The HPCG Benchmark for Cluster Computing
Jack Slettebak
Department of Mathematics and Statistics, University of Maryland, Baltimore County

Abstract

Parallel algorithms, algorithms that use multiple cores/threads, and architectures
sit at the forefront of high performance computing as a means to decrease the execu-
tion time of a computationally intense problem. The maya computing cluster at the
University of Maryland, Baltimore County (UMBC) High Performance Computing Fa-
cility (HPCF) is a machine designed to take advantage of these algorithms and provide
a resource for the various researchers who require a powerful computer to solve the
problems they encounter in their research. To ensure that the entire system runs at
maximum performance, we plan to test each component of the cluster with the newly
developed Sandia High Performance Conjugate Gradient (HPCG) benchmark. It is
our hope that by using a consistent piece of software we can test components on the
system incrementally and compare their performances.

1 Introduction

The University of Maryland, Baltimore County (UMBC) High Performance Computing Fa-
cility (HPCF) offers the 240-node maya cluster, which comes equipped with several cutting-
edge technologies. This includes the Intel Xeon Phi 5110P Coprocessor and the high-end
NVIDIA K20 graphics processing unit (GPU) for heterogenous computing. Unfortunately,
while all of these technologies can be leveraged for parallel computing, they all have different
architectures and associated programming models. There is therefore a need to benchmark
each of these hardwares to better explore their potential.!

To test the maya cluster, I used the Sandia High Performance Conjugate Gradient
(HPCG) benchmark (www.hpcg-benchmark.org), which was recently developed to com-
plement the now thirty-five-year old High Performance LINPACK (HPL) benchmark. Both
solve a large system of linear equations, however for HPL benchmark the system is dense
while in HPCG the system is sparse. Accordingly and appropriately, the HPL benchmark
uses a direct solver, while the HPCG benchmark uses a pre-conditioned iterative solver. The
benchmark itself has been used by many of the top supercomputing clusters in the world,
and is convenient in that it offers a lot flexibiltiy in its implementation. As a result of this
flexibility, it provides a solid framework to run and optimize a meaningful computational
test on each device. These results can then be reviewed and compared allowing for a better
understanding of the corresponding architectures.

In past tests, it was found that an increase in total MPI processes was followed closely by
an increase in computational throughput [2]. This trend was also true for threads, although
the throughput didn’t scale quite as significantly. However, when the product of our total
processes and threads assigned to processes on each node exceeded 16, we found that total
throughput began to decrease. This was simply because, although we were spawning more
software processes, we had no available hardware to execute them. In response to this

LA benchmark is a portable program that runs a specified task on a system and returns a meaningful
metric of the system’s performance.

www.hpcg-benchmark.org

observation, we made sure to keep a one-to-one correspondence between the total number
of software processes and total cores assigned to a job.

It was also found that an increase in nodes and total problem size was linked to an increase
in total performance. The former is self- explanatory, as you would expect more throughput
with more hardware, but the latter was a result of the underlying algorithm. Namely, that
as the problem size increases the density of calculations per node was increased greatly
when compared to the total communications, and the result was a greater total number of
calculations and a lower number of memory stalls.

The report begins in Sections 2 and 3 with a description of the hardware and software
libraries that were used to run the benchmark, and we define some basic terms. Section 3
includes an explanation of the underlying algorithm of the HPCG benchmark for insight on
the limiting factors and application of the algorithm. After describing the background and
methodology, the results of our tests with the benchmark are presented in Section 4, and
provide our analysis on why these results were observed and what they mean in the context
of the maya cluster. To conclude, there is a short summary of the results and how they can
be used in Section 5.

2 Hardware Specification
2.1 Homogeneous Computing

Figure 1 shows a schematic of one of the compute nodes that is made up of two eight-core
2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs. Each core of each CPU has dedicated 32 kB of
L1 and 256 kB of L2 cache. All eight cores of each CPU share 20 MB of L3 cache. The
64 GB of the node’s memory is formed by eight 8 GB DIMMs, four of which are connected
to each CPU. The two CPUs of a node are connected to each other by two QPI (quick path
interconnect) links. The nodes in maya 2013 are connected by a quad-data rate (QDR)
InfiniBand interconnect.

