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Abstract 

Because of its wide applicability in various disciplines, blind source separation (BSS), has been 
an active area of research. For a given dataset, BSS provides useful decompositions under minimum 

assumptions typically by making use of statistical properties—types of diversity—of the data. Two 
popular types of diversity that have proven useful for many applications are statistical independence 
and sparsity . Although many methods have been proposed for the solution of the BSS problem that 
take either the statistical independence or the sparsity of the data into account, there is no unified 
method that can take into account both types of diversity simultaneously. In this work, we provide a 
mathematical framework that enables direct control over the influence of these two types of diversity 
and apply the proposed framework to the development of an effective ICA algorithm that can jointly 
exploit independence and sparsity. In addition, due to its importance in biomedical applications, we 
propose a new model reproducibility framework for the evaluation of the proposed algorithm. Using 
simulated functional magnetic resonance imaging (fMRI) data, we study the trade-offs between the use 
of sparsity versus independence in terms of the separation accuracy and reproducibility of the algorithm 
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and provide guidance on how to balance these two objectives in real world applications where the 
ground truth is not available. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Blind source separation (BSS) is an active area of research in statistical signal processing 

due to its numerous applications, including, analysis of medical imaging data, wireless 
communications, and image processing. The objective of BSS methods is to decompose a 
set observations into the product of a mixing matrix and a matrix of latent sources. However,
without the exploitation of any prior knowledge about the data, most typically its statistical
properties—types of diversity—the matrix factorization problem is ill-posed. Two of the most 
popular forms of diversity that have proven useful in many practical applications and enable 
unique solutions up to scaling and permutation ambiguities are independence [1–8] and 

sparsity [9–12] . 
A powerful method that solely relies on the independence of the sources is independent 

component analysis (ICA) [1,2] . ICA provides a unique decomposition such that the sources
are statistically independent subject to only scaling and permutation ambiguities. In contrast, 
methods such as dictionary learning (DL) [9] and sparse component analysis (SCA) [13,14] ,
take the sparsity of the sources directly into account, yielding decompositions where the 
estimated components are as sparse as possible, subject to the same permutation and scaling
ambiguities as ICA, however with uniqueness guarantees only under specific conditions [9] . 

Though all of the above methods work well when their underlying assumptions are satis-
fied, neither of the methods exploit both independence and sparsity under a unified framework.
In order to take advantage of these two forms of diversity, jointly, many ad hoc methods have
been proposed, such as by selecting a density model that favors sparse distributions in ICA as
noted in [1] or by using sparsity transformations following ICA [15] . Although selecting the
source distribution would allow the ICA model to enjoy the desirable large sample properties
of the maximum likelihood (ML) formulation [1,2] , the model would be limited to a specific
type of sparse distribution [1] . Additionally, sparsity transformations are an indirect way of
imposing sparsity and do not allow a direct way of controlling independence versus sparsity.

In this work, we present a mathematical framework that enables taking both independence 
and sparsity into account in an efficient manner. We incorporate sparsity through the use
of a decoupled ICA cost function, penalized by an � 1 regularization term, thus, enabling a
direct exploitation of sparsity for each source individually. We use ICA by entropy bound 

minimization (ICA-EBM) [16] , a flexible yet parameter–free algorithm that effectively 

maximizes independence, as the underlying ICA algorithm for demonstrating the application 

of the proposed framework. The new algorithm we develop, the SparseICA-EBM algorithm, 
inherits all the advantages of ICA-EBM, namely its flexibility, though with enhanced 

performance due to the exploitation of sparsity and enables direct control over the degree 
to which independence and sparsity are emphasized. Although, estimation accuracy is an 

effective metric to evaluate the separation power of a BSS algorithm, in many applications 
such as the analysis of fMRI data, model reproducibility is an important performance metric.
Its importance derives from its ability to reveal how consistently an algorithm can produce 
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imilar estimated sources across different sets of data that are supposed to have come
rom the same distribution, such as different scans of the same subject. Thus, we propose
 new model reproducibility framework to evaluate the consistency of SparseICA-EBM,
nd using simulated fMRI data, we study the impact of the regularization parameters on
he reproducibility of the results as well as on the estimation accuracy. This enables us to
nderstand the trade-off between those two objectives in the ICA optimization framework
nd provides a guideline for parameter selection when ground truth is not available. 

