
Parallel Performance Studies for a Three-Species Application
Problem on the Cluster tara

David W. Trott and Matthias K. Gobbert ({dtrott1,gobbert}@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2010–11, www.umbc.edu/hpcf > Publications

Abstract

High performance parallel computing depends on the interaction of a number of factors including the pro-
cessors, the architecture of the compute nodes, their interconnect network, and the numerical code. In this
note, we present performance and scalability studies on the cluster tara using a well established parallelized
code for a three-species application problem. This application problem requires long-time simulations on a fine
mesh, thus posing a very computationally intensive problem. The speedup of run times afforded by parallel
computing makes the difference between simply unacceptably long runs to obtain the results (e.g., several days
or weeks) and practically feasible studies (e.g., overnight runs). The results also support the scheduling policy
implemented, since they confirm that it is beneficial to use all eight cores of the two quad-core processors on
each node simultaneously, giving us in-effect a computer that can run jobs efficiently with up to 656 parallel
processes when using all 82 compute nodes. The cluster tara is an IBM server x iDataPlex purchased in 2009 by
the UMBC High Performance Computing Facility (www.umbc.edu/hpcf). It is an 86-node distributed-memory
cluster comprised of 82 compute, 2 develop, 1 user and 1 management nodes. Each node features two quad-core
Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache), 24 GB memory, and a 120 GB local hard drive. All
nodes and the 160 TB central storage are connected by an InfiniBand (QDR) interconnect network.

1 Introduction

An important, practical approach to testing the real-life performance of a computer is to perform studies using
reliable high performance code that is already being used in production. Performance tests of this nature not
only provide a tool for gauging the effectiveness of a specific hardware setup, but they can also provide guidance
to selecting a particular usage policy for clusters as well as give concrete experience in the expected length of
production runs on the specific cluster. This note is part of a sequence of performance studies conducted on the
cluster tara purchased in 2009 by the UMBC High Performance Computing Facility (HPCF, www.umbc.edu/hpcf).
It was shown in [4] that an elliptic test problem given by the stationary Poisson equation, whose code uses a parallel,
matrix-free implementation of the conjugate gradient (CG) linear solver, provides an excellent test problem since it
tests two important types of parallel communications, namely collective communications involving all participating
parallel processes and point-to-point communications between certain pairs of processes. The report [3] extends the
stationary Poisson equation to a parabolic test problem given by the scalar, time-dependent, linear heat equation.
The code for this problem involves implicit time-stepping with a linear solve using CG at every time step, and thus
CG remains the key challenge for the parallel interconnect. This note extends the time-dependent parabolic problem
to a system of three non-linear reaction-diffusion equations for the application problem of simulating calcium waves
in heart cells [1]. This three-species application problem provides a substantially more computationally intensive
test of the cluster, since the solution requires many more time steps than the test problem and it involves non-
linearities and additional terms. Section 2 provides a brief introduction to the three-species application problem
and the numerical algorithm used.

The studies in this note test the 86-node distributed-memory cluster tara comprised of 82 compute, 2 develop,
1 user, and 1 management nodes. Each node features two quad-core Intel Nehalem processors (2.66 GHz, 8 MB
cache), 24 GB memory, and a 120 GB hard drive, thus up to 8 parallel processes can run simultaneously per node.
All nodes and the 160 TB central storage are connected by an InfiniBand (QDR = quad-data rate) interconnect
network. The cluster is an IBM System x iDataPlex.1 An iDataPlex rack uses the same floor space as a conventional
42 U high rack but holds up to 84 nodes, which saves floor space. More importantly, two nodes share a power supply
which reduces the power requirements of the rack and makes it potentially run cooler and more environmentally
friendly than the standard racks.2 For tara, the iDataPlex rack houses the 84 compute and develop nodes and
includes all other components associated with the nodes such as power distribution and Ethernet switches. The user
and management nodes with their larger form factor are contained second, standard rack along with the InfiniBand
switch. The PGI 9.0 C compiler has been used to create the executable which were used in this report. The studies
use the MVAPICH2 implementation of the MPI standard.

