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On Unconditionally Positivity Preserving and Conservative Methods
for Systems of Advection-Diffusion-Reaction Equations
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An unconditionally positivity preserving finite difference scheme (UPFD) for systems of advection-diffusion-reaction equa-
tions with non-linear reaction terms is proposed. A modified Patankar approach is employed with respect to the reaction part
in order to ensure both conservativity and positivity without any additional constraints on the time step size.
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1 Introduction

Introducing an additional reaction term into advection-diffusion equations may yield a dramatic increase in stiffness and thus
usually requires a significant adaptation of the time step size such that the numerical scheme becomes inefficient. Recently,
Chen-Charpentier and Kojouharov proposed an unconditionally positivity preserving finite difference scheme (UPFD) for
linear advection-diffusion-reaction equations [1]. The key idea is an implicit approach to discretize the sink terms as well as
the local terms within both the advection and diffusion part, while the remaining terms are evaluated explicitly.

Some applications like geobiochemical marine systems model a closed cycle and lead to systems including non-linear and
even conservative source terms, such that the sum of the production and destruction terms over all constituents always cancels
out. The system

∂tck + vk ∂xck −Dk ∂
2
xxck =

N∑
j=1,j 6=k

(
pkj (c̃)− dkj (c̃)

)
for k = 1, . . . , N in [a, b]× R+ (1)

presents an example of such a system, since pkj (c̃) = djk (c̃) describes the production as well as destruction terms. Here, vk
denotes the velocity of the advection, Dk ≥ 0 the diffusivity, and c̃ = (c1, . . . , cN ) represents the vector of the N unknown
constituents. The system requires suitable boundary and initial conditions, where c̃(x, 0) > 0 for all x ∈ [a, b].

Burchard et al. [2] presented an unconditionally positivity preserving and conservative method. This paper combines the
strategies to obtain an efficient semi-implicit unconditionally positivity preserving and conservative finite difference method
for systems of advection-diffusion-reaction equations with linear advection and diffusion as well as non-linear reaction terms.
Semi-implicit means here that even for non-linear reaction terms only one linear equation system has to be solved per timestep.

2 Numerical Method and Results

Using constant step sizes ∆x and ∆t, the UPFD method [1] applied to the advection-diffusion part reads(
1

∆t
+

vk
∆x

+
Dk

∆x2

)
︸ ︷︷ ︸

UPFDk
impl>0

cn+1
k,i =

Dk

∆x2
cnk,i+1 +

cnk,i
∆t

+

(
vk
∆x

+
Dk

∆x2

)
cnk,i−1︸ ︷︷ ︸

UPFDk
expl,i(c

n
k )>0

,

where cnk,i ≈ ck(xi, t
n) using xi = a + (i− 1)∆x, tn = n∆t, i = 1, . . . ,M , and cnk = (cnk,1, . . . , c

n
k,M ).

Employing a slight modification of Burchard et al. [2] the reaction terms are incorporated due to

UPFDk
implc

n+1
k,i = UPFDk

expl,i(c
n
k ) +

N∑
j=1,j 6=k

pkj(c̃
n
i )

cn+1
j,i

cnj,i

UPFDk
impl

UPFDj
impl

−
N∑

j=1,j 6=k

dkj(c̃
n
i )

cn+1
k,i

cnk,i

using c̃ni ≈ c̃(xi, t
n) ∈ RN or equivalently

cn+1
k,i =

UPFDk
expl,i(c

n
k )

UPFDk
impl

+

N∑
j=1,j 6=k

pkj(c̃
n
i )

UPFDj
impl

cn+1
j,i

cnj,i
−

N∑
j=1,j 6=k

dkj(c̃
n
i )

UPFDk
impl

cn+1
k,i

cnk,i
(2)
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for k = 1, . . . , N and i = 1, . . . ,M . Note that the modified Patankar approach [2] has to be weighted with 1/UPFDj
impl to

ensure conservativity for the system, even if UPFDi
impl 6= UPFDj

impl for some i 6= j.

