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Abstract: The FEM theory provides the basis
for quantification on the accuracy and reliability
of a numerical solution by the a priori error esti-
mates on the FEM error vs. the mesh spacing of
the FEM mesh. This paper presents information
on the techniques needed in COMSOL 4.2 to en-
able computational studies that demonstrate this
theory for time-dependent problems, in extension
of previous work on stationary problems. These
techniques can be used in many general settings,
including when the analytic PDE solution is not
known.

We consider the time-dependent linear heat
equation with homogeneous Dirichlet boundary
conditions in both two and three spatial dimen-
sions with both a smooth source term and a non-
smooth point source term modeled by one Dirac
delta function located at the center of the domain.
The presence of the point source for all positive
times results in a problem for which no analytic
solution is known. The observed constant slope
for errors at several representative times in con-
ventional log-log plots of the FEM error versus the
reciprocal of the mesh size confirms the exponent
of the mesh size in the error estimate to agree with
recent theory for the problem.

This paper presents information on the tech-
niques needed in COMSOL 4.2 to enable the stud-
ies, including how to correctly implement the Dirac
delta function for a time-dependent problem, how
to set up a study with repeated uniform mesh
refinement at several points in time as needed
for a time-dependent PDE problem, how to use
a reference solution since no analytic PDE solu-
tion is known, how to collect data from each re-
finement level and compute the convergence order
from them, and more.

Key words: Heat equation, a priori error esti-
mate, convergence study, mesh refinement.

1 Introduction

The finite element method (FEM) is a powerful
numerical method for solving partial differential
equations (PDEs), such as for instance the time-
dependent linear parabolic heat equation with ho-
mogeneous Dirichlet boundary conditions

ut −∇ · ∇u = f for x ∈ Ω and 0 < t ≤ T ,
(1.1)

u = 0 for x ∈ ∂Ω and 0 < t ≤ T ,
(1.2)

u = 0 for x ∈ Ω at t = 0, (1.3)

where f is a given source term on the domain
Ω ⊂ Rd in d = 2 and 3 dimensions. We consider
the simple domain Ω = (−1, 1)d and the initial con-
dition u = 0 for compatibility with the boundary
conditions in order to focus the numerical studies
on the properties of the source term f .

The FEM theory provides the basis for quantifi-
cation on the accuracy and reliability of a numeri-
cal solution by the a priori error estimate

‖u(·, t)− uh(·, t)‖
L2(Ω)

≤ C hλ, (1.4)

as h → 0, for all times t. Here, u(x, t) denotes the
PDE solution of the problem and uh(x, t) the FEM
solution. The mesh size of the FEM mesh is de-
noted by h, λ is the convergence order of the FEM,
and C is a constant independent of λ. For problems
with a smooth right-hand side f ∈ L2(Ω), classical
theory guarantees (under various other necessary
assumptions) λ = 2 for all spatial domains, in par-
ticular in d = 2 and 3 dimensions. There are many
sources for this results, including [3, 6].
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(a) d = 2

(b) d = 3

Figure 1: Smooth test problem: log(error-norm)
vs. log(1/h).

But if f is not smooth, for instance if it is a
point source modeled by a Dirac delta function
f = δ(x), classical theory does not apply any more,
since f 6∈ L2(Ω). To appreciate the issue, consider
that the FEM is perfectly suited to implement a
Dirac delta function, as explained in instructions
in the COMSOL User’s Guide on how to add a
point source. Rigorous estimates have been avail-
able for the corresponding stationary elliptic prob-
lem as far back as [4], but have been missing for the
time-dependent parabolic problem (1.1), even in
its simple linear form. We have just recently been
able to extend the rigorous theory to this type of
problem now and used COMSOL Multiphysics for
the numerical studies [5]. The result shows that
the convergence order λ in (1.4) depends on the
spatial dimension d now and is λ = 2 − d/2 for
spatial domains d = 2 and 3, that is, λ = 1 for
d = 2 and λ = 0.5 for d = 3.

(a) d = 2

(b) d = 3

Figure 2: Non-smooth test problem: log(error-
norm) vs. log(1/h).

A powerful way to visualize the result of conver-
gence studies such as the ones needed to confirm
analytic results like (1.4) is a log-log plot of the
error on the left-hand side of (1.4) vs. the recip-
rocal of the mesh spacing, 1/h. The reciprocal of
h is used here, so that decreasing the mesh size is
equivalent to moving to the right on the horizontal
axis. In this form, the estimate (1.4) plots as a line
with its slope being the negative of the convergence
order λ. Figures 1 (a) and (b) show plots of this
type for a smooth test problem, with f ∈ L2(Ω),
for dimensions d = 2 and 3, respectively. The
theoretically predicted slopes of −2 in both cases
are shown as dashed lines. The three solid lines
show observed convergence orders at three points
in time t = 2, 3, 4, which clearly confirm the the-
oretical prediction. Figures 2 (a) and (b) show
the analogous plots for a non-smooth test problem,
with f = δ(x) modeling a point source, for dimen-
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sions d = 2 and 3, respectively. The theoretically
predicted slopes of −1 and −0.5, respectively, are
again shown as dashed lines, in clear agreement
with the observed solid lines.