1Vendor page www-03.ibm.com/systems/x/hardware/idataplex/
2Press coverage for instance www.theregister.co.uk/2008/04/23/ibm idataplex/

1

www.umbc.edu/hpcf
www.umbc.edu/hpcf
www.umbc.edu/hpcf
www-03.ibm.com/systems/x/hardware/idataplex/
www.theregister.co.uk/2008/04/23/ibm_idataplex/


Section 3 describes the parallel performance studies in detail and provides the underlying data for the following
summary results. Table 1.1 summarizes the key results by giving the observed wall clock time (total time to execute
the code) in HH:MM:SS (hours:minutes:seconds) format. We consider the test problem on four progressively finer
meshes, resulting in progressively larger systems of equations to be solved with system dimensions ranging from
about 56,000 to over 25.6 million equations. The parallel implementation of the numerical method is run on
increasing numbers of nodes from 1 to 64 while varying the number of processes per node from 1 to 8. The upper-
left entry of each sub-table in Table 1.1 (i.e., 1 process per node on 1 node) represents the serial run of the code.
The lower-right entry of each sub-table lists the time using all cores of both quad-core processors in all 64 nodes,
for a total of 512 parallel processes working together to solve the problem. Specifically for the 64× 64× 256 spatial
mesh that results in a system of over 3 million equations to be solved, the serial run takes over 57 hours, while the
runs using either all 8 cores on 32 nodes or 4 cores on 64 nodes takes under 30 minutes. In this sub-table and in the
previous ones with coarser resolutions, the “N/A” indicates that the run is not possible; this results from the mesh
being split across the processes in the z-dimension, hence the number of nodes cannot be larger than the number
of mesh points in the z-direction. For the 128× 128× 512 spatial mesh that results in a system of over 25.6 million
equations to be solved, the run with 512 parallel processes using all 8 cores on all 64 nodes takes about 21/2 hours;
based on this, we predict that a serial run might take about 512 times that long or up to two months. Since that
time-frame is excessive and the available results clearly demonstrate the power of parallel computing, we did not
complete the performance study for this mesh, as indicated by the blank entries in this sub-table.

The summary results in Table 1.1 are arranged to study two key questions: (i) whether the code scales linearly
to 64 nodes, which ascertains the quality of the InfiniBand interconnect network, and (ii) whether it is worthwhile
to use multiple processors and cores on each node, which analyzes the quality of the architecture of the nodes and
in turn guides the scheduling policy (whether it should be the default to use all cores on a node or not).

(i) Reading along each row of Table 1.1, speedup in proportion to the number of nodes is observed for most
data points. This is discussed in detail in Section 3 in terms of the number of parallel processes. These
excellent results successfully demonstrate the scalability of the algorithm and its implementation up to very
large number of nodes, as well as highlight the quality of the new quad-data rate InfiniBand interconnect.
We note that going from the next-to-last to the last entry in each row of the table does show sub-optimal
speedup. However, this is for the case of having only one x-y-plane of mesh points on each process due to the
splitting of the z-planes across all processes, thus there is actually too little calculation on each process left
to perform well.

(ii) To analyze the effect of running 1, 2, 4, or 8 parallel processes per node, we compare the results column-wise
in each sub-table. It is apparent that the execution time of each problem is in fact roughly halved with
doubling the numbers of processes within each node used. These result confirm that it is not just effective
to use both processors on each node, but also to use all cores of each quad-core processor simultaneously.
Roughly, this shows that the architecture of the IBM nodes purchased in 2009 has sufficient capacity in all
vital components to avoid creating any bottlenecks in accessing the memory of the node that is shared by
the processes. These results thus justify the purchase of compute nodes with two processors (as opposed to
one processor) and of multi-core processors (as opposed to single-core processors). Moreover, these results
will guide the scheduling policy implemented on the cluster. On the one hand, it is not disadvantageous to
run several serial jobs simultaneously on one node, and on the other hand, for jobs using several nodes, it is
advantageous to make use of all cores on the nodes reserved by the scheduler.

The previous reports in this sequence of performance studies, [4] and [3], used significantly finer meshes resulting
in larger systems of linear equations than this report. These reports refined the mesh until running out of memory
and thus demonstrated one key advantage of parallel computing: Larger problems can be solved by pooling the
memory from several compute nodes. By contrast, the problem in this report is an actual application problem with
physical effects and modeling requirements that necessarily require a much larger final time (1,000 ms vs. 100 ms in
[3]), as discussed in Section 2. Additionally, the non-linearities in the terms require more time steps per unit of time
simulated, and each time step is more expensive due to the non-linearities, the larger number of terms that need to
be evaluated, and the three species. The long run times for the present problem thus restrict the mesh resolutions
that can be computed within reasonable amount of time, as seen in Table 1.1. For the present problem, even the
finest mesh possible within reasonable run times, 128×128×512, does not put a strain on the memory of a node of
the given cluster (see Table 2.1 in Section 2). Thus, this combination of facts brings out another key advantage of
parallel computing: For efficient implementations of appropriate algorithms, problems can be solved significantly
faster by pooling the processing power of several compute nodes. As the results of Table 1.1 demonstrate, this
speedup can make the difference between simply unacceptably long runs to obtain the results (e.g., several days or
weeks) and practically feasible studies (e.g., overnight runs).

