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Abstract

In this article we present our three dimensional mathematical model of collective cell migra-

tion and describe the method by which we developed and implemented this package on the High

Performance Computing Facility at UMBC. Specifically, we describe our motivation and the

results of a new interface to define initial conditions for the three dimensional system, specify

implementation constraints and solutions for the HPCF regarding post-processing, and outline

several implementation changes that we made in order to achieve improved computation time.

1 Introduction

1.1 Motivation

Cell migration plays an important role in normal and pathological development [2, 7]. It is also

an important factor for a proper immune response, wound healing, embryonic development and a

number of other processes. In some processes individual cells migrate independently of other cells

in the system. In other scenarios, groups of cells migrate together in clusters. Moreover, collective

cell migration plays an important part in morphological changes during development, repair to

injured tissue, and angiogenesis [4, 7]. When gone awry it can lead to cancer metastasis and other

human syndromes. Despite the prevalence of cell migration throughout biology, little is known

about the underlying mechanism by which cells coordinate their movements. This is especially

true of collective cell migrations in which motile and non-motile cells translocate together. This
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motivates the development of a model to capture the biophysical interactions in a cluster of cells

that migrate together.

To investigate this mechanism we turn to a specific cell migration process within the fruit fly

Drosophila melanogaster. Humans and Drosophila have a high degree of conservation in genes

that have shown to be associated with disease [8]. Specifically, the fly can provide information

on genetic processes involved in cell migration. Fruit flies also have a short generation time, high

fecundity, tissues that can be observed live under a microscope, and are amenable to numerous

genetic techniques [11]. This makes Drosophila especially useful for elucidating genetic mechanisms

of physiological processes, which ultimately allows researchers to gain valuable insight into the

workings of human systems.

1.2 Mathematical Background and Modeling Approach

Mathematically, work has been done to model the mechanism of cell migration in a number of

ways and from various perspectives [4,10,12]. Complex individual cell models have been developed,

but are too computationally expensive to track a cluster or would be difficult to implement for this

system due to a lack of quantitative data. Cell automata models such as Cellular Potts Models exist.

These models use energy minimization techniques and typically include growth dynamics that may

not be applicable to how we intend to model this system. Other models have been developed that

approach cell migration from the context of the dynamics of cell sorting [3]. However, these models

were also developed to capture morphological changes at the cellular level. This perspective may

not be directly applicable, and would add complexity that could be computationally expensive.

Another typical approach used to model problems like this would be a PDE continuum model.

However, in our system the biologists have observed that there are a specific number of discrete

border cells that behave differently from other cells in the system. This is why we ultimately

decided to model the cells with a system with ODEs, where each cell has a corresponding ODE

that tracks the position of it in time. Yamao developed a force-based mathematical model that is

of this form [4]. This model simulates the migration of cells by computing the forces of adhesion,

repulsion, migration and stochasticity in a related system of loosely connected cells. However, this

construct does not capture the migration of a tightly connected cluster of cells. Also, this model was

predicated on a system with a single cell type. These differences motivated the construction of a

new mathematical model that tracks the position of cells as they change due to forces from adjacent

cells and that provides the necessary flexibility to capture the heterogeneous cell population intrinsic

to the developing egg chamber.
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Figure 1: Oogenesis from stage 8 to early stage 10, which includes the border cell cluster migration.

The egg chambers are approximately 200nm in length and this process takes approximately 4-5

hours [9]. At the start of stage 8 of Drosophila oogenesis, polar cells (green) lie in the follicular

epithelium of developing egg chambers. The anterior polar cells recruit neighboring epithelial cells

to differentiate into border cells (red). In stage 9 the border and polar cells form a cluster that

becomes autonomous of the epithelium. These cells migrate as a collective and by stage 10 have

traversed the egg chamber and arrive at the developing oocyte.