2.2 Heterogeneous Computing

Figure 2 shows a schematic of the Intel Phi 5110p architecture that is made up of 60 cores
connected on a bidirectional ring bus. Each core has up to four threads with hyperthreading
enabled, its own L2 cache, extended 512-bit vector registers, and runs at a frequency of
1.053 GHz. Each core is connected, through the ring bus, to a 6 GB cache of GDDR5
memory that it can fetch data from. The Phi also maintains a series of tag directories that
log which core has which piece of data and can be queried for said information. This means
that the cache on each of the Phi’s 60 cores is fully coherent. A diagram of the Phi can be
seen in Figure 2

The Phi also hosts its own instance of an operating system, a micro-kernel of Linux,
which can be mounted with filesystems and executables to be run natively. When testing
on the Phi, one core was always set aside for the use of the operating system, meaning that
only 59 cores or 239 threads were actually used for computations during tests. The Intel Phi
is capable of running in three seperate modes: offload, native, and symmetric/hybrid mode.

Offload mode resembles a standard heterogeneous setup, wherein the Intel Phi is used
to speed up sections of code that are computationally dense. As can be seen in Figure 2, all
information must be passed to the Phi through a PCI Express bus. The latency incurred by

Compute Node

8 core Intel E5-2650v2 vy Bridge 8 core Intel E5-2650v2 vy Bridge
-

Cache

20MB
M o’

GB

o —_—
=)

3
2

I mi
®

Each core has: L1, 32kB Data and 32kB Ingtruction Cache L2: 256kB Cache

Dual QPI SMP links

Figure 1: Illustration of node architecture with dual sockets shown as well as physical cores
within each socket, on-chip cache, and respective memory channels.

Intel Xeon Phi 5110P Coprocessor (60 Cores)

LLLLLY] Calt;e Bidirectional
/ Ring Bus

pcie/system |

Interface

=

mEEREEn Cache
L2

Figure 2: Illustration of Intel Phi 5110p co-processor with ring bus, attached cores, and PCI
Express interface.

communicating through the PCI interface means that offloading mode should really only be
utilized when there are enough calculations to justify this latency.

By contrast, native mode is much closer to a standard homogeneous computing setup.
In native mode, the Phi runs an executable locally on its own operating system without
accessing the host CPU. Theoretically, one can run a job across multiple Phis simultaneously
by accessing the InfiniBand network interface directly. However, we were unable to get this
to work and are currently working on fixing the problem.

Symmetric mode or hybrid mode, allows code to run on both the Phi and the host
CPU simultaneously. This should theoretically provide the best performance, as it utilizes
the throughput of both the Phi and the CPU. A technical report from Intel on the Intel
Optimized HPCG benchmark affirms this conclusion [1]. However, again, it is worth noting
that symmetric mode has not yet been shown to work on this system.

3 Software Specification

The HPCG benchmark is capable of integrating several different libraries and data structures
into its compilation. All of these options can have a large impact on the execution and,
consequently, the total computational throughput of the benchmark. In our tests, we made
use of two particular features, specifically MPI (Message Passing Interface [5]) for process-
level parallelism and OpenMP for thread-level parallelism. In addition, we also altered the
total number of processes and threads that the benchmark ran its tests on.

In software, a process is any task that requires computation time on a CPU. It is rep-
resented in software by a PCB (Process Control Block), which holds all of a process’ state
variables, and an independent memory space for associated data. Memory overhead related
to these features can reduce total throughput by increasing cache misses and I/O with main
memory. Also, as a result of each process having its own independent memory space, each
process must use MPT to explicitly communicate essential data [5]. During the process of
sending or receiving messages, the assigned computational core is essentially idling, decreas-
ing total throughput.

A thread can be thought of as a lightweight process in that it too is an entity requiring
computation time from the CPU, but it is stripped of many of the features included in
a process. Specifically, a thread has no PCB or independent memory space, but instead
shares the memory of its parent process with any other threads that exists within it. This
means that a thread does not have any of the memory overhead associated with the PCB,
which means less wasted cache or memory. Also, it means that a thread exists on a single-
instruction, multiple-data model, although each thread does have a virtual copy of a memory
address to prevent race conditions during operations. Consequently, a thread does not need
an explicit interface to pass data from one thread to another, which increase its computational
efficiency.

