
Comparison of Parallel Performance between MVAPICH2 and

OpenMPI Applied to a Hyperbolic Test Problem

Michael J. Reid

Department of Mathematics and Statistics, University of Maryland, Baltimore County

mic7@umbc.edu

Abstract

During the manufacture of integrated circuits, the process of atomic layer deposition (ALD) is used to deposit

a uniform seed layer of solid material atop the surface of a silicon wafer. The process can be modeled on the

molecular level by a system of transient, linear integro-partial differential Boltzmann equations, coupled with

a non-linear surface reaction model, together called the kinetic transport and reaction model (KTRM). Each

Boltzmann equation can be approximated by discretizing the velocity space, which yields a system of transient

hyperbolic conservation laws that only involve the position vector and time as independent variables. The system

can then be solved with DG, a computer implementation of the discontinuous Galerkin method. Due to the

large size of the systems being solved and large number of time steps required, it is necessary to use parallel

computing to obtain a solution in a reasonable amount of time. We analyze the performance of the DG code on

multiple mesh resolutions by measuring its speedup and efficiency on UMBC’s new distributed-memory cluster,

hpc (www.umbc.edu/hpcf). We also compare the performance of DG when it is compiled using the MVAPICH2

and OpenMPI implementations of MPI, the most prevalent parallel communication library today. Testing on a

variety of mesh sizes shows that the MVAPICH2 implementation runs as fast or faster than OpenMPI in all cases.

This senior thesis is part of undergraduate research conducted under the direction of Dr. Matthias K. Gobbert.

1 Introduction

During the manufacture of integrated circuits, a process called atomic layer deposition (ALD) is used to deposit

a uniform seed layer of solid material on the surface of a silicon wafer. ALD consists of several steps, repeated

thousands of times, involving reactions between two gaseous species, which adsorb, desorb, and react at the

wafer surface. Depending on the gases chosen, however, the process may have unintended results, necessitating

a computer simulation. ALD can be modeled on the molecular level by a system of linear Boltzmann equations

as transport model, coupled with a general, non-linear surface reaction model, called the kinetic transport and

reaction model (KTRM) [2, 1].

The Boltzmann equations in the KTRM are transient, linear integro-partial differential equations. Charac-

teristic of kinetic model, their unknown kinetic densities of all reactive chemical species have to be computed as

functions of position vector, velocity vector, and time as independent variables. To affect a numerical solution,

each linear Boltzmann equation is approximated by discretizing the velocity space, giving a system of transient

hyperbolic conservation laws that only involve the position vector and time as independent variables. The lat-

ter system can be posed in standard form, allowing for the solution by a program, DG, which implements the

discontinuous Galerkin method [5].

Because of the large number of equations and time steps involved, solving this type of problem, even on a

modern personal computer, would take an exorbitant amount of time, in the realm of hundreds of hours. To reduce

the amount of computation time needed, we utilize the power of parallel computing, which involves distributing

the work done from one processor to multiple processors which communicate with one another during the solution

process. All communication done between processes in a distributed-memory cluster are done explicitly in the

code through the use of functions specified by the Message Passing Interface (MPI) standard, the dominant

communications protocol in high-performance computing today. There are multiple implementations of MPI

available; for this paper, we compare the speed of the OpenMPI 1.2.6 and MVAPICH2 1.0.3 implementations.

This paper performs parallel performance studies on the distributed-memory cluster hpc (www.umbc.edu/hpcf),

purchased in 2008 by UMBC. Use of the DG code makes for an excellent test of the capabilities of the cluster, as

it involves both point-to-point and collective communications at every time step, allowing for thorough testing of

the interconnect network. The results of this study will teach us how to run this code most efficiently; that is,

whether to run one, two, or four processes per node.

Section 2 below specifies the reaction model used for our particular application, and Section 3 states the

transport model in more detail and explains the numerical method used to solve it. Section 4 collects a set of

representative results for the application problem and presents the parallel performance study on the cluster hpc.

From the results of the parallel performance study in Section 4, we observe that the DG code, when using

MVAPICH2, exhibits excellent speedup in all cases. However, use of OpenMPI causes significant scalability prob-

lems with certain configurations of nodes and the number of cores used per node. In absolute times, MVAPICH2

matches or beats OpenMPI in nearly every case, sometimes by a significant amount.