Previously we have developed a two-dimensional mathematical model of the plane through which

the cluster migrates [5] based on this approach. It allowed us to make some hypotheses regarding

migratory behavior, but also identified a need to scale our model into three dimensions so that

we may tackle the questions that we initially set out to investigate, namely formation, rotation,

and behavior of the cluster during migration. Therefore, we expanded our model and altered our

mathematical framework so that we could capture these phenomena.

The expansion of our model from two to three dimensions imposed both numerical and math-

ematical challenges, which I outline in detail within this article. The goal of the remainder of

this section is to constitute an abridged explanation of the necessary biological background and to

summarize the two-dimensional mathematical model that we have previously developed.

1.3 Collective cell migration

During oogenesis in Drosophila, epithelial cells delaminate, form a cluster, and translocate as a

collective in the direction of the oocyte, as depicted in Figure 1. Initially, these cells lie in the

follicular epithelium at the anterior end of the egg chamber. Two polar cells (red), secrete a diffusible

ligand that recruits nearby follicle cells to differentiate into border cells (blue). The polar cells and
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border cells coalesce and migrate toward the posterior of the egg chamber, where the developing

oocyte sits. This cluster then migrates between the nurse cells, which fill the space within the egg

chamber. Effective migration of the cluster across the egg chamber is essential to the development

of the egg. The border cells carry with them the nonmotile polar cells and move in response to a

chemoattractive gradient in the egg chamber [7].

1.4 Mathematical construct

Previous work has been done to create a mathematical model of individually migrating neural crest

cells [4], as previously discussed. We have developed a similar mathematical model that tracks the

repulsion, adhesive and migratory forces between cells and includes a small degree of stochastic

fluctuation of each Identical Math Cell, or IMC, according to Figure 2. Our formulation is different

from previous models because we have applied the model to a heterogeneous cell population by

assigning the appropriate properties to different types of IMCs and we aggregate numerous IMCs

to capture the dynamics of the nurse cells, which are much larger than the migratory cells. We

accomplish this aggregation by increasing the adhesion between the individual IMCs that make

up each nurse cell. Within these IMCs, stochastic forces and reactive forces are maintained to

account for the observed integrity and malleability of nurse cells. After determining the important

forces of our system and developing the construct depicted in Figure 2, we were able to write down

differential equations to track the position of each IMC in time. These differential equations capture

how the forces cause the position of the cells, U = [x, y]T in two dimensions or U = [x, y, z]T in

three dimensions, to change in time as the forces acting upon each cell changes. We compute these

differential equations with a forward Euler method. These equations and functional definitions define

how we model the system, and follows from the construct outlined in Figure 2. These equations are

shown in Figure 3.

These equations and definitions constitute our two-dimensional mathematical model. The last

three definitions describe how forces are defined based on the cell types that are interacting. Specif-

ically, Equation 1 represents the change in cell position (cell position is U), in time, t. The change

in cell position, Ui, is the sum of all forces on a particular cell, i. This is computed by summing

the adhesive forces, F ai,j , and repulsive forces, F ri,j , between cell i and all of cell i’s neighbors (which

are the j’s), and by accounting for stochastic fluctuation, F si . Additionally, if cell i, or cell j is

a migratory cell, then there will also be a migratory force, Fmi,j , that is taken into account. The

migratory force is 0 if the migrating cell is not a border cell (i /∈ B: set of border cells) or the cell

it is interacting with is not a nurse cell (j /∈ Nk: the list of nurse cells). Moreover, the strength of
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Figure 2: The forces between two adjacent IMCs. The repulsive force pushes the cells apart with

equal magnitude and opposite direction. The adhesive force acts to attract IMCs. The migratory

force directs migratory cells up the gradient forcing adjacent cells in the opposite direction. The

stochastic force randomly perturbs the position of each IMC and is not dependent on position. These

dynamics result in overlap of the domains of neighboring IMCs corresponding to the diameter of an

IMC minus the 2-norm of the x, y positions of each IMC.
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µ
dUi
dt