The remainder of this paper is organized as follows. In Section 2 , we provide a brief
ackground on the relevant BSS methods, ICA, SCA, and DL. Section 3 , provides the
athematical development of SparseICA-EBM as well as the pseudo-code of the main part

f the proposed algorithm. In Section 4 , we describe the data generation as well as the
valuation metrics. In Section 5 , we present the experimental results for SparseICA-EBM.
he conclusions and future research directions are presented in Section 6 . 

. Mathematical Background 

For a given observation matrix X ∈ R 

M×V , the noiseless BSS generative model is given
y 

 = AS 

� , (1)

here A ∈ R 

M×N is the mixing matrix and S ∈ R 

V ×N is the matrix that contains the source
ignals. The matrix decomposition in Eq. (1) is an ill-posed problem, since for any invertible
atrix T ∈ R 

N×N , it always holds that 

 = AS 

� = (AT )(T 

−1 S 

� ) . (2)

owever, by the exploitation of different types of diversity, we can achieve unique decom-
ositions up to only scaling and permutation ambiguities. Two types of diversity that have
een used in many applications are statistical independence and sparsity. 

.1. Independent Component Analysis 

One of the most widely used methods for solving the BSS problem (1) is ICA and
ts basic assumption is that the source signals are statistically independent. Therefore, by
ewriting Eq. (1) using the random vector notation, we have 

(v) = As(v) , v = 1 , . . . , V, (3)

here v is the sample index, s(v) ∈ R 

N are the unknown source signals, and x(v) ∈ R 

M are the
ixtures. A common case in many applications is the overdetermined one ( M > N ), which can

e reduced to the case where M = N using dimensionality reduction following principal com-
onent analysis (PCA). Since the sources s n (v) , 1 ≤ n ≤ N in s(v) = [ s 1 (v ) , . . . , s N (v )] �

re assumed to be statistically independent, the goal is to estimate a demixing matrix
 ∈ R 

N×N to yield maximally independent source estimates y(v) = Wx(v) . Due to its large
ample size optimality properties, the maximum likelihood (ML) can serve as the objective
unction for ICA and is given by 
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L (W) = 

1 

V 

V ∑ 

v=1 

N ∑ 

n=1 

log p(w 

� 

n x(v)) + log | det (W) | 

≈ E 

{ 

N ∑ 

n=1 

log p(w 

� 

n x) 

} 

+ log | det (W) | , (4) 

where p(w 

� 

n x) is the probability density function (PDF) of the estimated random variable 
y n = w 

� 

n x. The approximation in Eq. (4) is obtained by the mean ergodic theorem under
the assumption that the samples are independent and identical distributed (i.i.d). It has 
been shown that maximization of Eq. (4) is equivalent to the minimization of the mutual
information (MI), as long as the assumed model PDF matches the true latent source PDF [1] .
Mutual information, which is defined as the Kullback · · · Leibler (KL)-distance between the 
joint source density and the product of the marginal estimated source densities, is given by 

J ICA (W) = E 

{
− log 

[
p s 1 (y 1 ) p s 2 (y 2 ) · · · p s N (y N ) 

p s 1 s 2 ... s N (y 1 , y 2 , . . . , y N ) 

]}

= E 

{ 

−
N ∑ 

n=1 

log p s n (y n ) 

} 

+ E 

{ log p s (y) } 

= 

N ∑ 

n=1 

H (y n ) − H (y) 

= 

N ∑ 

n=1 

H (y n ) − log | det (W) | − H (x) , (5) 

where the terms H ( y n ), H ( x ), and H ( y ) are the (differential) entropy of the source estimates,
the mixtures, and the estimated random vector y respectively. Note that the term H ( x ) is
independent of W and can be treated as a constant during the optimization procedure. For
a more detailed discussion of ICA and different types of ICA algorithms that lie under the
maximum likelihood umbrella we refer the reader to [1,17] . 

2.2. Dictionary Learning and Sparse Component Analysis 

Though ICA has proven useful in many practical applications, generally independence is 
not the only form of diversity inherent to the sources in Eq. (1) . One of the most popular
forms of diversity to exploit is sparsity and BSS methods that exploit solely the sparsity of
the sources include DL and SCA. 