2

2 The Reaction Model

The goal of atomic layer deposition (ALD) is to deposit a uniform layer onto the surface through reactions between

a precursor gas, denoted by A, and a reactant gas, denoted by B. The intended reaction pathway calls for A to

adsorb to the solid surface and in a next step for B to react with the adsorbed A to form one uniform monolayer

of solid on the wafer surface. This is expressed by the surface reaction model

A + v
 Av, (2.1a)

B + Av → solid + by-product + v, (2.1b)

where v denotes a vacant site on the surface and Av denotes A attached to a site on the surface [2]. The

corresponding reaction rates for these equations are given by

R1 = kf1 (ST − SA) η1 − kb1 SA, (2.2a)

R2 = kf2 SA η2, (2.2b)

where kfk is the forward reaction rate for reaction k in (2.1), kbk is the backward reaction rate for reaction k, ST

is the total area on the wafer surface, SA is the molar concentration of A adsorbed on the surface, and ηi is the

flux of species i to the surface.

However, if hydrogen radicals H are used for the reactant B, two additional reactions may occur: some H may

adsorb to the surface, blocking A from adsorbing and preventing the layer of solid from forming at that site; and

some gaseous H may interact with an Hv that has adsorbed to the surface, resulting in a gaseous H2 molecule

and making the H unavailable for reaction on the surface.

The reaction model for A and H is then

A + v
 Av, (2.3a)

H + Av → solid + by-product + v, (2.3b)

H + v
 Hv, (2.3c)

H + Hv → H2 + v. (2.3d)

and the reaction rates are given by

R1 = kf1 (ST − SA − SH) η1 − kb1 SA, (2.4a)

R2 = kf2 SA η2, (2.4b)

R3 = kf3 (ST − SA − SH) η2 − kb3 SH, (2.4c)

R4 = kf4 SH η2, (2.4d)

where the additional parameter SH is the molar concentration of H adsorbed on the surface. We then can write

the time-evolution model of the number of surface sites as

dSA(x, t)

dt
= R1 −R2, SA(x, 0) = SiniA (x), (2.5a)

dSH(x, t)

dt
= R3 −R4, SH(x, 0) = SiniH (x), (2.5b)

3

where x is any point on the wafer surface and Sini
A (x) and Sini

H (x) are the initial concentration of A and H at x.

We then non-dimensionalize the reaction model with respect to the reference flux η∗. This results in the

reaction rates R̂i, given by

R̂1 =
R1

η∗
= kf1 ST (1− ϑA − ϑH)

η1

η∗
− kb1
η∗
ST ϑA, (2.6a)

R̂2 =
R2

η∗
= kf2 ST ϑA

η2

η∗
, (2.6b)

R̂3 =
R3

η∗
= kf3 ST (1− ϑA − ϑH)

η2

η∗
− kb3
η∗
ST ϑH, (2.6c)

R̂4 =
R4

η∗
= kf4 ST ϑA

η2

η∗
. (2.6d)

We simplify these equations by introducing the fractional surface coverages ϑA := SA/ST and ϑH := SH/ST,

resulting in the equations

R̂1 = γf1 (1− ϑA − ϑH) η̂1 − γb1 ϑA, (2.7a)

R̂2 = γf2 ϑA η̂2, (2.7b)

R̂3 = γf3 (1− ϑA − ϑH) η̂2 − γb3 ϑH, (2.7c)

R̂4 = γf4 ϑH η̂2. (2.7d)

Here we have introduced the corresponding dimensionless reaction coefficients γf` := kf` ST for ` = 1, . . . , 4 and

γb` := kb`ST for ` = 1, 3. Similarly, the differential equations governing the evolution of the surface sites (2.5)

becomes a non-dimensionalized model for the evolution of fractional coverage

dϑA(t̂)

dt̂
= αp (R̂1 − R̂2), ϑA(x̂, 0) = ϑini

A (x̂) (2.8a)

dϑH(t̂)

dt̂
= αp (R̂3 − R̂4), ϑH(x̂, 0) = ϑini

H (x̂) (2.8b)

with the dimensionless prefactor αp = η∗t∗

ST
.

For purposes of this paper, we only deal with the adsorption step of ALD. In the adsorption step, there is no

initial quantity of A or H in the feature, but A is being fed into the top of the feature. Thus, while we are dealing

with a two-species model, A is the only species of interest when we look at the results. We also only look at the

model on the feature scale, so the domain of our problem is the gaseous area inside and just above a cross-section

of one individual feature on the wafer surface. Such a domain is shown in Figure 1 (a) with feature width L and

feature aspect ratio A (the ratio of depth over width of the feature). The wafer surface is indicated by the hash

marks, and its top surface is at x2 = 0. The pre-cursor species A is fed into the domain from x2 = L. In our

studies, we use a feature width L = 0.25 µm and a feature aspect ratio A = 3.