2



Table 1.1: Wall clock time in HH:MM:SS on tara using MVAPICH2 for the solution of the three-species problem
on Nx ×Ny ×Nz meshes using 1, 2, 4, 8, 16, 32, and 64 compute nodes.

(a) Mesh resolution Nx ×Ny ×Nz = 16× 16× 64, DOF = 56,355
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:30:09 00:15:29 00:08:19 00:04:25 00:02:36 00:01:56 00:01:51
2 processes per node 00:15:41 00:08:01 00:04:25 00:02:31 00:01:45 00:01:31 N/A
3 processes per node 00:08:04 00:04:19 00:02:31 00:01:39 00:01:25 N/A N/A
4 processes per node 00:04:27 00:02:34 00:01:36 00:01:10 N/A N/A N/A
(b) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 421,443

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
1 process per node 05:16:13 02:40:35 01:21:26 00:42:09 00:22:29 00:13:13 00:07:45
2 processes per node 02:41:35 01:20:33 00:41:27 00:21:46 00:12:56 00:07:44 00:05:24
3 processes per node 01:24:06 00:43:23 00:21:60 00:12:06 00:07:38 00:05:14 N/A
4 processes per node 00:45:17 00:23:13 00:12:39 00:07:46 00:05:09 N/A N/A
(c) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 3,257,475

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
1 process per node 57:14:46 29:32:28 14:34:19 07:27:06 03:51:04 01:59:36 01:05:30
2 processes per node 29:08:07 14:39:54 07:21:31 03:46:57 02:00:56 01:04:30 01:43:39
3 processes per node 16:06:40 08:05:01 04:03:45 02:05:39 01:08:09 00:38:44 00:25:21
4 processes per node 08:19:29 04:14:48 02:10:41 01:10:29 00:41:40 00:27:47 N/A
(d) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 25,610,499

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
1 process per node N/A N/A N/A N/A N/A 23:41:45 11:18:17
2 processes per node N/A N/A N/A N/A 23:45:20 11:09:53 06:43:25
3 processes per node N/A N/A N/A 26:42:05 12:12:05 06:35:41 03:53:24
4 processes per node N/A N/A 23:44:55 12:30:28 06:53:45 03:57:07 02:33:53

3



2 Three-Species Application Problem

The three-species application problem models the flow of calcium on the scale of one heart cell. Calcium ions enter
into the cell at release units distributed throughout the cell and then diffuse. At each release unit, the probability
for calcium to be released increases along with the concentration of calcium, thus creating a feedback loop of waves
re-generating themselves repeatedly. An accurate model of such waves is useful since they are part of the normal
functioning of the heart, but can also trigger abnormal arrhythmias. This model requires simulations on the time
scale of several repeated waves and on the spatial scale of the entire cell. This requires long-time studies on spatial
meshes that need to have a high resolution to resolve the positions of the calcium release units throughout the
entire cell [1]. The problem can be modeled by a system of ns time-dependent reaction-diffusion equations coupled
by non-linear reaction terms r(i) and involving problem-specific additional terms J in the calcium species (i = 0),
together with no-flux boundary conditions and a given set of initial conditions

∂u(i)

∂t
−∇ · (Di(x)∇u(i)) = r(i)(u(0), . . . , u(ns−1)) + J(u(0),x, t)δi0 for x ∈ Ω, 0 < t ≤ tend (2.1)

n · (Di(x)∇u(i)) = 0 for x ∈ ∂Ω, 0 < t ≤ tend (2.2)

u(i)(x, 0) = u
(i)
ini(x) for x ∈ Ω, t = 0 (2.3)

where the concentrations u(i)(x, t) of the ns = 3 chemical species i = 0, 1, 2 are functions of space x ∈ Ω and time
0 ≤ t ≤ tend [1, 2]. In particular, we consider the rectangular spatial domain

Ω = (−6.4 µm, 6.4 µm)× (−6.4 µm, 6.4 µm)× (−32.0 µm, 32.0 µm) ⊂ R3.