By assuming that the observations can be expressed as sparse combinations of a dictionary 

�, DL seeks to estimate both the dictionary and the collection of weight vectors, S , generally
through an alternating estimation procedure. The cost for this task is given by 

min 

�, S 
|| X − �S || 2 F + λ|| S || 1 , 1 , (6) 

where || S || 1 , 1 = 

∑ M 

i=1 

∑ N 
j=1 | s i j | and λ is the regularization parameter. Different DL algo-

rithms include those based on probabilistic learning methods, learning methods based on 

clustering, among others [9] . For a more detailed review of DL and its applications, we refe
r the reader to [9,18] . 
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A related method to DL that exploits solely sparsity is SCA. If � ∈ R 

K×V denotes a
ictionary matrix, whose rows are called the atoms, then at the first step of SCA, � is applied
o the mixture matrix X , to obtain C x ∈ R 

P×K . In such a case, the column vectors C x (k) k =
 , . . . K, form the scatter plot { C x (k) } K k=1 . If the dictionary has been selected properly, i.e. ,
as as sparse a representation of the data as possible, the elements of { C x (k) } K k=1 are almost
ligned with the columns of the mixing matrix. In the second step, the mixing matrix A needs
o be estimated by { C x (k) } K k=1 . Thus, under the assumption that at most one source contributes
o each point of the scatter plot, clustering techniques can be used to estimate ˆ A . The third step
onsists of the estimation of the source representations that can be denoted as C s ∈ R 

P×K , due
o the sparsifying transformation, C x = X�� , that has been applied to the mixture matrix at
he first step of SCA. Each column of C s can be estimated through the minimization problem 

ˆ 
 s (k) = arg min 

c| C x (k)= ̂

 A c 
|| c|| 1 , (7)

here c is the vector that needs to be minimized such as C x (k) = 

ˆ A c and the solution of
he minimization problem gives an estimate of the k th column of C s . The final step consists
f reconstructing the sources by y = C s �, when the initial dictionary matrix is orthogonal.
or a more detailed discussion of SCA, we refer the reader to [13] . 

Although ICA, DL, and SCA have their own justifications in terms of the diversity that
hey exploit, the differences among these methods do not facilitate transformation from one
ethod to another, thus making it difficult to balance these two different forms of diversity,

ndependence and sparsity. Specifically, ICA is based on the assumption that the sources are
tatistically independent, while DL or SCA assumes that the sources are sparse. The main
ontribution of our work is to develop a new framework that enables a translation between
he two objectives of sparsity and independence and exploration of the trade-offs between
mphasizing one over the other. We apply this framework to the development of an effective
CA algorithm that can jointly exploit both independence and sparsity. 

. Sparse Independent Component Analysis 

.1. Cost Function 

Classically, sparsity is measured using the � 0 norm, and is defined as the number of
on-zero coefficients from a vector u ∈ R 

V 

| u|| 0 = #{ u i � = 0; i = 1 , . . . , V } . (8)

lthough the incorporation of Eq. (8) into the ICA framework is the most direct way to
mpose sparsity on the ICA cost function, the � 0 norm is computationally intractable. On the
ther hand, the � 1 norm, defined as the sum of the absolute values of a vector’s coefficients,
as served as a computationally efficient sparsity regularizer see e.g., [19–21] . For this
eason, we propose a direct way to promote sparsity into the ICA model through the addition
f an � 1 regularization term to the ICA cost function. The addition of this term is expected
o improve separation performance beyond what is achieved solely through the maximization
f independence when the underlying sources are truly sparse. 

However, it is difficult to balance the contribution of sparsity for each of the individual
ources while optimizing Eq. (5) , due to the log | det (W) | term. This issue can be avoided
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by expressing Eq. (5) and its gradient as a sequence of equations, where each equation is
written with respect to each row w n , n = 1 , . . . , N of the demixing matrix W . Therefore,
by using this decoupling approach [16,22] , the sequence of MI cost functions is given by 

J ICA (w n ) = H (y n ) − log 

∣∣h 

� 

n w n 

∣∣ − C n , n = 1 , . . . , N, (9) 

where h n is a unit vector that is perpendicular to all row vectors of W except w n and each
C n is a constant that contains all the terms that are independent of w n . Therefore, using Eq.
(9) , the proposed sequence of cost functions that take both independence and sparsity of
each individual source into account is given by 

J (w n ) = J ICA (w n ) + λn f (y n ) , n = 1 , . . . , N, (10) 

where f (y n ) = || y n || 1 is the regularization term and λn is the sparsity parameter for
n = 1 , . . . N . Note, that with a slight abuse of notation in Eq. (10) , we treat y n as a vector
where each coordinate corresponds to a sample drawn from the random variable y n . The � 1 

norm is a non-differentiable function, so it is replaced by the the sum of multi-quadratic
functions [23] , given by 

f (y n ) = lim 

εn → 0 

V ∑ 

v=1 

√ 

y 2 n v + εn , (11) 

where εn is the smoothing parameter. 