3 The Transport Model

After making the appropriate simplifications to the equations used to model these reactions, we attain a system

of dimensionless Boltzmann equations for the kinetic densities f (i)(x,v, t) of the ns reactive species

∂f (i)(x,v, t)

∂t
+ v · ∇xf

(i)(x,v, t) =
1

Kn
Qi(f

(i)(x,v, t)), i = 1, . . . , ns, (3.1)

4

x2

x1

−L −L/2 L/2 L

−A L

L

(a) (b)

Figure 1: (a) Cross-section of a feature and domain Ω for the mathematical model with feature width L = 0.25 µm

and feature aspect ratio A = 3. (b) Sample domain mesh used for the numerical method with uniform mesh spacing

h = 1/16 = 0.0625 µm.

Table 1: Sizing study listing the velocity resolution K, the spatial mesh spacing h, the number of spatial mesh

elements Ne, the number of degrees of freedom (DOF), the final time tfinal, the constant time step ∆t, the number

of time steps Nt, and the observed wall clock time in HH:MM:SS for a serial run in each test case.

K h Ne DOF tfinal ∆t Nt Wall time

Case 1 8× 8 0.031250 320 163,840 10.0 1.00534 · 10−3 9947 01:10:13

Case 2 8× 8 0.015625 1280 655,360 10.0 5.02669 · 10−4 19894 09:23:19

Case 3 16× 16 0.031250 320 655,360 10.0 6.28373 · 10−4 15915 17:08:18

Case 4 16× 16 0.015625 1280 2,621,440 10.0 3.14187 · 10−4 31829 136:43:01

5

where ns is the number of species in the model, Kn is the Knudsen number, and the linear collision operators

Qi(f
(i)) are given by

Qi(f
(i)) =

∫
R2
σi(v,v

′)
[
M (i)(v′)f (i)(x,v, t)−M (i)(v′)f (i)(x,v, t)

]
dv′, (3.2)

where M (i) is the Maxwellian of species i

M (i)(v) =
1

π(vref
i)2

exp

(
|v|2

2(vref
i)2

)
, (3.3)

where vref
i is the reference velocity of species i [1]. We only deal with a 2-D/2-D kinetic model in this paper, so

the position x = (x1, x2)T ∈ Ω ∈ R2 and the velocity v = (v1, v2)T ∈ R2. Then, for x on the wafer surface Γw,

the boundary condition is

f (1)(x,v, t) = C1 [η1(x, t)−R1(x, t)]M (1)(v), (3.4a)

f (2)(x,v, t) = C2 [η2(x, t)−R2(x, t)−R3(x, t)−R4(x, t)]M (2)(v), (3.4b)

x ∈ Γw, n · v < 0, (3.4c)

with the scaling factors Ci = 2
√
π/vref

i and n = n(x) the unit outward normal vector at x ∈ ∂Ω. At the top of

the domain Γt, the boundary condition is

f (i)(x,v, t) = ctop
i (x, t)M (i)(v), x ∈ Γt, n · v < 0 (3.5)

where ctop
i is the inflow concentration of species i at the top of the reactor. For the remaining boundaries on the

vertical sides of the trench Γs, we use specular reflection, so that

f (i)(x,v, t) = f (i)(x,v′, t), x ∈ Γs, n · v < 0, (3.6)

with v = v′ − 2 (v′ · n) n.

We then discretize in velocity space by approximating each f (i)(x,v, t) by the expansion f
(i)
K (x,v, t) =∑K−1

`=0 f
(i)
` (x, t)ϕ`(v), where the basis functions ϕ`(v) in velocity space are products of a Maxwellian and Hermite

polynomials in each dimension [3]. Each linear Boltzmann equation in (3.1) is then discretized by substituting

f
(i)
K (x,v, t) for f (i)(x,v, t) and testing against the basis functions ϕk(v), k = 0, . . . ,K − 1, resulting in a system

of K transient linear first-order hyperbolic transport equations

∂F (i)

∂t
+A(1) ∂F

(i)

∂x1
+A(2) ∂F

(i)

∂x2
=

1

Kn
B(i)F (i), i = 1, . . . , ns, (3.7)

in space x = (x1, x2)T and time t for the vector of K coefficient functions F (i)(x, t) := (f
(i)
0 (x, t), . . . , f

(i)
K−1(x, t))T .

The K×K matrices A(1), A(2), and B(i) are constant due to the linearity of (3.1); moreover, due to choice of basis

functions, A(1) and A(2) are also diagonal [3]. Using the diagonality of these matrices, the system (3.7) can be

re-formulated in the standard form of hyperbolic conservation laws, suitable for the solution by the discontinuous

Galerkin method. We use the implementation in DG [5], a C++ program using MPI (the Message Passing

Interface) as the library for the communications between the parallel processes.