Figure 3 shows a schematic that visualizes the difference between sequential and parallel
processing. The top part of the figure shows a problem being executed by multiple threads.
The bottom part indicates that in parallel processing the problem is first broken into several,
four in the figure, sub-problems; of the these is then solved using multiple threads again.

Traditional Sequential Processing

instructions

||||II|||| I | | | d
N t

13 2

Parallel Processing

nstructions

em i
—
—
—
N 3 2 1

Figure 3: Diagram detailing sequential execution vs. parallel execution of a problem. The
problem, visualized as a solid block, can be locally distributed amongst several different
threads. In a parallel implementation, the problem can either be split up or, as is the
case with HPCG, the problem size can be increased proportionally to the total number of
computers/processes.

probl

3.1 Sandia HPCG Benchmark

The HPCG benchmark measures performance in units of GFLOP /s (Giga FLoating-Point
OPerations per Second), a floating-point operation being any arithmetic operation between
stored numbers. Thus, the total number of GFLOP/s can be thought of as the total com-
putational throughput of the system, and an increase in total GFLOP/s is analagous to an
increase in total efficiency and performance.

The HPCG benchmark is a conjugate gradient code for a 3D chimney domain meant
to run on an arbitrary number of processors. This benchmark, which is written in portable
C++ code, generates a 27-point finite difference matrix with sub-block sizes on each processor
specified by the user. This publication from Sandia National Laboratories provides a more
detailed description of the benchmark implementation [3].

The problem generated by this benchmark can be viewed as a stationary heat diffusion
model of a single degree with zero Dirichlet boundary conditions, whose global domain
dimensions are N, x N, x N, with N, = n,p,, N, = nyp,, N, = n.p., where n, X n, X n,
are the local sub grid dimensions in the x-, y-, and z-dimensions, respectively, assigned to
each MPI process with a total number of MPI processes P, which are factored into three
dimensions as p, X py X p,. The division of the global N, x N, x N, mesh onto P = p, Xp, Xp,
parallel MPI processes is sketched in Figure 4. The blowup of one process’s subdomain
sketches also the faces at the interface from this cube to its neighbors, whose contents need
to be communicationed between the parallel processes.

In the setup phase, a sparse linear system is constructed using the 27-point stencil at

5

Figure 4: Three-dimensional cube of the N, x N, x N, mesh on P = p, x p, X p, parallel
MPI processes. Each of the smaller cubes contains a subgrid of size n, x n, x n,.

Figure 5: Diagram of the 27-point stencil that is created at each point in the mesh.

each of the grid points in the 3D domain [4]. The three-dimensional stencil at an interior
mesh point is sketched in Figure 5. Therefore, the equation at a given point will rely on the
values at its specific location as well as the surrounding 26 other points. For the interior
points in the matrix, the setup is weakly diagonally dominant for the interior points on the
domain, while the boundary points are setup to be strong diagonally dominant. The setup
for this matrix implements the synthetic conservation principle for the interior points and
displays the impact of no Dirichlet boundary values on the boundary equations.

The resulting properties of the generated linear system include all initial guesses with a

value of zero, a matching right-hand-side vector, and a solution vector that is equal to one.
The system matrix is a symmetric positive definite, non-singular matrix with 27 nonzero
entries per row for interior points and 18 to 7 entries for the boundary equations. More
precisely, the values at each of the mesh points that are neighbors to an interior point on the
three-dimensional mesh are symmetric, as indicated by the numbers at the neighboring mesh
points shown in Figure 5. These non-zero values form then 27 bands of non-zero entries in
the system matrix of the discretized equation.

3.2 Intel Optimized HPCG Benchmark

The Intel Optimized version of the HPCG benchmark has already altered all of the allowed
kernels to achieve near optimum performance on the Intel Xeon CPU, achieving 95% of
available throughput, and enhanced performance on the Intel Xeon Phi, nearly 67% of avail-
able throughput [6]. The benchmark is offered by Intel in the form of pre-compiled binaries,
which hides any source code from the user. Despite this, a recent paper published on HPCG
describes several of the methods used within the benchmark, which includes methods like
block multi-color reordering [6].