3.2. Algorithmic Development 

ICA by entropy bound minimization (ICA-EBM) is a flexible and parameter-free algorithm 

that can maximize independence in an efficient manner through the use of four measur-
ing functions matching: unimodal or bimodal, symmetric or skewed, heavy-tailed or not 
heavy-tailed distributions [16] . It is due to this flexibility and ability to effectively maximize
independence that ICA-EBM serves as the algorithm for the direct integration of Eq. (10) . 

The gradient of Eq. (10) with respect to (w.r.t) w n is given by 

∂ 

∂w n 
J (w n ) = 

∂J ICA (w n ) 

∂w n 
+ λn lim 

εn → 0 

V ∑ 

v=1 

y n v √ 

y 2 n v + εn 

x, (12) 

where 

∂J ICA (w n ) 

∂w n 
= −E 

{
∂ log p(y n ) 

∂y n 
x 

}
− h n 

h 

� 

n w n 
, 

and p ( y n ), can be adaptively determined for each estimated source independently. We refer
to this new ICA algorithm as SparseICA-EBM. For better convergence properties, we follow 

the technique in [16] and define the domain of our cost function to be the unit sphere in
R 

N . By using the projection transformation onto the tangent hyperplane of the unit sphere at
the point w n , the normalized gradient of our cost function is given by 

u n = P n (w n ) 
∂J (w n ) 

∂w n 
, (13) 

where P n (w n ) = I − w n w 

T 
n and || w n || = 1 . 
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In order to achieve fast convergence, SparseICA-EBM has been implemented using three
tages. First, FastICA [24] is performed on the mixtures, generating an initial estimate of the
emixing matrix W . This estimate is further refined through the performance of orthogonal
CA using Eq. (10) . The final stage consists of the application of non-orthogonal ICA using
he estimated W obtained from the previous stage. The pseudo-code description of the
on-orthogonal ICA stage is presented in Algorithm 1 . 

lgorithm 1 SparseICA-EBM. 

1: Input : X ∈ R 

N×V , W init , λn , εn 

2: for n = 1: N do 

3: Compute h n , orthogonal to w i for all i � = n 

4: Calculate the derivative ∂J(w n ) 

∂w n 
using (12) 

5: Project the gradient onto the unit sphere using (13) 
6: (w n ) 

new ← (w n ) 
old − γ u n 

7: end 

8: Repeat steps 2 through 7 until convergence in J (W) or until the maximum number of
iterations is exceeded 

9: Output : W 

The term J ( W ) introduced in Algorithm 1 , is given by 

 (W) = 

N ∑ 

n=1 

H (y n ) − log | det (W) | + 

N ∑ 

n=1 

λn || y n || 1 . (14)

nd is computed after the estimation of each w n for each ICA iteration. To calculate the vector
 n , we introduce the matrix W n = [ w 1 , . . . , w n−1 , w n+1 , . . . , w N ] � . Then, h n is obtained as 

 n = 

r − W 

� 

n Q 

−1 
n W n r 

|| r − W 

� 

n Q 

−1 
n W n r|| , (15)

here r is an arbitrary vector of size N ×1 that is not orthogonal to w n and Q n = W n W 

� 

n . 
The proposed SparseICA-EBM algorithm not only provides flexible density matching but

lso yields solutions with variable levels of sparsity, through manual selection of λn and εn . 