COMSOL Multiphysics is an excellent tool for
numerical studies of this type, because it can read-
ily implement a point source, has reliable time-
stepping, accurate linear solvers, and the process
of refining the mesh repeatedly is easily automated
through the use of LiveLink with MATLAB. But
the process has some pitfalls, and this paper there-
fore presents some information on the techniques
needed in COMSOL 4.2 to enable the studies, in-
cluding how to correctly implement the Dirac delta
function for a time-dependent problem, how to set
up a study with repeated uniform mesh refinement
at several points in time as needed for a time-
dependent PDE problem, how to use a reference so-
lution since no analytic PDE solution is available,
how to collect data from each refinement level and
compute the convergence order from them, how
to use LiveLink for MATLAB for the convergence
study to be carried out in a convenient automated
fashion, and more. This work follows previous pa-
pers, all on the stationary elliptic analogue to (1.1),
starting with [1, 2] for smooth and non-smooth
sources, respectively, and [7, 8] providing a tuto-
rial description of the process for COMSOL 4.

2 FEM Theory

One practical test for reliability of a FEM solution
is to refine the FEM mesh, compute the solution
again on the finer mesh, and compare the solutions
on the two meshes qualitatively. The FEM theory
provides a quantification of this approach by com-
paring FEM errors u − uh involving the PDE so-
lution u compared to the FEM solution, according
to (1.4).

We use this theory here for linear Lagrange
elements as provided in COMSOL Multiphysics.
Since the domain Ω = (−1, 1)d has piecewise
smooth boundaries, it can be discretized by the
triangular meshes in d = 2 and by tetrahedral
meshes in d = 3 dimensions without error. The
convergence studies performed rely on a sequence
of meshes with mesh spacings h that are halved in
each step. This is accomplished by uniformly re-
fining an initial mesh repeatedly, starting from a
coarse initial mesh to allow as many refinements
as possible. For the initial mesh, we take advan-

tage of the shape of Ω that admits a very coarse,
uniform mesh that still includes the origin, where
δ(x) is centered, as a mesh point. In d = 2 dimen-
sions, the initial mesh consists of 4 triangles with
5 vertices given by the 4 corners of Ω plus the cen-
ter point. In d = 3 dimensions, the initial mesh
has 28 tetrahedra with 15 vertices and is shown in
Figure 5 (on page 6). For each of the meshes con-
sidered, we track the number of mesh elements, the
degrees of freedom (DOF) of the linear nodal ele-
ments for that mesh, and the mesh spacing h for
each refinement level r from the initial mesh for
r = 0 to the finest mesh explored, as summarized
in Table 3 (on page 6). The solution plots in the
following sections use the finest mesh.

For the conditions of the test problem (1.1)
on the domain Ω = (−1, 1)d, the assumptions of
the theory are satisfied and the element error is
bounded. The convergence studies in the following
numerical experiments compute an estimate λ(est)

to the convergence order λ in (1.4) according to
the formula

λ(est) = log2

(
‖u2h(·, t)− u(·, t)‖

L2(Ω)

‖uh(·, t)− u(·, t)‖
L2(Ω)

)
, (2.1)

for all times t. Here, uh denotes the finite element
solution on a mesh with mesh spacing h and u2h on
a mesh with twice the mesh spacing. Formula (2.1)
is derived by assuming equality in (1.4) and apply-
ing it both to uh and u2h, then forming their ratios
and solving for λ. In (2.1), the notation u denotes
the PDE solution of (1.1).

If the PDE solution is not available in analytic
form, the convergence study can still be carried out
by using the FEM solution on the finest mesh as
so-called reference solution. This is the standard
approach in the case that the PDE solution is not
available and is necessary, for instance, for non-
smooth problems that do not admit an analytic
solution. To use this approach in COMSOL, the
numerical solution for each mesh refinement r is ex-
ported as a data file for the times of interest. The
numerical solution is computed on the highest re-
fined mesh which we treat as a reference mesh. The
solutions for the lower refined meshes are imported
for comparison on this reference mesh through the
use of COMSOL’s built-in interpolation function.
Using the post-processing tools, we can compute
the error. The entire process is easily automated
through the use of LiveLink with MATLAB.
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3 Smooth Test Problem

To validate our numerical estimation procedure,
we first consider a smooth test problem, for which
the solution u(x, t) is both available in analytical
form and smooth. Specifically, we choose in (1.1)
the source term f(x, t) such that the problem (1.1)
admits the analytic PDE solution

u(x, t) =
(
1− e−t2/4

)
cos2

(πx1

2

)
cos2

(πx2

2

)
.