4 Results
4.1 Previous Results

In a previous tech. report [2], several useful discoveries were made that guided the exper-
imental design of this paper. Most importantly, it was found that larger submesh sizes
(ng X ny xn,) resulted in much higher throughputs when compared to smaller problem sizes.
The increased number of unknowns in the system being solved allowed for a much larger
number of computations and thus a higher total throughput. Thus, we maximized the local
submesh size, being careful to make sure the resulting grid would fit within the bounds of
available memory on both the Intel Phi and host node. Eventually the submesh size was
chosen at 192 x 192 x 192.

4.2 Tests in Homogeneous Environment using Generic HPCG

We performed our first tests with the HPCG benchmark version 2.6, without making any
changes to any of its computational kernels or data organization. Our main focus was
identifying the different compiler flags and process/thread combinations that would produce
the highest throughput and the best scaling. The results of these tests can be seen in Table 1.

With these values held constant for our executable, we also tested four different run-
time configurations through the slurm scheduler, which controls resource management and
job submission to the cluster. These configurations involved different process and thread
allocation schemes, which are listed here:

e Alternating Process, One-Core Thread: Alternates sockets when placing MPI
processes, and places all threads onto a single core.

e Alternating Process, Compact Thread: Alternates sockets when placing MPI
processes, and sets the KMP_AFFINITY environment variable to compact, which will
distribute threads amongst any nearby vacant cores (will place all threads onto same
core otherwise).

Table 1: Sandia HPCG: Observed GFLOP /s for local subgrid dimensions n, x n, x n, =
160 x 160 x 160 using an alternating process assignment and compact thread assignment.
Variable py denotes total number of MPI processes per node and n; denotes total number

of threads per MPI process.

Alternating Process, One-Core Thread

pvn=1 pv=2 py=4 pv=8 pnv=16

n=16 n;,=8 ny=4 n; =20 n, =1
16 nodes 12.79 49.71 68.82 99.89 121.38
32 nodes 35.18 58.83 114.14 195.03 207.40
64 nodes 42.44 125.74 225.44 392.35 N/A
Alternating Process, Compact Thread

pvn=1 pv=2 py=4 pv=8 pnv=16

n=16 n;,=8 ny=4 n; =20 ng =
16 nodes 18.07 48.25 66.72 99.67 121.56
32 nodes 35.05 60.62 116.34 194.64 196.66
64 nodes 55.56 122.16 232.43 392.80 N/A
Socketfill Process, One-core Thread

pn=1 pv=2 pv=4 pyv=8 py=16

n=16 n,=8 ny=4 n; =20 ng =1
16 nodes 16.24 35.55 48.04 60.82 121.97
32 nodes 39.91 58.63 93.81 121.68 224.62
64 nodes 65.51 116.57 186.22 242.40 N/A
Socketfill Process, Compact Thread

pvn=1 pyv=2 pnv=4 py=8 py=16

n=16 n;=8 ny=4 n; =20 n, =1
16 nodes 16.22 35.47 47.96 61.91 120.53
32 nodes 40.09 58.67 92.61 122.36 180.42
64 nodes 65.98 116.16 186.33 243.51 N/A

e Socketfill Process, One-Core Thread: Uses the cpu_bind option with map_cpu to
fill a socket before adding processes to the other socket, and places all threads onto a
single core.

e Socketfill Process, Compact Thread: Uses the cpu_bind option with map_cpu to
fill a socket before adding processes to the other socket, and sets the KMP_AFFINITY
environment variable to compact, which will distribute threads amongst any nearby
vacant cores (will place all threads onto same core otherwise).

As a result of hyperthreading being disabled, we were restricted to using only the physical
cores within each socket. This means that each node on the cluster is capable of running up
to 16 processes in parallel. Therefore, to maximize parallelization and avoid any unintended
context-switching, we enforced a strict one-to-one ratio between the total number of threads
and processes assigned to a test and the total number of cores assigned to the test. The
results of all of these tests can be seen in Table 1.