The left-hand side of (2.1) models the diffusive transport of each chemical species with diffusivity given by the
positive definite matrices Di ∈ R3×3. The non-linear reaction terms r(i) are responsible for the coupling between
the equations in (2.1). The source and sink terms for the calcium generation within the heart cell are contained
within the term J(u(0),x, t)). This term also houses the stochastic aspect of the model since the calcium release units
(CRUs) which are arranged discretely on a three-dimensional lattice each have a probability of opening depending
on the concentration of calcium present at that site. The simulations in this note use the same parameter values
for the problem as described in [1].

The spatial discretization of the three-species application problem with tri-linear nodal finite elements results
in a large system of ordinary differential equations (ODEs). This ODE system is solved by the family of numerical
differentiation formulas [5]. Since these ODE solvers are fully implicit, it is necessary to solve the fully coupled non-
linear system of equations at every time step. The Newton method with an analytically supplied Jacobian is used
for the non-linear solver. The linear solver makes use of the iterative QMR method with matrix-free matrix-vector
multiplies. Table 2.1 summarizes several key parameters of the numerical method and its implementation. The
first three columns show the spatial mesh resolution of Nx ×Ny ×Nz finite elements, the number of mesh points
N = (Nx + 1)(Ny + 1)(Nz + 1), and and their associated numbers of unknowns nsN for the ns species that need
to be computed at every time step, commonly referred to as degrees of freedom (DOF). The following column lists
the number of time steps taken by the ODE solver, which are significant and which increase with finer resolutions.
The final two columns list the memory usage in MB, both predicted by counting variables in the algorithm and
by observation provided in a memory log file produced from the performance run. We notice that even the finest
resolution fits comfortably in the memory of one node of the cluster used.

Table 2.1: Sizing study (using MVAPICH2) listing the mesh resolution Nx ×Ny ×Nz, the number of mesh points
N = (Nx + 1)× (Ny + 1)× (Nz + 1), the number of degrees of freedom (DOF = nsN), the number of time steps
taken by the ODE solver, and the predicted and observed memory usage in MB for a one-process run. The run for
the mesh resolution 128× 128× 512 only ran briefly to observe memory usage and did not complete to final time.

Nx ×Ny ×Nz N DOF number of memory usage (MB)
time steps predicted observed

16× 16× 64 18,785 56,355 19,828 9 20
32× 32× 128 140,481 421,443 25,342 68 79
64× 64× 256 1,085,825 3,257,475 32,588 522 533

128× 128× 512 8,536,833 25,610,499 38,553 4,103 4,115

4



3 Performance Studies on tara with MVAPICH2

The run times for the finer meshes observed for serial runs in Table 1.1 bring out one key motivation for parallel
computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced by spreading
the work across a group of parallel processes. More precisely, the ideal behavior of code for a fixed problem size
using p parallel processes is that it be p times as fast. If Tp(N) denotes the wall clock time for a problem of a
fixed size parametrized by N using p processes, then the quantity Sp = T1(N)/Tp(N) measures the speedup of the
code from 1 to p processes, whose optimal value is Sp = p; for the finest resolution, where data are only available
starting with p = 32, this definition is extended by the formula Sp = 32T32(N)/Tp(N). The efficiency Ep = Sp/p
characterizes in relative terms how close a run with p parallel processes is to this optimal value, for which Ep = 1.
The behavior described here for speedup for a fixed problem size is known as strong scalability of parallel code.

Table 3.1 lists the results of a performance study for strong scalability. Each row lists the results for one problem
size, parametrized by the mesh resolution in the z-direction as Nz. Each column corresponds to the number of
parallel processes p used in the run. The runs for Table 3.1 distribute these processes as widely as possible over
the available nodes, that is, each process is run on a different node up to a maximum number of 64 nodes. In
other words, up to p = 64, seven of the eight cores available on each node are idling, and only one core performs
calculations. For p = 128, p = 256, and p = 512, this cannot be accommodated on 64 nodes, thus 2 processes are
run on each node for p = 128, 4 processes per node for p = 256, and 8 processes per node for p = 512. Comparing
adjacent columns in the raw timing data in Table 3.1 (a) indicates that using twice as many processes speeds up the
code by a factor of two approximately. To quantify this point more clearly, the speedup is computed in Table 3.1 (b)
showing very good speedup Sp ≈ p for all cases except Nz = 64 up to p = 32, degrading somewhat erratically for
larger values of p. This is expressed in terms of efficiency Ep greater than about 90% for all cases except Nz = 64
up to p = 32 in Table 3.1 (c). It is customary in results of fixed problem size that the speedup is better for larger
problems. Examining column p = 32 in Tables 3.1 (b) and (c) across all problem sizes Nz, we see this is in fact the
case. The customary representation of speedup and efficiency are presented in Figure 3.1 (a) and (b), respectively.
Figure 3.1 (a) shows the excellent speedup up to p = 32 parallel processes for all mesh sizes which is maintained
up to p = 64 for mesh size Nz = 256. The efficiency plotted in Figure 3.1 (b) is directly derived from the speedup,
but the plot is still useful because it details interesting features for small values of p that are hard to discern in the
speedup plot. Here, we notice the consistency of most results for small p.