. Evaluation Methods and Data Generation 

For a BSS algorithm to be useful in real world applications, it must be able to efficiently
xtract the latent sources and do so consistently. Consequently, motivated by [25] , to evaluate
ur proposed model, we consider two different metrics of performance. The first is in terms
f its separation power, i.e., its ability to accurately extract the latent sources, and the second
s in terms of its reproducibility, i.e., the consistency of the solutions across different datasets
nd runs. Such metrics are especially important in applications such as the analysis of fMRI
ata, since if sources are extracted incorrectly, the conclusion may be flawed, for instance
eading to improper identification of biomarkers, i.e., spatial patterns, of disease. Generally
hen using ICA on fMRI data, the estimated components tend to have sparse distributions

26] , motivating the study of the synergy between independence and sparsity. Therefore,
sing these two measures of performance, we explore the trade-offs between the use of
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Fig. 1. Simulated fMRI-like components for the three different scenarios. Note that each color indicates a different 
component. The scenarios are (a) all sources are very sparse with no spatial overlap, (b) a mixture of very sparse 
and less sparse sources and no spatial overlap, (c) very sparse as well as less sparse sources with a certain degree 
of spatial overlap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sparsity versus independence, through fMRI data, and provide a guidance on how to balance 
these two objectives in real world applications where the ground truth is not available. 

This investigation is performed through the generation of simulated fMRI data using 

SimTB [27] , which enables flexible generation of fMRI–like datasets under a model of
spatio-temporal separability. To study the effect of independence against that of sparsity, we 
generate 10 datasets, each representing a different subject with 20 sources, for three different
scenarios each with different levels of noise. The three scenarios are shown in Fig. 1 and
consist of the cases where all sources are very sparse with little to no spatial overlap, a
mixture of very sparse and less sparse sources again with little to no spatial overlap, and
very sparse as well as less sparse sources with an increased amount of spatial overlap. The
sparsity and the degree of overlap of the original sources is controlled by adjusting the
SimTB parameter value that controls the “spread” of the sources. Note that when we decrease 
the spread of each individual source the sparsity of this particular source is decreased. This
comes from the definition of a sparse distribution which is one for which most of the energy
is contained in only a few of the coefficients [28] . The additive noise is Rician distributed
and has energy specified by the contrast-to-noise ratio (CNR) defined as the ratio of the
temporal standard deviation of the true signal divided by the temporal standard deviation of
the noise [27] . Each source is a 100 ×100 image and the length of the experiment is 260
samples, meaning that simulated X is of dimension 260 ×10 

4 . 
To verify the sparse nature of the sources for each of the three different scenarios, we mea-

sure the sparsity level of each source across all subjects, using the Gini index, defined as [28] 

S(u) = 1 − 2 

V ∑ 

v=1 

u 

(v) 

|| u|| 1 

(
V − v + 1 / 2 

V 

)
, (16) 

where u 

(1) ≤u 

(2) ≤���≤u 

( V ) are the ordered coordinates of the vector u ∈ R 

V . Note from Eq.
(16) that the Gini index is normalized, with 1 corresponding to very sparse sources while
0 to dense sources. The average Gini indices for the 20 sources and for the three different
scenarios are summarized in Fig. 2 (a). Additionally, we compute the average correlation 

across subjects and display the distribution of the values in Fig. 2 (b). Note that the mean
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Fig. 2. (a) Average Gini index (b) distribution of the correlation values of the 20 latent sources for the three different 
scenarios. The Gini index is normalized, with 1 corresponding to very sparse sources while 0 to dense sources. 
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nd standard deviation of the pairwise source correlations are: 0.044 ±0.034, 0.022 ±0.031,
nd 0.03 ±0.043, respectively. 

.1. Balancing Independence and Sparsity 

Since the ground truth is available for our simulated sources, we evaluate the performance
f SparseICA-EBM in terms of its separation power, using the average absolute value of the
orrelation between the true and the estimated sources. Thus, for the first part of our study,
e evaluate the correlation coefficient between the true and the estimated spatial maps as
 function of λn and εn . Since λn controls the degree to which sparsity is emphasized over
ndependence in SparseICA-EBM, we would like to visualize the behavior of the algorithm
hen we relax the independence assumption for each of the three groups and for different

evels of noise. 
The first step in processing the fMRI-like data consists of the application of PCA to each

ataset, individually. Since 20 sources are generated for each dataset, the dimension of each
ataset is temporally reduced to 20. After dimension reduction, we apply SparseICA-EBM
o each dataset. After SparseICA-EBM has been applied to each subject’s data, we pair the
xtracted components with the true latent sources. In the case where more than one estimated
omponent is paired with a single true source, we use the Bertsekas algorithm [29] , an
terative method that maximizes a given cost in a bipartite graph, to find the best assignment.

