:5819� 10�8 3.30 1:3773� 10�7 4.09 1849
T/800 7:5834� 10�9 1.78 1:7492� 10�8 2.98 3184

tolrel;linear = 10�8

�t EL2(�) order EL2(u) order CPU time(s)

ROW2

T/100 Diverged { { {
T/200 8:6824� 10�5 1:1229� 10�3 906
T/400 2:1810� 10�5 1.99 2:8147� 10�4 2.00 1557
T/800 5:4619� 10�6 2.00 7:0398� 10�5 2.00 2722

ROW3

T/100 1:5476� 10�4 1:7186� 10�3 862
T/200 2:3158� 10�5 2.74 2:5535� 10�4 2.75 1589
T/400 3:1015� 10�6 2.90 3:3242� 10�5 2.94 2149
T/800 4:0093� 10�7 2.95 4:2024� 10�6 2.98 3481

ROW4

T/100 3:9055� 10�6 3:6728� 10�5 1186
T/200 2:5299� 10�7 3.96 2:3382� 10�6 3.97 1381
T/400 2:6107� 10�8 3.28 1:4352� 10�7 4.03 2237
T/800 7:5988� 10�9 1.78 1:7442� 10�8 3.04 3720

End of Table 3.

5.1.3 Comparison of di�erent time integrators

The convergence study of ESDIRK and BDF2 and linearly implicit ROW
are summarized in Figure 1. For ESDIRK and BDF2, tolESDIRK;BDF2

rel;nonlinear =

10�6 and tolESDIRK;BDF2
rel;linear = 10�1. For Rosenbrock methods, tolROWrel;linear =

10�6.
Figure 1(b) presents the CPU time versus errors of di�erent time inte-

grators with di�erent convergence criteria. As illustrated in Figure 1(b), all
multistage methods are signi�cantly more e�cient than BDF2. We notice
that ROW2 and ESDIRK2 intersect with ROW3 and ESDIRK3. However,
as the error threshold is decreased, higher-order methods will be more e�-
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cient.
Generally speaking, when tolESDIRKrel;nonlinear is the same as tolROWrel;linear, ROW

methods are more e�cient than ESDIRK methods. However, ROW methods
cannot preserve the nominal order of accuracy when the convergence crite-
rion is not tight, and even su�er from severe order reduction [30]. Instead,
tolrel;nonlinear = 10�4 can make ESDIRK methods preserve the nominal or-
der of accuracy (0.46 order reduction at most). It is observed that when
tolROWrel;linear = 10�6 and tolESDIRKrel;nonlinear = 10�4 are employed, ESDIRK meth-
ods are more e�cient than ROW methods. This indicates that ESDIRK
methods tend to be over-solved more easily than ROW methods if the non-
linear convergence criterion tolESDIRKrel;nonlinear is not set up judiciously. We have
also noticed that ESDIRK can be more robust than ROW. As documented
in Table 1 and Table 3, when the tolerance criteria are set to 10�2, ES-
DIRK2 can show optimal convergence rate, while ROW cannot preserve it;
when �t = T=100, ROW2 even fails to converge.

5.2 Laminar 
ow over a circular cylinder

In this section, we employ the laminar 
ow over the circular cylinder as
an example to study the performance of di�erent time integrators. This case
has been tested in various literature [22, 35]. The 
ow conditions are set
as Ma = 0:1 and Re = 1200, where Ma stands for Mach number, and Re
stands for Reynolds number. The diameter of the cylinder is set as 1, and
computational domain is [�100; 200] � [�100; 100]. The mesh in the near
wall region and the wake region, and an instance of the vortex shedding are
presented in Figure 2. There are 5690 elements in the mesh. The height
of the �rst layer of the mesh is roughly 0:0033. The P 3 FR method is
employed for the spatial discretization. ��init = 0:01 and ��max = 1:0 are
used for all simulations in this section. A moderate ��max is to prevent that
GMRES solver can not even converge by one magnitude when �� = ��max.
tolROWrel;linear = tolESDIRK;BDF2

rel;nonlinear = 10�6, and tolESDIRK;BDF2
rel;linear = 10�1. As

aforementioned, for ESDIRK and BDF, if the linear solver fails to drive
the residual to drop by one magnitude, the current iteration in the pseudo-
transient continuation procedure will decrease ��max by half and restart.