To test the performance of our code, we look at four cases: Case 1 with velocity resolution K = 8×8 = 64 and

uniform spatial mesh spacing h = 1/32 = 0.031250; Case 2 with K = 8×8 = 64 and h = 1/64 = 0.015625; Case 3

6

with K = 16× 16 = 256 and h = 1/32 = 0.031250; and Case 4 with K = 16× 16 = 256 and h = 1/64 = 0.015625.

The complexity of these problems is measured by the number of degrees of freedom (DOF), given by the number

of solution components that must be computed at every time step. We use discontinuous bi-linear nodal finite

elements on a quadrilateral mesh with four local degrees of freedom (the solution value at every vertex). Thus,

the DOF at every time step can be calculated by the formula 4nsNeK, where ns is the number of species, Ne is

the number of spatial finite elements in Ω, and K is the size of the velocity mesh. Figure 1 (b) shows a sample

domain mesh with a uniform mesh spacing h = 1/16, selected coarser for a clearer plot. The degrees of freedom

of each case are collected in Table 1. The time steps are automatically computed at run-time to be the largest

possible value that still guarantees stability of the method. As a result, the number of time steps to reach the

final time is different in each case; this can be seen as a consequence of the size of the problem, since larger values

for K and Ne require smaller time steps to guarantee stability.

To parallelize the problem, the domain Ω is split into sub-domains using a graph partitioning utility. Each

process used is assigned one sub-domain. All processes then perform computations for the update of the solution

on their respective sub-domains in parallel at each time step. At each time step, there are both point-to-point

communications between adjacent sub-domains, such as MPI_Send and MPI_Recv to send and receive values at

the common boundary between sub-domains, as well as collective communications between all processes, such as

MPI_Allreduce to calculate inner products and similar.

In addition to doing performance studies on various mesh sizes, we also do performance studies on each case

with two copies of the DG code: one compiled using the OpenMPI implementation of MPI, and one using the

MVAPICH2 implementation.

4 Results

4.1 Application Results

We first look at plots of the concentration of species A during the adsorption step of ALD, shown in Figure 2 for

times t = 0, 2, 4, 6, 8, 10 ns. For this model, we set our reaction rates γf1 = 10−2, γb1 = 10−4, γf2 = 10−2, γf3 = γb3 =

γf4 = 0, and the Knudsen number Kn = 100. While the parameters have all been non-dimensionalized [3], the

time has been re-dimensionalized in nanoseconds. From the concentration plots we can see that the concentration

of A quickly fills the area near the top of the feature, but it takes much longer for the concentration at the bottom

of the feature to increase.

7

(a) (b)

(c) (d)

(e) (f)

Figure 2: Concentration plot of species A at times (a) 0 ns, (b) 2 ns, (c) 4 ns, (d) 6 ns, (e) 8 ns, and (f) 10 ns. The

results are calculated using a velocity resolution of K = 16×16 and domain mesh with uniform spacing h = 0.015625.

8

4.2 Parallel Performance Study Using MVAPICH2

For both parallel performance studies, we use the parallel computing cluster hpc in the UMBC High Performance

Computing Facility (www.umbc.edu/hpcf). This distributed-memory cluster has 32 computational nodes, each

with two dual-core AMD Opteron processors (2.6 GHz, 1 MB cache per core) and 13 GB of memory. These nodes

are connected via a state-of-the-art high performance InfiniBand interconnect network.

To test parallel performance, we vary both the number of nodes used and the number of parallel processes

run on each node. The number of nodes used are 1, 2, 4, 8, 16, and 32. On each node, either one, two, or four

processes are run; if a node does not use all four processes, the unused processes are kept idle. We measure parallel

performance by the speedup and efficiency of the results. If Tp(N) is defined as the wall clock time for a problem

of fixed size N using p processes, the speedup of the code from 1 to p processes is defined as Sp = T1(N)/Tp(N).

Since ideally a run on p processes is p times as fast as the run on 1 process, Sp has the optimal value Sp = p. The

efficiency is then defined as Ep = Sp/p, and thus has an optimal value of 1 [4, 3].

Table 2 summarizes the results of using only one process per node for each of the four cases, with the exception

of p = 64, which uses two processes per node, and p = 128, which utilizes all four processes per node. Reading

across, we see that by doubling the number of processes used for the problem, we cut the time taken by the

code approximately in half up to p = 8, which shows good speedup for the problem. This can be further seen

in the efficiency chart, which shows an efficiency Ep > 0.8 for all cases up to p = 8. There is some efficiency

degradation when more processes are used, but this is not unexpected, especially with the cases with fewer DOF.

The corresponding speedup plot in Figure 3 (a) and efficiency plot in Figure 3 (b) give a graphical representation

of the speedup and efficiency for each process.