=
∑
j∈Aj

(F ai,j + F ri,j) +
∑
j∈Mj

Fmi,j + F si , (1)

F ai,j = Cai,jρ
ε
i,jH(ρεi,j)(di,j), (2)

F ri,j = Cai,jρ
0
i,jH(ρ0i,j)(−di,j), (3)

Fmi,j = Cmσi

(
d⊥i,j

∇fchemo
||∇fchemo||

)
, (4)

di,j =
(Ui − Uj)
||Ui − Uj ||

, di,j · d⊥i,j = 0, (5)

ρεi,j = D(1 + ε)− ||Ui − Uj ||, (6)

F si = Csζ(i). (7)

Cai,j =



βa i, j different cell type

βaMa
B i or j ∈ B

βaMa
P i, j ∈ P

βaMa
P,B i or j ∈ P and i or j ∈ B

βaMa
E i, j ∈ E

βaMa
N i or j ∈ N1 or N2 or ... or Nk

(8)

Cri,j =


βr i, j different cell type

βrM r
B,Nk

i or j ∈ B and i or j ∈ Nk

βrM r
P i or j ∈ P

(9)

Cmi,j =

{
1 i ∈ B, j ∈ Nk

0 otherwise
(10)

Figure 3: Equations used to compute the forces and the resulting displacements of the IMCs.

Equation (1) is an ordinary differential equation that captures the change in the position of cell

i due to the forces applied to cell i. These forces depend on the position of the cell, and the

surrounding cells. Ui is the position of cell i, and Cai,j , C
r
i,j , C

m
i,j are linear scalars that depend on

IMC type (described below the equations), and ζ(i) is a stochastic force generator that has x- and y-

components (also z components in the three dimensional model) taken from a Gaussian distribution

with mean zero and unit standard deviation. fchemo is the distribution of chemoattractants in space

and affects the magnitude and direction of the migratory force. Ai is the set of all IMCs in the

domain. σi determines the sign of the migratory force and is +1 for migratory IMCs and is −1 for

non-migratory IMCs. The vector di,j is the unit vector from cell j in the direction of cell i. D is

the diameter of an IMC. The value ρεi,j is the overlap of domains of cells i and j for the repulsive

force and extended for the adhesive force.
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Figure 4: The initial conditions of the system, with manually defined IMC type and position. The

cluster is located on the anterior end of the chamber, inside of the epithelium.

adhesion,Ca and strength of repulsion,Cr, is dictated by which type of cells are interacting (e.g. two

polar cells adhere more strongly to one another than a polar cell and a nurse cell). The adhesion

and repulsive forces are also governed by the ρεi,jH(ρεi,j) term. Here ε represents the distance beyond

the edge of the cell that the force can act. For example, the repulsion force is always such that

ε = 0, because the force will not act when the cells are not in contact (i.e. the distance between the

surface of the cells is more than 0). ρi,j is the overlap of the domains of cells i and j. The direction

of these forces comes from di,j , which is the unit vector from cell i in the direction of cell j.

We non-dimensionalized this system for use in our computational model, so that we could better

understand the components of the system and how changing any one component influences other

aspects of the system [5]. Here we defined the initial position and type of each IMC manually.

This was possible because of our limited number of IMCs. The end result was a two-dimensional

egg chamber that captured some of the dynamics of the system, as seen in Figure 4. However, the

two-dimensional model did not capture the rotation of the border cell cluster as it migrated. Our

desire to investigate this phenomenon motivated our construction of the three-dimensional model.

Moreover, when we entered three dimensions it was no longer feasible to manually define the initial

conditions for each IMC in the code directly, which motivated us to develop a new way to specify

initial conditions, the result of which is outlined in Section 2.