The solution exhibits its most significant transient
in time from about 1 ≤ t ≤ 4. Therefore, we an-
alyze the error bound (1.4) at the times t = 2, 3,
and 4. To check the solution qualitatively, we plot
the numerical solution uh(x, t) vs. x of the two-
dimensional problem at various times as shown in
Figure 3, which shows the expected behavior of the
PDE solution u(x, t).

To check the solution quantitatively, Ta-
ble 1 lists for each refinement level r the error
‖uh(·, t)− u(·, t)‖

L2(Ω)
of (1.4) and in parentheses

the estimate λest according to (2.1) at time t = 3;
similar data was obtained for t = 2 and 4. We ob-
serve that the value of λ(est) approaches the value
2, which is expected for a smooth source term.
This data provides the basis for the graphical vi-
sualization in the log-log plot in Figure 1.

Since the non-smooth problem does not have a
known PDE solution, we test the estimation pro-
cedure using a reference solution, as explained in
Section 2, already for the smooth problem. In fact,
the data in Table 1 and Figure 1 is based on that
approach; the original approach using the known
PDE solution gives equivalent results.

Table 1: Convergence studies for the smooth test
problem on triangular meshes using reference solu-
tion in dimensions d = 2 and 3.

r t = 3
0 1.333e-01
1 7.395e-02 (0.85)
2 4.046e-02 (0.87)
3 1.029e-02 (1.98)
4 2.579e-03 (2.00)
5 6.290e-04 (2.04)

r t = 3
0 9.531e-02
1 6.621e-02 (0.53)
2 2.107e-02 (1.65)
3 5.669e-03 (1.89)
4 1.511e-03 (1.91)

(a) d = 2 (b) d = 3
Figure 3: Numerical solutions for the smooth test
problem t = 1, 2, 3, 4
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4 Non-Smooth Test Problem

In the case of the non-smooth test problem, the
source term is provided by the Dirac delta func-
tion f(x, t) = δ(x) and has been positioned at the
center of the domain. On physical grounds, it is
clear that the solution, starting from the initial
condition u = 0, will grow dramatically due to the
injection of mass at the center for all times t > 0.
The qualitative check on the solution behavior in
Figure 4 shows the dramatic spike at the center of
domain that results from the continued injection.
The implementation of the delta function in COM-
SOL makes use of the instructions in the User’s
Guide on how to add a point source. However, for
a time-dependent problem, it is necessary to mul-
tiply the basis function by the Boolean operator
(t>0) to ensure that at t = 0 the initial value of u
is truly zero over the domain Ω.

Unlike the smooth problem, we do not have a
PDE solution for comparison so we make use of the
numerical solution on the finest mesh as a reference
solution, as explained in Section 2. We again in-
vestigate the three times t = 2, 3, and 4. Table 2
present the error based on the reference solution
as well as the observed λ(est). For d = 2 dimen-
sions in Table 2 (a), we see that λ(est) approaches
the value of 1, while for d = 3 dimensions in Ta-
ble 2 (b), it approaches the value of 0.5. This is
in agreement with the theory in [5], which predicts
that the value should be 2− d/2 for d dimensions.
These data are again the basis for the graphical
visualization in the log-log plots in Figure 2.

Table 2: Convergence studies for the non-smooth
test problem on triangular meshes using reference
solution in dimensions d = 2 and 3.

r t = 3
0 3.433e-02
1 2.286e-02 (0.59)
2 1.158e-02 (0.98)
3 5.839e-03 (0.99)
4 2.815e-03 (1.05)
5 1.307e-03 (1.11)

r t = 3
0 8.363e-02
1 4.761e-02 (0.81)
2 3.477e-02 (0.45)
3 3.049e-02 (0.19)
4 2.057e-02 (0.57)

(a) d = 2 (b) d = 3
Figure 4: Numerical solutions for the non-smooth
test problem t = 1, 2, 3, 4
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Figure 5: Exploded view of the initial mesh in d =
3 dimensions.

Table 3: Finite element data for all meshes in di-
mensions d = 2 and 3 for all refinement levels r.

(a) d = 2
r Ne N = DOF maxe he

0 4 5 2.000000
1 16 13 1.000000
2 64 41 0.500000
3 256 145 0.250000
4 1024 545 0.125000
5 4096 2113 0.062500
6 16384 8321 0.031250

(b) d = 3
r Ne N = DOF maxe he

0 28 15 2.000000
1 224 69 1.000000
2 1792 409 0.500000
3 14336 2801 0.250000
4 114688 20705 0.125000
5 917504 159169 0.062500
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