Tables 3 and 4 summarize similar results using two and four processes per node, respectively. The most

important reuslt to take is that there is no difference between corresponding times for different numbers of

processes per node; that is, for any fixed number of processes p, the code will run equally as fast, regardless of

the number of nodes between which the processes are divided. This result tells us that to obtain the absolute

minimum time needed to run the code, we should use as many processes as we have cores available to us; indeed,

looking at Table 4, we see that using the maximum number of cores available—p = 64 for h = 0.031250 and

p = 128 for h = 0.015625, with the difference being due to the maximum number of subdomains into which the

spatial mesh can be split—gives us the smallest execution time in each case.

Table 5 reorganizes the data to make it easier to analyze the scalability of the code when using MVAPICH2.

We see that by moving horizontally across the table, doubling the number of nodes, we approximately halve

the wall clock time; similarly, we see that by moving downwards, doubling the number of cores per node, we

approximately halve the wall clock time. Combined, these results show that the code exhibits good scalability,

and that it is most efficient to run the code with the maximum number of cores available.

9

Table 2: Performance using MVAPICH2 by number of processes used with 1 process per node, except for p = 64

which uses 2 processes per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:10:13 00:35:51 00:19:12 00:10:32 00:06:44 00:04:24 00:03:47 N/A

K = 64, h = 0.015625 09:23:19 04:33:45 02:20:42 01:13:04 00:40:11 00:21:35 00:13:38 N/A

K = 256, h = 0.031250 17:08:18 08:36:25 04:20:25 02:12:07 01:13:46 00:42:16 00:23:03 N/A

K = 256, h = 0.015625 136:43:01 68:41:39 34:53:16 17:38:10 08:54:06 04:27:59 02:31:02 01:26:25

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.9588 3.6565 6.6694 10.4215 15.9668 18.5570 N/A

K = 64, h = 0.015625 1.0000 2.0578 4.0035 7.7101 14.0199 26.0912 41.3241 N/A

K = 256, h = 0.031250 1.0000 1.9912 3.9487 7.7837 13.9393 24.3280 44.6091 N/A

K = 256, h = 0.015625 1.0000 1.9902 3.9188 7.7521 15.3585 30.6107 54.3109 94.9290

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.9794 0.9141 0.8337 0.6513 0.4990 0.2900 N/A

K = 64, h = 0.015625 1.0000 1.0289 1.0009 0.9638 0.8762 0.8153 0.6457 N/A

K = 256, h = 0.031250 1.0000 0.9956 0.9872 0.9730 0.8712 0.7603 0.6970 N/A

K = 256, h = 0.015625 1.0000 0.9951 0.9797 0.9690 0.9599 0.9566 0.8486 0.7416

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3: Performance using MVAPICH2 by number of processes used with 1 process per node, except for p = 64

which uses 2 processes per node and p = 128 which uses 4 processes per node.

10

Table 3: Performance using MVAPICH2 by number of processes used with 2 processes per node, except for p = 1

which uses 1 process per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:10:13 00:36:02 00:18:56 00:10:38 00:06:46 00:04:23 00:03:47 N/A

K = 64, h = 0.015625 09:23:19 04:34:42 02:21:39 01:13:11 00:40:21 00:22:41 00:13:38 N/A

K = 256, h = 0.031250 17:08:18 08:37:35 04:20:36 02:12:19 01:14:36 00:42:45 00:23:03 N/A

K = 256, h = 0.015625 136:43:01 68:53:33 34:42:25 17:41:56 08:50:45 04:30:56 02:31:02 01:26:25

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.9486 3.7074 6.6056 10.3886 16.0233 18.5570 N/A

K = 64, h = 0.015625 1.0000 2.0506 3.9770 7.6979 13.9586 24.8370 41.3241 N/A

K = 256, h = 0.031250 1.0000 1.9868 3.9459 7.7712 13.7831 24.0567 44.6091 N/A

K = 256, h = 0.015625 1.0000 1.9845 3.9392 7.7246 15.4555 30.2778 54.3109 94.9290

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.9743 0.9268 0.8257 0.6493 0.5007 0.2900 N/A

K = 64, h = 0.015625 1.0000 1.0253 0.9943 0.9622 0.8724 0.7762 0.6457 N/A

K = 256, h = 0.031250 1.0000 0.9934 0.9865 0.9714 0.8614 0.7518 0.6970 N/A

K = 256, h = 0.015625 1.0000 0.9922 0.9848 0.9656 0.9660 0.9462 0.8486 0.7416

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4: Performance using MVAPICH2 by number of processes used with 2 processes per node, except for p = 1

which uses 1 process per node and p = 128 which uses 4 processes per node.