1.5 Implementation Overview

The file package that we have developed to execute this computation is divided into three subpack-

ages. The first subpackage is a GUI which is used to define the initial conditions of the cells in

7



the system (which is detailed in the next section). This package outputs a data file of the specified

initial conditions. The second subpackage is where the model is implemented and computed. It

outputs a binary file that saves each IMC’s position in space at each time point that the model is

computed, and is where we hope to achieve the numerical speed up. The third part of the package

goes back over this binary file and plots all of the IMCs at each time point and then saves these

plots as image files, which can be concatenated into a video. This process required a new approach

when implemented on the HPCF, as described in Section 4. An overview of the file package is shown

in Figure 5.

Define

Initial

Conditions

Evaluate

Model

File and

Image

Processing

Figure 5: Package overview. The first subpackage has been used to create a library of initial

conditions which a user can direct the second subpackage to use. The second part of the package

uses the given initial conditions to solve the set of coupled ODEs that define the cells’ movements

and save the positions. The third subpackage accepts the data provided by the second and produces

images of the domain as it evolves.

2 Objective: Specification of Initial IMC Positions in 3D

Our mathematical model tracks the position of each Identical Math Cell, or IMC, in time. However,

in order for this calculation to occur we must first have well defined initial conditions. In two

dimensions, we were able to specify the initial cell position and type by looping over the cells in

the plane and manually setting these parameters. However, in three dimensions, we have many

more cells, so hardcoding initial conditions was no longer sensible. Thus, our first challenge of the

transition from two to three dimensions was to find a way to determine the initial conditions of all

of the IMCs.

To solve this problem we developed a graphical user interface to interact with Matlab. This GUI

takes directed input from the user and outputs the desired initial conditions into a file, which is then

uploaded to our computational engine to undergo calculation. This methodology also enabled us to

maintain the necessary flexibility so that we can perform all projected computational experiments.

Matlab offers a function, ginput(), that enables user interaction by allowing a user to click on a
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Figure 6: Graphical representation of how we utilize our GUI to define the three dimensional

positions of the IMCs by placing the cells directly into two dimensional slices along the third

dimension.

figure and then save the x and y position of each click in vectors. Our goal was to use this function

to place IMCs by allowing a user to click on the position of all the cells in each ‘z-slice’, save those

initial conditions, and then step through the remaining slices until all of the IMCs have been placed.

Figure 6 shows the three dimensional representation of this process for three the slices of the egg

chamber.

However, a call to ginput() forces Matlab to stay in the function until the user reached a

breakpoint, or presses the return key to leave. This was problematic because we wanted to plot

each IMC as the user clicked on its location so that the user could visualize where they had placed

the IMC. To address this issue we obtained source code for ginput() and rewrote part of it so

that it would be useful to us. Part of my revision included adding a call to circplot(x,y,r), which

plots a circle around a point centered at x, y with radius r after each click, which allows the user

to see where the circle actually sits in the plane. We then integrated this code into a cell specifier

function, which is used to define the positions of the IMCs when called by a higher level function,

which organizes the output and operates the GUI. This function can create a set of initial conditions

that can be manually loaded into the script that computes the model, or it can be called by this
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Figure 7: The final result after fully executing first subpackage. A semi-lateral view of the compu-

tational egg chamber, with the epithelial cells plotted in transparent green and the cluster of six

border cells plotted in opaque green. The polar cells are plotted as well, but are located at the

center of the cluster, mostly out of view.

script to create new initial conditions. Specifically, the call: ‘ThreeD-CPM-gen(10,15,15,1)’ will ask

the user to create new ICs with the GUI of size 10 (depth) by 15 (length) by 15 (width), but the call

‘ThreeD-CPM-gen(10,15,15,‘default.mat’)’ uses previously created ICs that are saved in a file called

‘default.mat’ in the same folder. After fully implementing this code and executing the subpackage

we obtain initial conditions like those plotted in Figure 7 and a .mat file with the coordinates of

each IMC in the system.