.2. Model Reproducibility 

Since besides estimation accuracy it is important for a BSS algorithm to consistently
roduce similar results, we also study the reproducibility of the SparseICA-EBM as a
unction of the sparsity parameter λn and the smoothing parameter εn . Motivated by the
he nonparametric, prediction, activation, influence, reproducibility, resampling (NPAIRS)
ramework in neuroimaging [25] , we split the original dataset into two, and perform separate
nalyses on each of the sub-datasets and study the similarity of the two sets of resulting
eparated sources. Since selecting certain rows of X is equivalent to sub-sampling the
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Fig. 3. Visualization of subsampling method used to split the observation matrix in order to evaluate the repro- 
ducibility of the model. Note that under this reproducibility framework S 1 ∼= 

S 2 ∼= 

S . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding rows of A multiplied by the source matrix S , the similarity of the estimated
sources is a good measure of the reproducibility of the proposed algorithm. A graphical 
illustration of this approach is presented in Fig. 3 . 

For this analysis, we split the mixture matrix X , defined as the collection of all realizations
of x(v) , into two submatrices by selecting every other row of X creating X 1 and X 2 , for
each of the subjects. We apply PCA to each X 1 and X 2 for each subject and reduce their
dimension to 20. After dimension reduction, we apply SparseICA-EBM to each reduced 

dataset. After SparseICA-EBM has been applied to the reduced submatrices, we pair the 
extracted components from the first submatrix with the extracted components from the second 

submatrix for each subject. In the case of multiple assignments, we again use the Bertsekas
algorithm to determine the optimal assignment. We measure how close the pairs of estimated
components are using the average absolute value of the correlation across subjects. 

5. Experimental Results 

Fig. 4 displays the average spatial correlation between the true and the estimated com-
ponents as a function of the two key parameters for SparseICA-EBM, the regularization 

parameter λn and the smoothing parameter εn . Fig. 5 displays the average spatial correlation 

between the estimated components generated when applying SparseICA-EBM on the first 
half and the other half of the data as a function of λn and εn . For both figures the first column
shows the results where data have been generated with no noise and the second column when
noise has CNR = 1. For each noise level, we show the behavior and the reproducibility of the
algorithm for the three different scenarios as described in the previous section. The hardware 
used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF), for more information see hpcf.umbc.edu. Note that since the effectiveness of a BSS
algorithm depends on both its accuracy and its consistency, in the two sets of figures that we
present, we seek to find values of λn and εn for which we obtain high source reconstruction
accuracy as well as high reproducibility. 
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(a)

(b)

(c) (f)

(e)

(d)

Fig. 4. Spatial correlation of the true and the estimated sources as a function of λn and εn for different CNR values: 
(a)–(c) is the noiseless case and (d)–(f) have a CNR of 1. Plots (a) and (d) are from scenario 1, all sparse sources. 
Plots (b) and (e) are from scenario 2, some sparse and some less sparse sources with no overlap. Plots (c) and (f) 
are from scenario 3, some sparse sources and some less sparse sources with some degree of overlap. The results are 
the average of 128 runs. 
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From Fig. 4 (a) and (d), we observe that when the original sources do not have significant
verlaps and all of them are characterized as very sparse, high values of λn and εn produce
igher average spatial correlation values, with the gain decreasing when noise level increases.
his result shows that, in the case of truly sparse and independent sources, promoting sparsity
ithin an ICA framework improves performance, since we effectively exploit another form
f diversity, i.e., property of the sources. In Fig. 4 (b), we observe that, when some of the
ources are sparse and some are less sparse, for high values of εn , SparseICA-EBM with
parsity enforced, i.e., high values of λn , provides better results, than with small values of
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(a) (d)

(e)

(f)(c)

(b)

Fig. 5. Spatial correlation of the estimated components generated when applying SparseICA-EBM on the two halves 
of the data as a function of λn and εn for different CNR values: (a)–(c) is the noiseless case and (d)–(f) have a CNR 

of 1. Plots (a) and (d) are from scenario 1, all sparse sources. Plots (b) and (e) are from scenario 2, some sparse 
and some less sparse sources with no overlap. Plots (c) and (f) are from scenario 3, some sparse sources and some 
less sparse sources with some degree of overlap. The results are the average of 64 runs. 