11

Table 4: Performance using MVAPICH2 by number of processes used with 4 processes per node, except for p = 1

which uses 1 process per node and p = 2 which uses 2 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:10:13 00:36:02 00:19:10 00:10:40 00:06:48 00:04:36 00:03:31 N/A

K = 64, h = 0.015625 09:23:19 04:34:42 02:20:45 01:13:28 00:38:47 00:22:16 00:14:09 N/A

K = 256, h = 0.031250 17:08:18 08:37:35 04:20:04 02:12:13 01:13:48 00:42:06 00:23:32 N/A

K = 256, h = 0.015625 136:43:01 68:53:33 35:34:47 18:35:31 08:51:48 05:12:34 02:29:47 01:26:25

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.9486 3.6639 6.5878 10.3171 15.2728 20.0143 N/A

K = 64, h = 0.015625 1.0000 2.0506 4.0021 7.6683 14.5248 25.3043 39.8329 N/A

K = 256, h = 0.031250 1.0000 1.9868 3.9539 7.7772 13.9328 24.4234 43.6899 N/A

K = 256, h = 0.015625 1.0000 1.9845 3.8425 7.3535 15.4248 30.5144 54.7667 94.9290

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.9743 0.9160 0.8235 0.6448 0.4773 0.3127 N/A

K = 64, h = 0.015625 1.0000 1.0253 1.0005 0.9585 0.9078 0.7908 0.6224 N/A

K = 256, h = 0.031250 1.0000 0.9934 0.9885 0.9722 0.8708 0.7632 0.6827 N/A

K = 256, h = 0.015625 1.0000 0.9922 0.9606 0.9192 0.9641 0.9536 0.8557 0.7416

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5: Performance using MVAPICH2 by number of processes used with 4 processes per node, except for p = 1

which uses 1 process per node and p = 2 which uses 2 processes per node.

12

Table 5: Wall clock time in HH:MM:SS using MVAPICH2 for the solution of four cases of velocity and spatial meshes

using 1, 2, 4, 8, 16, and 32 compute nodes with 1, 2, and 4 processes per node.

(a) Coarse spatial mesh with h = 0.031250, coarse velocity resolution K = 8× 8, DOF = 163,840

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 01:10:13 00:35:51 00:19:12 00:10:32 00:06:44 00:04:24

2 processes per node 00:36:02 00:18:56 00:10:38 00:06:46 00:04:23 00:03:47

4 processes per node 00:19:10 00:10:40 00:06:48 00:04:36 00:03:31 N/A

(b) Fine spatial mesh with h = 0.015625, coarse velocity resolution K = 8× 8, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 09:23:19 04:33:45 02:20:42 01:13:04 00:40:11 00:21:35

2 processes per node 04:34:42 02:21:39 01:13:11 00:40:21 00:22:41 00:13:38

4 processes per node 02:20:45 01:13:28 00:38:47 00:22:16 00:14:09 N/A

(c) Coarse spatial mesh with h = 0.031250, fine velocity resolution K = 16× 16, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 17:08:18 08:36:25 04:20:25 02:12:07 01:13:46 00:42:16

2 processes per node 08:37:35 04:20:36 02:12:19 01:14:36 00:42:45 00:23:03

4 processes per node 04:20:04 02:12:13 01:13:48 00:42:06 00:23:32 N/A

(d) Fine spatial mesh with h = 0.015625, fine velocity resolution K = 16× 16, DOF = 2,621,440

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 136:43:01 68:41:39 34:53:16 17:38:10 08:54:06 04:27:59

2 processes per node 68:53:33 34:42:25 17:41:56 08:50:45 04:30:56 02:31:02

4 processes per node 35:34:47 18:35:31 08:51:48 04:28:49 02:29:47 01:26:25

13

4.3 Parallel Performance Study Using OpenMPI

As in Section 4.2, we test each of the four cases by using one, two, and four processes per node, where unused

processes are kept idle on each node used. The results of using one process per node are given in Table 6. By

reading horizontally, we immediately see that there are significant problems regarding the first two (K = 64)

cases; doubling the number of processes from p = 1 to p = 2 yields an insignificant decrease in the time taken

to run the code. As a result, the efficiency for the first two cases is extremely poor. The second two (K = 256)

cases, however, show results very close to those seen when using MVAPICH2, as per Table 2.

Table 7 summarizes results of using two processes per node. While this fixes the problem in the first two

cases when going from p = 1 to p = 2, there is a similar, though less pronounced, problem when moving from

p = 4 to p = 8. The first case has an efficiency of 0.7543, while the second has an efficiency of 0.5445. These

are significantly below the corresponding values for MVAPICH2 given in Table 3, which are 0.8257 and 0.9622,

respectively. Again, the latter two cases exhibit speedup similar to that when using MVAPICH2.

Table 8 summarizes results when using all four processes per node. The results here are significantly better

than the previous results when using OpenMPI, though the times when using MVAPICH2 are still slightly lower

for the first two cases.