3 Objective: Numerical Challenges and Implementation

Once we developed and fully implemented the software package we recognized that there was bot-

tleneck in runtime during the middle step, where the simulations are being generated. Indeed, the

implementation used to build initial conditions had undergone a complete revision when scaled from

the two dimensional model to the three dimensional model. During this revision runtime was able to
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Method 1 Method 2

Runtime (H:M:S) 18:18:58 09:21:27

Runtime (normalized %) 100.0 51.09

Table 1: Runtime for our computational package. These run times correspond to a computational

timespan from t = 0 to t = 1 in the forward Euler step and all associated overhead with the function.

be virtually eliminated (the runtime is faster than a user can click, and is therefore not a problem).

Additionally, we rarely utilized this part of the package once a library of initial conditions were cre-

ated and stored in data files. On the other end we find that the post-processing is in fact very slow.

However, high quality post processing is only performed intermittently. Also, due to the constraints

placed on the code by the system, which have been previously discussed1, there is probably little to

be gained by devoting a large amount of time to speeding up this process. However, we found that

there was was both a need and the capability to speed up the part of the code that performs the

simulation.

In order to gauge the improvement in runtime of successive modifications in the code we have

made each modification and measured the run time for the overhead and computation from t = 0

to t = 1 with a time step of 0.004. Table 1 shows the improvement in run time as successive

modifications have been made in both seconds and as a percentage relative to the initial runtime

in Method 1. Method 1 was the code before the if/else statements were optimized and Method 2

was after. Specifically, there are if/elseif statements that alter the forces between certain IMCs,

which we manipulate so that they are biologically accurate. To improve this aspect of the code we

have partially vectorized the calls to ismember(X,Y), which returns a logical if X is a member

of Y. In fact, counterintuitively, this change actually increased the number of if-statements, but

decreased the total runtime because it got responses from the statements faster. We also made

some improvements to the structure of the code that calculates migratory force, but this is not

considered to be a major factor because this portion of code is infrequently entered.

Ultimately, we saw some improvement of the runtime, as shown in Table 1. However, the nature

of the ODEs forces the time step to remain small. No matter how much we improve the runtime

of a single time step we remain limited by the sheer number of time steps required to complete a

simulation. For this reason, I believe that this improvement in runtime is indeed significant. Though,
1Another constraint on the post-processing was that I desired to have a method which worked on the cluster and

on my local machine, where I am running Matlab R2011a on a 64bit Mac Intel). This led me to shy away from

options not available before 2012 and limited my rendering options.
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an even greater improvement may be achieved if the stiffness of the functions were fully characterized

and cleverly subverted. By this, we mean that each ODE could be individually optimized to take

larger time steps during intervals in which it is experiencing little change. However, since all of the

ODEs are coupled, they need to step together in time. Then, because of the large number of ODEs

it is likely that at least one is changing rapidly at any time during the simulation, which in turn

drives the need for a global small time step.

4 Objective: Implementing Image Processing on Tara

Figure 5 depicts an overview of the structure of the software package. During post-processing we

loop over the binary file produced by the previous section of code. During each iteration we plot

the cells and use Matlab’s function getframe() to save the frame to the end of an avi file using

one of various methods, namely avifile() or videowriter(). However, this method (specifically

getframe(), which each of these functions rely on) requires a figure to be rendered onto the screen

in order to operate the undocumented Matlab function hardcopy(), which is what Matlab uses to

actually obtain figure properties from figures. Because tara operates Matlab without a display or

desktop, the method that we had been using would not work so we needed to find a new way to

process our simulation.

Previously, users on tara have created each figure and exported the figures as .png, .jpg, or

.tif files (unpublished). However, when Matlab exports figures on tara it is unable to extract the

transparency data (which is imperative to have for proper interpretation of the results in the project,

as shown in Figure 8) known as ‘AlphaData’ when it saves the figure in these file types because

a figure has not been rendered. When searching for a solution I found that many people have

encountered this problem with Matlab, and most used the aforementioned getframe() function to

solve their problem 2. However, as discussed, this method would not work on tara.