To analyze the impact of using more than one core per node, we study the speedup for 2, 4, and 8 processes per
node. We run 2 processes per node in Table 3.2 and Figure 3.2, 4 processes per node in Table 3.3 and Figure 3.3,
and, 8 processes per node in Table 3.4 and Figure 3.4, wherever possible. That is, when studying 2 processes per
node in Table 3.2, 4 and 8 processes per node are required for the p = 256 and p = 512 cases respectively since
64 nodes are available. When 4 processes per node are studied in Table 3.3, p = 2 is computed using a two-process
job running on a single node while 8 processes per node are still required for p = 512. Lastly, when 8 processes
per node are studied with Table 3.4, p = 2 is again computed using a two-process job running on a single node,
while p = 4 is computed using a four-process job running on a single node. Note that the p = 1 serial case which is
computed on a dedicated node (i.e., running the entire job on a single process on a single node) is also recorded in
each of the tables. The results for 2, 4, and 8 processes per node in Tables 3.2, 3.3, and 3.4, respectively, are seen
to be very comparable, with noticable experimental variability, to those for 1 process per node in Table 3.1. This
is an excellent result that confirms the conclusion from Section 1 regarding the scheduling policy on tara that uses
all eight cores of the two quad-core processors on all assigned node simultaneously for production runs.

5



Table 3.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 00:30:09 00:15:29 00:08:19 00:04:25 00:02:36 00:01:56 00:01:51 N/A N/A N/A
128 05:16:13 02:40:35 01:21:26 00:42:09 00:22:29 00:13:13 00:07:45 00:05:24 N/A N/A
256 57:14:46 29:32:28 14:34:19 07:27:06 03:51:04 01:59:36 01:05:30 01:43:39 00:25:21 N/A
512 23:41:45 11:18:17 06:43:25 03:53:24 02:33:53

(b) Observed speedup Sp = T1/Tp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.00 1.95 3.63 6.83 11.60 15.57 16.35 N/A N/A N/A
128 1.00 1.97 3.88 7.50 14.06 23.93 40.77 58.57 N/A N/A
256 1.00 1.94 3.93 7.68 14.87 28.72 52.43 33.14 135.46 N/A
512 32.00 67.08 112.78 194.93 295.64

(c) Observed efficiency Ep = Sp/p
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.0000 0.9741 0.9073 0.8540 0.7251 0.4865 0.2554 N/A N/A N/A
128 1.0000 0.9846 0.9709 0.9379 0.8789 0.7479 0.6370 0.4576 N/A N/A
256 1.0000 0.9689 0.9821 0.9603 0.9291 0.8975 0.8193 0.2589 0.5291 N/A
512 1.0000 1.0481 0.8811 0.7614 0.5774

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

6



Table 3.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 00:30:09 00:15:41 00:08:01 00:04:25 00:02:31 00:01:45 00:01:31 N/A N/A N/A
128 05:16:13 02:41:35 01:20:33 00:41:27 00:21:46 00:12:56 00:07:44 00:05:24 N/A N/A
256 57:14:46 29:08:07 14:39:54 07:21:31 03:46:57 02:00:56 01:04:30 01:43:39 00:25:21 N/A
512 23:45:20 11:09:53 06:43:25 03:53:24 02:33:53

(b) Observed speedup Sp = T1/Tp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.00 1.92 3.76 6.83 11.97 17.20 19.81 N/A N/A N/A
128 1.00 1.96 3.93 7.63 14.53 24.46 40.88 58.57 N/A N/A
256 1.00 1.96 3.90 7.78 15.13 28.40 53.25 33.14 135.46 N/A
512 32.00 68.09 113.06 195.42 296.39