4.2.1 Increasing Threads/Processes

Moving from left to right along a row in any of the subtables in Table 1, we can see that
more processes generally corresponds to greater total throughput. Of course, this result
is relatively unsurprising when one considers how the HPCG benchmark sets up the test
problem. Each process is assigned a subgrid so, as more processes are added, the volume
of the global grid expands accordingly. The result is a greater number of total calculations,
each of which is distributed. By contrast, threads are only used to distribute calculations
within an existing subgrid, and although this increases the speed at which calculations are
done, it does nothing to increase the volume of the domain being operated upon, and thus
we see a much smaller increase in performance.

4.2.2 Comparing Process Configurations

Comparing different process configurations across each of the subtables (alternating vs.
socketfill), we can easily see total throughput is much more strongly influenced by process
assignment. In our case, the alternating process distribution produced significantly better
results than the socketfill algorithm.

Looking at the same row from both a socketfill table and an alternating table, we can
see a much steadier degradation of performance in the socketfill algorithm as py increases,
although performance evens out when py = 16. This result is most likely connected to how
L3 cache is shared on a socket. As the number of processes goes up, the total proportion
of cache available to each process goes down. As a result, in the socketfill scheme, the total
proportion of cache is much less than in an alternating scheme, causing a higher amount of
cache misses and a lower total throughput. When process count reaches the total number
of cores on a node, the allocation scheme is irrelevant as both sockets received an identical
number of cores, and the reported throughput remains constant.

4.2.3 Comparing Thread Configurations

Comparing different thread configurations across different subtables (compact vs. one-
core), we can see that compact assignment yields generally better results, although there
are a few outliers, especially at higher process and lower thread counts where the difference in

9

configurations is less drastic. For higher thread counts however, the improvement of compact
assignment becomes more pronounced.

The reason for this is obvious when one considers how both configurations run on hard-
ware. With compact assignment, each thread is guaranteed an exclusive core to perform
calculations on. However, with a schema that places all threads on a singular core, there
might be an increase of software threads but no increase in utilization of hardware. As a
result, each thread is executed in serial or, even worse, the operating system performs several
context switches between queued threads.

4.2.4 Maximum Throughput

Looking at our results, we can see that the maya cluster is capable of running at nearly
400 GFLOP/s with C' = 1024 total cores, split amongst 64 nodes with py = 8 processes
per node and n; = 2 threads per process. Our result is 61% greater than the result of 240
GFLOP/s we had received in previous tests, and the only change was a tweak in thread
assignment during run-time [2]. It is important to remember that this is still running on
an unoptimized version of the HPCG benchmark, and performing optimizations would also
allow for large increases in performance.

Unfortunately, because of issues with the maya cluster, we found that running on 64
nodes with py = 16 processes per node caused a steep decline in total performance. As
such, the data attained with this runtime setup is unreliable and cannot be used in our
study. This is indicated by N/A in the tables.

4.2.5 Compact vs. Normal Thread Assignment

One of the runtime environment variables that can be set when running the benchmark is
the KMP_AFFINITY variable, which controls how thread are mapped during runtime. In our
tests we compare the compact setting with the sparse and default settings, and comparing
the results that we got from each setting.

The compact setting ensures that all threads in a given thread block will be bound to
cores that are close together. By contrast, the scatter setting will spread the threads out to
cores as evenly as possible or, in other words, will separate the threads as much as possible.
The final setting is the default slurm setting which will assign threads and processes in a
sequential manner, that is process 1 goes to CPU 0, process 2 goes to CPU 1, etc.

4.3 Results with the Intel Phi Accelerator using Intel’s Optimized HPCG

Results attained with the Intel Phi using the Intel Optimized benchmark, which includes
a number of allowed optimizations to HPCG code, are shown in Table 2. Specifically, I
tested the benchmark on two of the three possible Intel Phi modes (offloading and native
mode). The results from these tests can be found in Table 2. Also, graphs that compare
throughput, speedup, and efficiency between my homogeneous and heterogeneous runs are
shown in Figure 6, Figure 7, and Figure 8, respectively.

Offload mode did not give good performance even with the Intel optimizations in place,
performing much worse than Intel’s expected results (link to HPCG article). Several opti-
mizations can be made by modifying the runtime environment, such as altering the KMP_AFFINITY
variable to be compact. This has the same effect as when this mode is set on the CPU, and
will make threads as close together as possible.