Table 9 reorganizes the data to make it easier to see the previously mentioned problems with scalability when

using OpenMPI. We can also compare this to Table 5 to see that in nearly every case, MVAPICH2 yields a lower

wall clock time than OpenMPI, sometimes very significantly so.

14

Table 6: Performance using OpenMPI by number of processes used with 1 process per node, except for p = 64 which

uses 2 processes per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:09:33 01:07:28 00:30:53 00:18:52 00:07:19 00:04:29 00:03:32 N/A

K = 64, h = 0.015625 09:04:22 08:50:10 03:56:18 02:18:05 01:11:05 00:26:40 00:13:33 00:10:58

K = 256, h = 0.031250 17:07:52 08:37:50 04:21:24 02:12:45 01:13:57 00:43:21 00:23:07 N/A

K = 256, h = 0.015625 136:46:48 68:24:00 34:25:21 17:18:34 08:50:00 04:28:56 02:31:36 01:27:07

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.0309 2.2515 3.6873 9.5154 15.5003 19.6543 N/A

K = 64, h = 0.015625 1.0000 1.0268 2.3036 3.9421 7.6577 20.4192 40.1831 49.6300

K = 256, h = 0.031250 1.0000 1.9849 3.9322 7.7429 13.9006 23.7121 44.4525 N/A

K = 256, h = 0.015625 1.0000 1.9997 3.9736 7.9020 15.4840 30.5152 54.1368 94.2054

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.5154 0.5629 0.4609 0.5947 0.4844 0.3071 N/A

K = 64, h = 0.015625 1.0000 0.5134 0.5759 0.4928 0.4786 0.6381 0.6279 0.3877

K = 256, h = 0.031250 1.0000 0.9925 0.9830 0.9679 0.8688 0.7410 0.6946 N/A

K = 256, h = 0.015625 1.0000 0.9999 0.9934 0.9878 0.9678 0.9536 0.8459 0.7360

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 6: Performance using OpenMPI by number of processes used with 1 process per node, except for p = 64

which uses 2 processes per node and p = 128 which uses 4 processes per node.

15

Table 7: Performance using OpenMPI by number of processes used with 2 processes per node, except for p = 1 which

uses 1 process per node and p = 128 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:09:27 00:36:39 00:19:39 00:11:32 00:07:21 00:05:16 00:03:32 N/A

K = 64, h = 0.015625 09:04:22 04:36:41 02:28:12 02:04:58 01:04:20 00:23:20 00:13:33 00:10:58

K = 256, h = 0.031250 17:07:52 08:42:29 04:23:45 02:13:24 01:14:28 00:42:03 00:23:07 N/A

K = 256, h = 0.015625 136:46:48 69:04:26 34:43:21 17:28:31 08:54:06 04:30:17 02:31:36 01:27:07

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.8979 3.5403 6.0341 9.4686 13.2262 19.6543 N/A

K = 64, h = 0.015625 1.0000 1.9675 3.6731 4.3563 8.4614 23.3285 40.1831 49.6300

K = 256, h = 0.031250 1.0000 1.9672 3.8970 7.7055 13.8037 24.4480 44.4525 N/A

K = 256, h = 0.015625 1.0000 1.9802 3.9392 7.8271 15.3655 30.3643 54.1368 94.2054

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.9490 0.8851 0.7543 0.5918 0.4133 0.3071 N/A

K = 64, h = 0.015625 1.0000 0.9837 0.9183 0.5445 0.5288 0.7290 0.6279 0.3877

K = 256, h = 0.031250 1.0000 0.9836 0.9743 0.9632 0.8627 0.7640 0.6946 N/A

K = 256, h = 0.015625 1.0000 0.9901 0.9848 0.9784 0.9603 0.9489 0.8459 0.7360

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 7: Performance using OpenMPI by number of processes used with 2 processes per node, except for p = 1

which uses 1 process per node and p = 128 which uses 4 processes per node.

16

Table 8: Performance using OpenMPI by number of processes used with 4 processes per node, except for p = 1 which

uses 1 process per node and p = 2 which uses 2 processes per node.