(c) Observed efficiency Ep = Sp/p
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.0000 0.9610 0.9395 0.8542 0.7482 0.5376 0.3095 N/A N/A N/A
128 1.0000 0.9785 0.9815 0.9535 0.9079 0.7645 0.6388 0.4576 N/A N/A
256 1.0000 0.9824 0.9759 0.9724 0.9459 0.8875 0.8320 0.2589 0.5291 N/A
512 1.0000 1.0639 0.8833 0.7634 0.5789

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

7



Table 3.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes
per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 00:30:09 00:15:41 00:08:04 00:04:19 00:02:31 00:01:39 00:01:25 N/A N/A N/A
128 05:16:13 02:41:35 01:24:06 00:43:23 00:21:60 00:12:06 00:07:38 00:05:14 N/A N/A
256 57:14:46 29:08:07 16:06:40 08:05:01 04:03:45 02:05:39 01:08:09 00:38:44 00:25:21 N/A
512 26:42:05 12:12:05 06:35:41 03:53:24 02:33:53

(b) Observed speedup Sp = T1/Tp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.00 1.92 3.74 6.99 12.01 18.19 21.35 N/A N/A N/A
128 1.00 1.96 3.76 7.29 14.38 26.12 41.42 60.52 N/A N/A
256 1.00 1.96 3.55 7.08 14.09 27.34 50.40 88.66 135.46 N/A
512 32.00 70.03 129.57 219.66 333.14

(c) Observed efficiency Ep = Sp/p
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.0000 0.9610 0.9353 0.8732 0.7505 0.5685 0.3336 N/A N/A N/A
128 1.0000 0.9785 0.9401 0.9113 0.8985 0.8162 0.6473 0.4728 N/A N/A
256 1.0000 0.9824 0.8883 0.8852 0.8807 0.8543 0.7876 0.6927 0.5291 N/A
512 1.0000 1.0942 1.0122 0.8580 0.6507

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes
per node.

8



Table 3.4: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 00:30:09 00:15:41 00:08:04 00:04:27 00:02:34 00:01:36 00:01:10 N/A N/A N/A
128 05:16:13 02:41:35 01:24:06 00:45:17 00:23:13 00:12:39 00:07:46 00:05:09 N/A N/A
256 57:14:46 29:08:07 16:06:40 08:19:29 04:14:48 02:10:41 01:10:29 00:41:40 00:27:47 N/A
512 23:44:55 12:30:28 06:53:45 03:57:07 02:33:53

(b) Observed speedup Sp = T1/Tp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.00 1.92 3.74 6.77 11.73 18.92 25.77 N/A N/A N/A
128 1.00 1.96 3.76 6.98 13.62 25.01 40.76 61.33 N/A N/A
256 1.00 1.96 3.55 6.88 13.48 26.28 48.73 82.44 123.63 N/A
512 32.00 60.76 110.20 192.30 296.30

(c) Observed efficiency Ep = Sp/p
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

64 1.0000 0.9610 0.9353 0.8460 0.7333 0.5912 0.4027 N/A N/A N/A
128 1.0000 0.9785 0.9401 0.8730 0.8515 0.7816 0.6368 0.4791 N/A N/A
256 1.0000 0.9824 0.8883 0.8596 0.8425 0.8214 0.7614 0.6441 0.4829 N/A
512 1.0000 0.9494 0.8610 0.7512 0.5787

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.4: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

9



Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant
no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional substantial support from
the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on HPCF
and the projects using its resources. David Trott additionally acknowledges financial support as HPCF RA.

References

[1] Matthias K. Gobbert. Long-time simulations on high resolution meshes to model calcium waves in a heart cell.
SIAM J. Sci. Comput., vol. 30, no. 6, pp. 2922–2947, 2008.

[2] Alexander L. Hanhart, Matthias K. Gobbert, and Leighton T. Izu. A memory-efficient finite element method
for systems of reaction-diffusion equations with non-smooth forcing. J. Comput. Appl. Math., vol. 169, no. 2,
pp. 431–458, 2004.

[3] Michael Muscedere, Andrew M. Raim, and Matthias K. Gobbert. Parallel performance studies for a parabolic
test problem on the cluster tara. Technical Report HPCF–2010–4, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2010.

[4] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem on the
cluster tara. Technical Report HPCF–2010–2, UMBC High Performance Computing Facility, University of
Maryland, Baltimore County, 2010.

[5] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM J. Sci. Comput., vol. 18, no. 1,
pp. 1–22, 1997.

10


	Introduction
	Three-Species Application Problem
	Performance Studies on tara with MVAPICH2