10

Table 2: (ng,ny,n,) = (192,192,192) local domain dimensions. Where py = number of
processes, n; = number of threads, and ¢ = number of Phis.
CPUs vs. Phis w/ Offloading and Native mode
Generic Intel Intel Intel Intel
py=1 py=1 ¢=1 ¢=2
ng=16 n;, =16 py=1 py =2 Native ¢

1 node 1.10 9.41 0.68 1.21 12.34
2 nodes 2.27 18.82 1.22 2.48
4 nodes 4.34 36.02 2.43 4.69
8 nodes 8.61 70.75 4.75 9.31

16 nodes 17.00 135.21 9.38 18.49

140

T T
—+—CPU Generic

CPUIntel
120 | —#—Philntel

o0t

GFLOP!s

Figure 6: Reported GFLOP /s for Phi 5110P accelerator vs. Intel E5-2650v2 CPU.

However, despite the poor throughput, there was near optimal speedup and performance
scaled very closely with the number of nodes running the program. This is very promising
given the inherent communication overhead of running offloading on multiple nodes. We
found in earlier work that the overhead of communicating through the PCI Express Bus
to the host CPU, from host CPU to host CPU, and then from host CPU back to a device
through the PCI Express bus limited the throughput severely because of how much time was
devoted to communication (link tech report).

By contrast, native mode gave very good results compared with a homogeneous run,
reporting approximately eleven times the throughput. This is not surprising as the Intel
Phi has a much larger pool of threads to run computations on, and can therefore achieve a
much higher degree of parallelism. Unfortunately, there is currently only results for a single
Phi in native mode, but we can predict the results for the Intel Phi using information on
efficiency we achieved with offloading mode. By using the efficiency as a coefficient for the
throughput and multiply the throughput for one Phi in native mode by the efficiency and
then the number of nodes, we can predict throughput for multiple Phis in native mode.
Figure 9 shows what the predicted outcome would look like, outperforming all other setups.

11

—&—Philntel

T T T
— — Ideal Performance Vs
—+—CPU Genetic -

14 H CPUIntel

Sialibility
o

Pl Processes

Figure 7: Scalability of Phi 5110P accelerator vs. Intel E5-2650v2 CPU.

1.08 T

Efficiency

& L

T T T T T T
— — Ideal Performnance
—+—CPUGeneric
CPUIntel
—=s—Philntel

Pl Processes

Figure 8: Efficiency of Phi 5110P accelerator vs. Intel E5-2650v2 CPU.

: : T T T T T
— — Projected Malive
160 H —+—CPU Generic A
CPUIRtel -~
—é— Philntel e
140 - b
~
~
-
120 P E
-
L
100 E
o -
& -
(=] ~
w ~ i
-~
-~
L -~ i
60 P
P
-~
40t - R
~
-
-~
2wl - R
L
n i | | L
2 4 3 B 10 12 14 16

Figure 9: Reported GFLOP/s for
Predicted Native Phi.

Pl Processes

Phi 5110P accelerator vs. Intel E5-2650v2 CPU with

12

5 Conclusions and Reflections

There is a clear and present need for benchmarking in a cutting-edge, homogeneous cluster,
such as the maya cluster. Likewise, it is useful to compare and contrast the strengths of
each computing component to gain insight into what workloads are best suited for a device’s
architecture. In these tests, we manage to get comprehensive results for Intel Xeon CPUs as
well as for certain Phi modes.

In general the benchmark performs and scales well on CPUs, at least when compared to
the Phi, and with Intel optimizations can perform at near optimal levels. This advantage
can be further expanded on by setting up an optimal runtime evironment with appropriate
mesh dimensions and thread mapping schemes. These same environment settings can also
be extended to the tests on Intel Phis, but there is a clear need for further tuning of the
benchmark to run optimally on the Intel Phi.

