
JACK
SLETTEBAK

Jack Slettebak is a Meyerhoff

Scholar with majors in

computer science and

mathematics. He graduated

in December 2015 and is

hoping to pursue a Ph.D.

in Computer Science. His

current interests are in

software engineering, with

a focus on object-oriented

design patterns. He would

like to give special thanks

to his faculty mentor Dr.

Matthias K. Gobbert for

his invaluable guidance

and extended support

throughout the entirety of

this project. He also wants

to acknowledge and thank

his REU teammates Jordi

Wolfson-Pou, Gerald Payton,

and Adam Cunningham,

who helped in previous

research on the topic;

research assistants Samuel

Khuvis and Jonathan Graf,

who guided him in his

research; and Thomas Salter

and David J. Mountain of

the Advanced Computing

Systems Research Program,

who proposed the project

idea upon which his research

was founded. Lastly, he

wants to thank the Office of

Undergraduate Education,

for providing him with an

Undergraduate Research

Award, and the Meyerhoff

Scholars Program for its

financial support.

PUSHING THE LIMITS OF THE
MAYA SUPERCOMPUTER WITH
THE HPCG BENCHMARK

In summer 2014, I was fortunate enough to be selected to participate in
a Research Experience for Undergraduates (REU) hosted here at UMBC.
The REU focused primarily on high-performance computing and how
parallel algorithms can be applied to various computational problems. All of
the participants were assigned to teams and given an accelerated course
on parallel algorithms. We were then exposed to several ongoing research
projects that applied the techniques we learned. My group decided to pursue
a topic under Dr. Thomas Salter of the Advanced Computing Systems
Research Program. This involved performing a set of taxing software tests,
called benchmarks, on maya, one of the two supercomputers at UMBC.
By doing this, we gained valuable information on how the supercomputer
functions. This knowledge can be applied to future research projects
both within and outside the Department of Mathematics and Statistics.
We decided to use the High Performance Conjugate Gradient (HPCG)
benchmark because it is a well-known, respected benchmark that has
its results published. The following paper provides the results of multiple
experiments and explains what these results mean in the context of a
parallel computing environment.

[LEFT] IRC 2013. Photography by Marlayna Demond, '11.

[RIGHT] Computer scientists programming punch cards, 1970s, University Archives,
Special Collections, University of Maryland, Baltimore County (UMBC).

U
M

BC
 R

EV
IE

W
 V

O
L.

 1
7

|

 1
64

ABSTRACT

INTRODUCTION

165 | JA
C

K
 S

L
E

T
T

E
B

A
K

HARDWARE SPECIFICATION

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

66

SOFTWARE

FIGURE 1. Illustration of compute node architecture with dual sockets, showing the
physical cores within each socket, on-chip cache, and memory channels.

167 | JA
C

K
 S

L
E

T
T

E
B

A
K

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

68

RESULTS INVOLVING DIFFERENT RUNTIME SETUPS

FIGURE 2. Diagram of the 27-point stencil created at each point in the mesh. Only
the interior mesh points have the symmetry shown here.

169 | JA
C

K
 S

L
E

T
T

E
B

A
K

(a) Alternating Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 12.79 49.71 68.82 99.89 121.38

32 nodes 35.18 58.83 114.14 195.03 207.40

64 nodes 42.44 125.74 225.44 392.35 ET

(b) Alternating Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 18.07 48.25 66.72 99.67 121.56

32 nodes 35.05 60.62 116.34 194.64 196.66

64 nodes 55.56 122.16 232.43 392.80 52.59

(c) Socketfill Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.24 35.55 48.04 60.82 121.97

32 nodes 39.91 58.63 93.81 121.68 224.62

64 nodes 65.51 116.57 186.22 242.40 51.28

(d) Socketfill Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.22 35.47 47.96 61.91 120.53

32 nodes 40.09 58.67 92.61 122.36 180.42

64 nodes 65.98 116.33 186.33 243.51 47.14

TABLE 1. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160
× 160 × 160 using combinations of alternating and socketfill process
configurations and compact and one-core thread configurations.
The variable pN represents the number of MPI processes per node
and nt represents the number of threads per MPI process. The notation
ET indicates that the case took excessive time and was not run
to completion.

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

70 EXPERIMENTAL DESIGN

DISCUSSION OF RESULTS

171 | JA
C

K
 S

L
E

T
T

E
B

A
K

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

72

RESULTS WITH TAG MATCHING INTERFACE

COMPARING MPI ENVIRONMENT CONFIGURATIONS

MAXIMUM THROUGHPUT

173 | JA
C

K
 S

L
E

T
T

E
B

A
K

Alternating Process, Compact Thread with TMI MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 15.95 46.72 63.69 96.50 111.11

32 nodes 37.92 75.30 125.60 194.36 222.63

64 nodes 62.12 145.92 244.28 377.71 442.83

CONCLUSIONS AND REFLECTIONS

TABLE 2. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160
× 160 × 160 using an alternating process configuration and a compact
thread configuration. The variable pN represents the number of MPI
processes per node and nt represents the number of threads per MPI

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

74 ACKNOWLEDGMENTS

175 | JA
C

K
 S

L
E

T
T

E
B

A
K

REFERENCES