Instead, I decided to use a function plot2svg() which takes a figure and exports to a Scalar

Vector Graphics, or svg, file. This filetype does not rely on the undocumented hardcopy() function

to get the transparency data and instead saves the data from each patch independently, so it works

with tara3. Once the figure is exported to an svg, I use system commands on tara to convert the

svg file into a png, which I can later turn into a video. Previously, several tara users have used a

bash script to turn an image sequence into a movie. However, I have found that using an application
2Other workarounds include changing the renderer, but tara does not have the OpenCL option.
3This function is available on the Mathworks file exchange:

http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures
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Figure 8: (A) Domain with appropriate transparency values. One may interpret the dynamics that

are occuring as the cluster makes its way through the center of the chamber. (B) An example of

a figure produced by tara, without appropriate transparency values. As the cluster moves into the

chamber it will no longer be visible.

like QuickTime Pro 7 or an open source application like Blender works well and allows for video

editing and scaling; available: http://www.blender.org. With plot2svg() in hand, a user on tara

can implement the following code to obtain an image sequence of png or jpg files with appropriate

transparency. The first block of code goes before the loop that creates each successive image to

create a directory and enable certain settings, and the second block of code goes inside of the loop

to save and process each image.

% this code sets up the directory and changes several settings, and

% goes before the start of the loop that will plot each image.

c = clock; % obtains time to create a directory with current time and date

directory = strcat(’movie’,’-’,date,’-’,num2str(c(4)),’-’,num2str(c(5)));

mkdir(directory)

fig = figure;

set(gcf,’visible’,’off’);

set(gcf,’Renderer’,’Zbuffer’) % tara does not have all available renderers.

% this code goes at the end of the for loop that produces each image,

% where it will save each file as an svg, convert this svg to a png, and

% then remove the old svg file.

filename = sprintf(’/img%d.svg’, frame); % creates next file in image sequence

whereto = [directory filename];
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plot2svg(whereto);

whereto2 = [whereto(1:end-3) ’png’];

system([’convert ’ whereto ’ ’ whereto2]); % tells system to convert file type

system([’rm ’ whereto]); %removes old file, which has large size

This code will save the svg file with the corresponding filename during each iteration. Then it will

call tara to convert the svg file to a png file with the same file identifier, and remove the initial

svg file. After the entire loop has executed the result will be a folder of an image sequence for the

simulation. This folder will contain frames that can be converted into a movie. Two such frames of

a run are shown in Figure 9. The result is comparable to that of the package before changes were

made, except that these additional steps, namely the call to plot2svg() and system calls to tara,

increase the total processing time. However, this appears to be the best viable option. Additionally,

this image sequence can easily be converted by an encoder or with the previously discussed software.

If QuickTime Pro 7 is available, simply click ‘File’, ‘Open Image Sequence’ and save the file in the

preferred file type.

Figure 9: Two frames from an image sequence of a run with six border cells, shown in green, and

two polar cells, which are shown in red, but not visible because they are the center of the migrating

cluster. This is representative of the final product of the numerical package. These are frames 64

and 539, which correspond to 0.1 and 1.1 hours, respectively.
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5 Conclusions

In this article we have described our three dimensional mathematical model of collective cell migra-

tion in Drosophila melanogaster and described the method by which we developed and implemented

this package on the High Performance Computing Facility at UMBC.

We have explained how we created a new interface to define initial conditions for the three

dimensional system, which may be useful to others who model cell migration or to those developing

a GUI for any purpose that requires feedback beyond what the normal capabilities of ginput() are.

We have also specified implementation constraints and solutions specific to the High Performance

Computing Facility at UMBC that may be helpful to others in need of a method to output image files

with transparency data on tara, or on any cluster with the same rendering constraints. Lastly, we

have outlined several modifications to the computational package that have successfully decreased

the computational runtime to under 50% of what we began with.

Thus, in the course of this project we have created a fully functional, system specific, imple-

mentation of our mathematical model that can be used to simulate a number modeling scenarios

all while decreasing the computational expense and improving the end result.
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