Moving forward there is a lot more work to be done. There are several papers that refer
to certain strategies for optimizing software to run on the Intel Phi, and these changes can
be made to the sections of HPCG that are allowed to be modified. These same functions can
also be made to take advantage of GPU acceleration, which would allow for a meaningful
comparison of performance on the HPCG benchmark between the Intel Phi and NVIDIA
GPUs. It would also be useful to rebuild an open source version of the Intel Optimized
benchmark to allow for further optimizations and revisions to existing code. With all of these
elements a truly comprehensive comparison could be drawn between all relevant computing
architectures currently available.

Acknowledgments

Special thanks to my mentor Dr. Matthias Gobbert of the Mathematics and Statistics De-
partment at UMBC, as well as the TAs Samuel Khuvis, Jonathan Graf, and Xuan Huang who
helped me in various capacities with my research. This work in [2] started during the REU
Site: Interdisciplinary Program in High Performance Computing (www.umbc.edu/hpcreu)
in the Department of Mathematics and Statistics at the University of Maryland, Baltimore
County (UMBC) in Summer 2014. This program is funded jointly by the National Sci-
ence Foundation and the National Security Agency (NSF grant no. DMS-1156976), with
additional support from UMBC, the Department of Mathematics and Statistics, the Center
for Interdisciplinary Research and Consulting (CIRC), and the UMBC High Performance
Computing Facility (HPCF). HPCF is supported by the U.S. National Science Foundation
through the MRI program (grant nos. CNS-0821258 and CNS-1228778) and the SCREMS
program (grant no. DMS-0821311), with additional substantial support from UMBC. The
author was supported by the Meyerhoff Scholarship Organization, through a contract with
the National Security Agency (NSA). The author was also funded by the Office of Under-
graduate Education, through the Undergraduate Research Award (URA) program.

References

[1] Intel Corporation. Intel optimized technology preview for high performance con-
jugate gradient benchark, 2014. https://software.intel.com/en-us/articles/
intel-optimized-technology-preview-for-high-performance-conjugate-gradient-benchmark

13

www.umbc.edu/hpcreu
https://software.intel.com/en-us/articles/intel-optimized-technology-preview-for-high-performance-conjugate-gradient-benchmark
https://software.intel.com/en-us/articles/intel-optimized-technology-preview-for-high-performance-conjugate-gradient-benchmark

accessed on May 17th, 2015.

Adam Cunningham, Gerald Payton, Jack Slettebak, Jordi Wolfson-Pou, Jonathan Graf,
Xuan Huang, Samuel Khuvis, Matthias K. Gobbert, Thomas Salter, and David J. Moun-
tain. Pushing the limits of the maya cluster. Technical Report HPCF-2014-14, UMBC
High Performance Computing Facility, University of Maryland, Baltimore County, 2014.

Jack Dongarra and Michael A. Heroux. Toward a new metric for ranking high perfor-
mance computing systems. Technical Report SAND2013-4744, Sandia National Labo-
ratories, June 2013. https://software.sandia.gov/hpcg/doc/HPCG-Benchmark.pdf,
accessed on January 15, 2015.

Michael A. Heroux, Jack Dongarra, and Piotr Luszczek. HPCG technical specifi-
cation. Technical Report SAND2013-8752, Sandia National Laboratories, October
2013. https://software.sandia.gov/hpcg/doc/HPCG-Specification.pdf, accessed
on January 15, 2015.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Alexander Heinecke,
Dhiraj Kalamkar, Xing Lui, Md. Mosotofa Ali Patwary, Yutong Lu, and Pradeep Dubey.
Efficient shared-memory implementation of high-performance conjugate gradient bench-
mark and its application to unstructured matrices. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, 2014.

14

https://software.sandia.gov/hpcg/doc/HPCG-Benchmark.pdf
https://software.sandia.gov/hpcg/doc/HPCG-Specification.pdf

	Introduction
	Hardware Specification
	Homogeneous Computing
	Heterogeneous Computing

	Software Specification
	Sandia HPCG Benchmark
	Intel Optimized HPCG Benchmark

	Results
	Previous Results
	Tests in Homogeneous Environment using Generic HPCG
	Increasing Threads/Processes
	Comparing Process Configurations
	Comparing Thread Configurations
	Maximum Throughput
	Compact vs. Normal Thread Assignment

	Results with the Intel Phi Accelerator using Intel's Optimized HPCG

	Conclusions and Reflections