Theorem 2.1 The method (2) is unconditionally positivity preserving and conservative.

P r o o f. Positivity can be shown by writing the method as Acn+1 = UPFDexpl, where cn+1 = (c̃n+1
1 , . . . , c̃n+1

M )T ∈
RM ·N , UPFDexpl ∈ RM ·N with (UPFDexpl)(i−1)N+k = UPFDk

expl,i(c
n
k ) and A ∈ R(M ·N)×(M ·N) is a block diagonal

matrix of blocks A` ∈ RN×N , ` = 1, ...,M with

a`ij =

−
pij(c̃n

` )
cnj,`

UPFDi
impl

UPFDj
impl

= −dji(c̃
n
` )

cnj,`

UPFDi
impl

UPFDj
impl

, if i 6= j,

UPFDi
impl +

∑N
k=1,k 6=i

dik(c̃n
` )

cni,`
, if i = j.

Using the diagonal matrix D := diag{DB, . . . ,DB} ∈ R(M ·N)×(M ·N) with DB := diag{UPFD1
impl, . . . , UPFDN

impl} ∈
RN×N we obtain B := D−1AD with

b`ij =

d−1
ii a`ijdjj = 1

UPFDi
impl

−dji(c̃
n
` )

cnj,`

UPFDi
impl

UPFDj
impl

UPFDj
impl = −dji(c̃

n
` )

cnj,`
, if j 6= i,

d−1
ii a`iidii = a`ii, if j = i.

Thus |b`ii| = UPFDi
impl +

∑N
k=1,k 6=i

dik(c̃n
` )

cni,`
>
∑N

k=1,k 6=i
dik(c̃n

` )
cni,`

=
∑N

k=1,k 6=i |b`ki| for i ∈ {1, . . . , N}, ` ∈ {1, . . . ,M},
which implies that BT is strictly diagonal dominant. Using a result of [3] yields that A is a M-matrix and therefore A−1 ≥ 0
[4]. Considering cn+1 = A−1UPFDexpl > 0 proves the positivity. Conservativity follows directly from

N∑
k=1

M∑
i=1

cn+1
k,i =

N∑
k=1

M∑
i=1

N∑
j=1,j 6=k

 pkj(c̃
n
i )

UPFDj
impl

cn+1
j,i

cnj,i
−

=pjk(c̃n
i )︷ ︸︸ ︷

dkj(c̃
n
i )

UPFDk
impl

cn+1
k,i

cnk,i

+

N∑
k=1

M∑
i=1

UPFDk
expl,i(c

n
k )

UPFDk
impl

=

N∑
k=1

M∑
i=1

UPFDk
expl,i(c

n
k )

UPFDk
impl

=

N∑
k=1

M∑
i=1

cnk,i +

N∑
k=1

Dk

∆x2 (cnk,M+1 − cnk,1) + ( vk
∆x + Dk

∆x2 )(cnk,0 − cnk,M )

UPFDk
impl︸ ︷︷ ︸

inflow and outflow

,

which shows that the total value of all quantities does not change between the time levels n and n + 1, except for fluxes over
the boundaries of the domain.

To confirm the properties of the numerical method developed, we consider the model problem

∂tp +∂xp −0.2 ∂2
xxp = pn

n+1 − 0.3 p

∂tn +∂xn −0.15 ∂2
xxn = − pn

n+1

∂td −0.01 ∂2
xxd = 0.3 p

 in [−10, 10]× (0, 30],

where p, n, d denote phytoplankton, nutrients, and detritus, respectively. With periodic boundary conditions as well as

p(x, 0) =

{
9.98, x < −3,

0.01, else,
d(x, 0) =

{
9.98, x > 3,

0.01, else,
n(x, 0) =

{
9.98, −3 ≤ x ≤ 3,

0.01 else,

the results at time t = 5 computed using ∆x = 0.25 and ∆t = 0.31 are depicted in the plots. The constituents are obviously
always positive, and additionally the right plot shows the conservativity of the scheme.
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