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PUSHING THE LIMITS OF THE  
MAYA SUPERCOMPUTER WITH  
THE HPCG BENCHMARK

In summer 2014, I was fortunate enough to be selected to participate in 
a Research Experience for Undergraduates (REU) hosted here at UMBC. 
The REU focused primarily on high-performance computing and how 
parallel algorithms can be applied to various computational problems. All of 
the participants were assigned to teams and given an accelerated course 
on parallel algorithms. We were then exposed to several ongoing research 
projects that applied the techniques we learned. My group decided to pursue 
a topic under Dr. Thomas Salter of the Advanced Computing Systems 
Research Program. This involved performing a set of taxing software tests, 
called benchmarks, on maya, one of the two supercomputers at UMBC. 
By doing this, we gained valuable information on how the supercomputer 
functions. This knowledge can be applied to future research projects 
both within and outside the Department of Mathematics and Statistics. 
We decided to use the High Performance Conjugate Gradient (HPCG) 
benchmark because it is a well-known, respected benchmark that has 
its results published. The following paper provides the results of multiple 
experiments and explains what these results mean in the context of a 
parallel computing environment.

[LEFT]     IRC 2013. Photography by Marlayna Demond, '11. 

[RIGHT]  Computer scientists programming punch cards, 1970s, University Archives, 
Special Collections, University of Maryland, Baltimore County (UMBC).
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HARDWARE SPECIFICATION
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SOFTWARE

FIGURE 1.  Illustration of compute node architecture with dual sockets, showing the 
physical cores within each socket, on-chip cache, and memory channels.
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RESULTS INVOLVING DIFFERENT RUNTIME SETUPS

FIGURE 2.  Diagram of the 27-point stencil created at each point in the mesh. Only 
the interior mesh points have the symmetry shown here.
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(a) Alternating Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 12.79 49.71 68.82 99.89 121.38

32 nodes 35.18 58.83 114.14 195.03 207.40

64 nodes 42.44 125.74 225.44 392.35 ET

(b) Alternating Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 18.07 48.25 66.72 99.67 121.56

32 nodes 35.05 60.62 116.34 194.64 196.66

64 nodes 55.56 122.16 232.43 392.80 52.59

(c) Socketfill Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.24 35.55 48.04 60.82 121.97

32 nodes 39.91 58.63 93.81 121.68 224.62

64 nodes 65.51 116.57 186.22 242.40 51.28

(d) Socketfill Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.22 35.47 47.96 61.91 120.53

32 nodes 40.09 58.67 92.61 122.36 180.42

64 nodes 65.98 116.33 186.33 243.51 47.14

TABLE 1. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160 
× 160 × 160 using combinations of alternating and socketfill process 
configurations and compact and one-core thread configurations.  
The variable pN represents the number of MPI processes per node  
and nt represents the number of threads per MPI process. The notation  
ET indicates that the case took excessive time and was not run  
to completion.
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RESULTS WITH TAG MATCHING INTERFACE

COMPARING MPI ENVIRONMENT CONFIGURATIONS

MAXIMUM THROUGHPUT
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Alternating Process, Compact Thread with TMI MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 15.95 46.72 63.69 96.50 111.11

32 nodes 37.92 75.30 125.60 194.36 222.63

64 nodes 62.12 145.92 244.28 377.71 442.83

CONCLUSIONS AND REFLECTIONS

TABLE 2. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160 
× 160 × 160 using an alternating process configuration and a compact 
thread configuration. The variable pN represents the number of MPI 
processes per node and nt represents the number of threads per MPI 
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