The 
ow is initialized with the steady solution at Re = 40. And then
we use ESDIRK4 to run this simulation untill t = 180 with �t = 0:001 to
obtain the initial conditions for the convergence and e�ciency study. For
the convergence and e�ciency study, we run all simulations for ten seconds
along the physical time. The time step size is re�ned from 0:2 to 0:00625.
We use the numerical results of explicit SSPRK3 with a small time step
�t = 5�10�6 as the reference value. The drag coe�cient Cd is used for the
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Figure 1: (a) The convergence study of di�erent time integrators and (b)
e�ciency study of di�erent time integrators for the vortex propagation prob-
lem.
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Figure 2: The mesh and an instance of the wake of vortex shedding for the
laminar 
ow over a circular cylinder at Re = 1200.

error estimation. The error is calculated as

Error(Cd) =

sPN
n=1(Cd;n � Cd;ref;n)2

N
; (34)

where Cd;ref;n is the reference value from SSPRK3, and N is the number
of time steps. The results from convergence and e�ciency study are pre-
sented in Figure 3(a) and Figure 3(b), respectively. As the time step size
is re�ned, all second- and third-order methods will converge at the nomi-
nal convergence rate. For both ROW4 and ESDIRK4, we have observed
order reduction. The order reduction of ROW4 is more severe than ES-
DIRK4. In terms of CPU time, when �t = 0:2, unexpected computational
cost is observed for ESDIRK and BDF methods. Many iterations in the
pseudo-transient continuation are rejected due to the poor performance of
the element-Jacobi preconditioner. However, all ROW methods fail when
�t = 0:2 and ROW2 even fails when �t = 0:1. At a relatively large er-
ror level, such as 10�3, second-order methods take the least mount of time.
However, to reach a lower error level, higher-order methods are more e�-
cient. We have noticed that the abnormal increase in CPU time for ROW4
when �t = 0:05 and �t = 0:025. This is due to the fact that the resid-
ual of the restarted GMRES solver with an element-Jacobi preconditioner
sometimes cannot converge to the designated tolrel;linear when the maximum
number of iteration is reached. From this study, we �nd that the perfor-
mance of schemes from the ESDIRK family is more consistent than that of
ROW methods when simulating unsteady 
ows over walls; and when the
requirement of the error threshold is stringent, such as 10�6 in this case,
ROW can be more e�cient than ESDIRK.
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Figure 3: The convergence and e�ciency study for the laminar 
ow over
the circular cylinder. (a) Error vs. time step size �t and (b) error vs. CPU
time.

5.3 Taylor-Green vortex

The Taylor-Green vortex is a benchmark to test the accuracy and per-
formance of high-order methods on the direct numerical simulation of a 3D
periodic and transitional 
ow de�ned by initial conditions [32]8>>>><>>>>:

u = V0 sin(x=L) cos(y=L) cos(z=L);

v = �V0 cos(x=L) sin(y=L) cos(z=L);

w = 0;

p = p0 +
�0V 2

0
16 (cos(2x=L) + cos(2y=L)) (cos(2z=L) + 2) :

(35)

The domain is 
 = [��L; �L]3. The Reynolds number of the 
ow is de�ned
as Re = �0V0L

� and is equal to 1600. For this study, we consider the 
ow
with weak compressibility and the perfect gas law holds, i.e., p = �RT . The
Prandtl number is Pr =

�Cp

� = 0:71. We assume that the gas has zero bulk

viscosity �v = 0. The Mach number Ma = V0
c0

= 0:1, where c0 is the speed of
sound corresponding to p0. The characteristic convection time is de�ned as
tc = L

V0
. The maximum dissipation occurs at t � 8tc. An uniform 643 mesh

is employed and the P 3 FR methods is used for simulation. We conduct all
simulation until t = 10tc. Figure 4 presents the isosurface of the Q criterion
with Qcriterion = 1 colored by Ma at t = 8tc.

We employ the error of kinetic energy dissipation rate for the accuracy
and e�ciency study. The kinetic energy dissipation rate of compressible
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Figure 4: The isosurface of the Q criterion with Qcriterion = 1 colored by
Ma at t = 8tc for Taylor-Green vortex evolution.


ows is the summation of three contributions as � = �1 + �2 + �3:

�1 = 2
�

�0

1

V

Z



Sd : SdV; (36)

where Sd is the deviatoric part of the strain rate tensor, and V is the volume
of the domain 
,

�2 =
�v
�0

1

V

Z



(r � v)2dV; (37)

where �v = 0, and

�3 = � 1

�0

1

V

Z


pr � vdV: (38)

The numerical results of SSPRK3 method with �t = 2� 10�4tc is adopted
as the reference data for error evaluations. We de�ne the error of the kinetic
energy dissipation rate as

Error(�) =

sPN
n=1(�n � �ref;n)2

N
; (39)

where �ref;n is the reference value from SSPRK3, and N is the number of
time steps.