 

 

 

λn , since only a third of the total sources are less sparse, thus the performance is dominated
by the extraction of the sources that are sparse. From Fig. 4 (e), SparseICA-EBM with only
independence enforced, i.e., small values of λn , and SparseICA-EBM with sparsity enforced 

and high values of εn provide similar separation performance, since the additive noise 
destroys the sparse nature of the data. Finally from Fig. 4 (c) and (f), SparseICA-EBM with
high values of λn and εn provides similar results to SparseICA-EBM with low values of λn . 
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From Fig. 5 (a) and (d), we observe that when the original sources do not overlap and all
f them are characterized as very sparse, high values of λn and for almost all values of εn

he results are highly reproducible. Thus, for these cases, SparseICA-EBM produces both
ccurate and consistent results for large values of λn and εn . A similar trend can be observed
n Fig. 5 (b), where some of the sources are very sparse and some are less sparse. Fig. 5 (e),
or all values of λn and εn , SparseICA-EBM is becoming always consistent. Fig. 5 (c), shows
hat, for some intermediate values of εn , we have high reproducibility. Finally, in Fig. 5 (f),
parseICA-EBM shows nearly identical results except for high values of λn and εn . 

Based on Figs. 4 and 5 , we can draw several interesting conclusions regarding the behavior
f SparseICA-EBM, also can note few points for the selection of its parameters when we are
orking with real fMRI data. Since our goal is to have both high performance and high re-
roducibility, we observe that for the first and second scenarios where component overlaps are
imited, sufficiently high values of λn , i.e., in the interval (10 

−2 , 10 

4 ) , as well as sufficiently
igh values of εn , i.e., in the interval (0.5, 10), will produce sparse and smooth sources con-
istently. Moreover, for scenario 1, SparseICA-EBM with very small λn is robust to noise. For
he third scenario and when the values of λn are small, SparseICA-EBM has relatively high
erformance. Therefore, for real world applications where all or a majority of sources can be
ssumed to be sparse high values of λn and εn are expected to provide reasonable results, con-
istently. However for the case where overlaps are likely, by emphasizing both independence
nd sparsity in the optimization procedure will produce better overall performance. 

An additional point worth noting, is that from Fig. 5 (a), we observe a significant drop
n reproducibility for λn = 10 

−3 . The reason for this is likely due to the fact that the
parseICA-EBM cost function consists of an independence term that is described by the
egative of the ICA maximum likelihood function and a sparsity term that is described by the
 

1 norm, the second term in the cost function. Since the contribution of sparsity is weighted
y the parameter λn and the optimal solutions of the two terms are not necessarily the same,
hanging the value of λn affects the overall solution space each time SpaceICA-EBM is
pplied to X 1 and X 2 . Numerical experiments have shown that for this data the two terms
ontribute almost equally in the optimization procedure when λn = 10 

−3 . This situation
xpands the solution space, resulting in more local optima, and thus, when SpaceICA-EBM
s applied to X 1 and X 2 separately, it yields pairs of estimated components that correlate
ess with each other. The performance drop observed in Fig. 5 (a) starts to disappear in the
est of the figures for which noise is introduced to the data, since noise destroys sparsity, or
or scenarios where we manually reduce the sparsity of the original sources. Since in these
wo cases sparsity is insufficient to fully extract the sources, the solution space of the second
erm in the cost function is close to being flat. This results in a joint cost surface with fewer
ocal minima and therefore better correlation between the two sets of estimated components.

. Conclusion 

Methods that exploit sparsity and independence have proven useful in many applications.
his motivates the development of a method that can effectively take into account both types
f diversity. In this work, we propose a new mathematical framework that enables direct
ontrol over the influence that independence and sparsity have on the result and use this
ramework to generate a powerful algorithm that takes both sparsity and independence into
ccount. We explore the trade-offs between emphasizing these two objectives for different
cenarios of simulated fMRI data and provide a guideline on the parameter selection for
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fMRI analysis when the ground truth is not available. Our results indicate that careful
selection of the regularization parameters under certain scenarios will increase the quality of 
the final extracted sources enabling meaningful interpretations for fMRI analysis. 

Our work motivates several interesting directions of further research, such as the develop- 
ment of automated techniques for parameter selection when the ground truth is not available. 
Additionally, the development of a technique that adaptively updates λn and εn for each 

source would significantly increase the separation performance and improve the quality of 
the final extracted sources, especially when sources have different levels of sparsity. Finally, 
the study of the effect on the algorithm using different approximations of the � 1 norm would
be of high interest. 
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