(a) Wall clock time in HH:MM:SS

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 01:09:33 00:36:39 00:20:14 00:11:39 00:07:36 00:05:21 00:03:49 N/A

K = 64, h = 0.015625 09:04:22 04:36:41 02:22:47 01:28:04 00:56:35 00:23:37 00:14:40 00:10:57

K = 256, h = 0.031250 17:07:52 08:42:29 04:23:53 02:14:37 01:14:50 00:42:13 00:23:32 N/A

K = 256, h = 0.015625 136:46:48 69:04:26 34:56:30 17:31:03 08:53:42 04:31:19 02:30:27 01:27:07

(b) Observed speedup Sp

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 1.8979 3.4379 5.9706 9.1531 12.9858 18.2347 N/A

K = 64, h = 0.015625 1.0000 1.9675 3.8127 6.1813 9.6218 23.0447 37.1168 49.6300

K = 256, h = 0.031250 1.0000 1.9672 3.8952 7.6357 13.7354 24.3428 43.6665 N/A

K = 256, h = 0.015625 1.0000 1.9802 3.9145 7.8082 15.3771 30.2486 54.5462 94.2054

(c) Observed efficiency Ep

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

K = 64, h = 0.031250 1.0000 0.9490 0.8595 0.7463 0.5721 0.4058 0.2849 N/A

K = 64, h = 0.015625 1.0000 0.9837 0.9532 0.7727 0.6014 0.7201 0.5799 0.3877

K = 256, h = 0.031250 1.0000 0.9836 0.9738 0.9545 0.8585 0.7607 0.6823 N/A

K = 256, h = 0.015625 1.0000 0.9901 0.9786 0.9760 0.9611 0.9453 0.8523 0.7360

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 8: Performance using OpenMPI by number of processes used with 4 processes per node, except for p = 1

which uses 1 process per node and p = 2 which uses 2 processes per node.

17

Table 9: Wall clock time in HH:MM:SS using OpenMPI for the solution of four cases of velocity and spatial meshes

using 1, 2, 4, 8, 16, and 32 compute nodes with 1, 2, and 4 processes per node.

(a) Coarse spatial mesh with h = 0.031250, coarse velocity resolution K = 8× 8, DOF = 163,840

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 01:09:33 01:07:28 00:30:53 00:18:52 00:07:19 00:04:29

2 processes per node 00:36:39 00:19:39 00:11:32 00:07:21 00:05:16 00:03:32

4 processes per node 00:20:14 00:11:39 00:07:36 00:05:21 00:03:49 N/A

(b) Fine spatial mesh with h = 0.015625, coarse velocity resolution K = 8× 8, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 09:04:22 08:50:10 03:56:18 02:18:05 01:11:05 00:26:40

2 processes per node 04:36:41 02:28:12 02:04:58 01:04:20 00:23:20 00:13:33

4 processes per node 02:22:47 01:28:04 00:56:35 00:23:37 00:14:40 00:10:57

(c) Coarse spatial mesh with h = 0.031250, fine velocity resolution K = 16× 16, DOF = 655,360

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 17:07:52 08:37:50 04:21:24 02:12:45 01:13:57 00:43:21

2 processes per node 08:42:29 04:23:45 02:13:24 01:14:28 00:42:03 00:23:07

4 processes per node 04:23:45 02:13:24 01:14:28 00:42:03 00:23:07 N/A

(d) Fine spatial mesh with h = 0.015625, fine velocity resolution K = 16× 16, DOF = 2,621,440

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 136:46:48 68:24:00 34:25:21 17:18:34 08:50:00 04:28:56

2 processes per node 69:04:26 34:43:21 17:28:31 08:54:06 04:30:17 02:31:36

4 processes per node 34:56:30 17:31:03 08:53:42 04:31:19 02:30:27 01:27:07

18

Acknowledgements

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility

(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant

no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional substantial support

from the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on

HPCF and the projects using its resources.

I also thank UMBC for providing assistance for this research through an Undergraduate Research Award.

References

[1] Matthias K. Gobbert and Timothy S. Cale. A kinetic transport and reaction model and simulator for rarefied

gas flow in the transition regime. J. Comput. Phys., vol. 213, pp. 591–612, 2006.

[2] Matthias K. Gobbert, Vinay Prasad, and Timothy S. Cale. Modeling and simulation of atomic layer deposition

at the feature scale. J. Vac. Sci. Technol. B, vol. 20, no. 3, pp. 1031–1043, 2002.

[3] Matthias K. Gobbert, Samuel G. Webster, and Timothy S. Cale. A Galerkin method for the simulation of

the transient 2-D/2-D and 3-D/3-D linear Boltzmann equation. J. Sci. Comput., vol. 30, no. 2, pp. 237–273,

2007.

[4] Michael J. Reid and Matthias K. Gobbert. Parallel performance studies for a hyperbolic test problem. Technical

Report HPCF–2008–3, UMBC High Performance Computing Facility, University of Maryland, Baltimore

County, 2008.

[5] Jean-François Remacle, Joseph E. Flaherty, and Mark S. Shephard. An adaptive discontinuous Galerkin

technique with an orthogonal basis applied to compressible flow problems. SIAM Rev., vol. 45, no. 1, pp. 53–

72, 2003.

19