As discovered in previous sections, the convergence criteria have sig-
ni�cant e�ect on the e�ciency of ROW, ESDIRK and BDF2. In this
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Figure 5: The kinetic energy dissipation rate history of Taylor-Green vortex
decaying. (a) A full view when t=tc 2 [0; 10]; (b) a close-up view when
t=tc 2 [7; 10].

section, we only consider tolrel;linear of ROW is the same as tolrel;nolinear
of ESDIRK and BDF2. Herein, tolROWrel;linear = tolESDIRK;BDF2

rel;nonlinear = 10�6.
For the inexactly linear-solving part of ESDIRK and BDF2, we employ
tolESDIRK;BDF2

rel;linear = 10�1 to save computational cost.
The time step size �t is re�ned from tc=25 to tc=100. The kinetic energy

dissipation rate history when �t = tc=25 is presented in Figure 5(a). A
close-up view within t=tc 2 [8:5; 10] is illustrated in Figure 5(b). The nu-
merical results from the spectral method on a 5123 mesh is also presented for
reference [46]. Our observation is that the results of ROW4 and ESDIRK4
almost coincide with that of SSPRK3. The result of BDF2 is the least ac-
curate. The convergence study is presented in Figure 6. Figure 6(a) shows
the error vs. time step size �t=tc and Figure 6(b) shows the error vs. CPU
time. From Figure 6(a), the convergence features of ROW and ESDIRK
are almost the same. As is shown in Figure 6(b), BDF2 is not e�cient as
expected. When tolROWrel;linear = tolESDIRK;BDF2

rel;nonlinear = 10�6, ROW methods are
found to be more e�cient than ESDIRK methods. From Figure 5, we �nd
that for turbulent simulation, compared to the results from SSPRK3 with
very small time steps, all time integrators with excessively large time step
size will lead to numerical dissipation of the kinetic energy dissipation rate
except ROW4 and ESDIRK4. This reveals that the dissipation due to the
temporal disretization should also be taken into account for turbulent sim-
ulation. We refers interested readers to Refs. [21, 38] for more discussions.
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Figure 6: The convergence and e�ciency study for Taylor-Green vortex
evolution. (a) Error vs. time step size �t=tc and (b) error vs. CPU time.

6 Conclusions

In this study, we compare the accuracy and e�ciency of ROW and ES-
DIRK (from second order to fourth order) and BDF2 for unsteady 
ow
simulation with high-order FR formulations. We �nd that the multistage
time integrators, i.e. ROW and ESDIRK, are more computationally e�-
cient than BDF2. When we compare ROW and ESDIRK, the e�ciency
of ROW and ESDIRK highly depends on the convergence criteria of solv-
ing nonlinear equations and linear equations. For most of the case, when
tolROWrel;linear = tolESDIRKrel;nonlinear, ROW is more e�cient. However, since the
residual convergence is directly related to the accuracy of the solution with
ROW, the tolerance tolROWrel;linear needs to be tight for unsteady 
ow simu-

lation. By contrast, the tolerance tolESDIRKrel;nonlinear for pseudo-time iterations

in ESDIRK needs not to be tight, and the tolerance tolESDIRKrel;linear for the

restarted GMRES linear solver can always be set to a large value, i.e. 10�1

in all cases tested here. Therefore, when tolESDIRKrel;nonlinear is allowed to be larger

than tolROWrel;linear, ESDIRK can be more e�cient than ROW. Besides, ROW
methods are easier to show order reduction than ESDIRK methods, making
their performance less consistent than that of ESDIRK methods when 
ow
problems become complicated, such as unsteady 
ows over walls. We also
�nd that the performance of the preconditioner can substantially a�ect the
e�ciency of ROW methods. Since the element-Jacobi preconditioner is used
in this study, time steps for ROW cannot be very large in order to maintain
good performance. Instead, ESDIRK methods generally allows a larger time
step size for unsteady simulations than ROW methods.
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