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Abstract

Spontaneous calcium sparks can lead to propagation of a self-initiated calcium wave under certain
conditions in a heart cell. A model for diffusion waves of calcium ions in a heart cell is given by a
system of coupled, time-dependent reaction-diffusion equations. The key term of the model quantifies
the release of calcium at the calcium release units by a flux density. The model also includes pump
and leak mechanisms that model the extruding and entering of calcium throughout the cell, respectively.
Previous simulations for this model with extreme values of the flux density demonstrate that no wave
will self-organize for a small value and that a wave will self-organize for a large value; in the latter
case, it also becomes apparent that the total concentration of calcium throughout the cell grows without
bound. This report shows that the original conclusions with respect to wave self-organization are correct
qualitatively, and it identifies the range of values of the flux density quantitatively for which we can
be confident about the observation. Additionally, a range of values for the parameters of the pump
mechanism is studied. We can conclude that the growth of the total calcium concentration is affected
by the choice of coefficients, but that, for the parameters studied here, the growth cannot be avoided for
the cases in which a wave self-organizes.

1 Introduction

Calcium sparks are visualized as fluorescent flashes of calcium released from internal cellular stores. The
release is routinely triggered by calcium entering from the extracellular space during the course of the
heart’s electrical impluse signaling muscle contractions. However, spontaneous sparks can form and lead to
propagation of a self-initiated calcium wave under certain conditions [1].

1.1 The Calcium Flow Model

A model for diffusion waves of calcium ions in a heart cell is given by a system of coupled, time-dependent
reaction-diffusion equations

∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
= r(i) +

(
− Jpump + Jleak + JSR

)
δi0 (1.1)

for the concentrations u(i)(x, t) of the ns chemical species i = 0, 1, . . . , ns−1 as functions of space x ∈ Ω ⊂ R3

and time 0 ≤ t ≤ tfin. The system (1.1) is coupled with no flow boundary conditions, and the concentrations
at the initial time are given. The studies in this report follow those in [2]. Additionally, see the appendix in
[3] as well as [4, 5, 6] for more references on background material.

The problem of calcium flow in a cell is a multiscale problem in both space and time. For the simulation
of calcium waves through an entire cell, the domain needs to be on the scale of the cell, which is on the
order of 10 × 10 µm2 in cross-section and at least between 50 and 100 µm in length. Thus, we choose the
domain Ω ⊂ R

3 of the differential equation model (1.1) as the interior of one cell as Ω = (−6.4, 6.4) ×
(−6.4, 6.4)× (−32.0, 32.0) in units of µm. On the scale of a cell, the points where calcium ions are released
into the cytosol, are represented as point sources, i.e., mathematically discrete points of size 0. On the time
scale of the waves we intend to simulate, which have a duration of about 100 ms, the opening and closing
of calcium release units appears as instantaneous switching in time, and a final simulation time that may
capture multiple wave initiations is desirable such as tfin = 1,000 ms.
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The time and space derivatives on the left-hand side of (1.1) model the diffusive transport of each chemical
species with diffusivities given by the diagonal, positive definite matrices D(i) ∈ R3×3, i = 0, 1, . . . , ns − 1.
The reaction terms r(i) ≡ r(i)(u(0), . . . , u(ns−1)) on the right-hand side are in general non-linear functions of
all species and couple all reaction-diffusion equations in (1.1).

Crucial effects related to the calcium species, labeled with index i = 0, are contained in the right-hand
side terms associated with the Kronecker delta function δi0 (defined as δij = 0 for all i 6= j and δij = 1 for
i = j). Calcium leaves the cytosol through the non-linear drain term [4, p. 89]

Jpump(u(0)) =
Vpump (u(0))npump

(Kpump)npump + (u(0))npump
. (1.2)

At rest, that is, for the calcium concentration u(0) = 0.1 µM, the constant source term Jleak balances the
pump term such that Jleak = Jpump(u(0)) [4, p. 89]. This effect is modeled by the source term JSR that is
described in more detail in the following subsection.

1.2 The model of the spark mechanism

The key term of the model is the term JSR(u(0),x, t) in the equation for the calcium concentration (labeled
as species i = 0) in (1.1) that describes the release of calcium at the calcium release units (CRUs), referred
to as spark events [4, 6]. On the spatial scale of a cell, the CRUs appear as discrete points distributed
uniformly throughout the cell. Specifically, we take the arrangement of the CRUs as a three-dimensional
lattice with spacings of ∆xs = ∆ys = 0.8 µm in the x- and y-dimensions and of ∆zs = 2.0 µm in the
z-dimension of the cell with no CRUs on the boundary of the cell [6, p. 105]. For our domain of Ω =
(−6.4, 6.4)×(−6.4, 6.4)×(−32.0, 32.0) with length units of µm, this means that the CRUs form a 15×15×31
lattice with a total of 6,975 CRUs in the cell.

The release of calcium concentration at each CRU is modeled as a point source on the spatial scale
of the cell, mathematically represented as a Dirac delta distribution δ(x − x̂) for a CRU located at x̂ [4,
p. 89]. The Dirac delta distribution is understood here in a three-dimensional sense for short, that is,
δ(x− x̂) := δ(x− x̂) δ(y− ŷ) δ(z− ẑ), where we also write x = (x, y, z) and x̂ = (x̂, ŷ, ẑ). We recall that δ(x)
is defined by requiring (i) δ(x− x̂) = 0 for all x 6= x̂ and (ii)

∫
ψ(x) δ(x− x̂) dx = ψ(x̂) for any continuous

function ψ(x); this definition implies in particular that δ(x̂) tends to ∞ and is thus not a function in the
mathematical sense. The amount of calcium injected into the cell at one point x̂ is given by the flux density
σ, that is,

∫
Ω
σ δ(x − x̂) dx = σ, by the definition of the delta distribution, gives the amount of calcium

released into the cell in 1 ms. The effect of a CRU switching on and off is incorporated by an indicator
function in time. More specifically, let the set Ωs = {x̂ ∈ Ω | x̂ is a CRU} denote the set of all CRU locations.
Then [5, p. 96]

JSR(u(0),x, t) =
∑

x̂∈Ωs

σ Sx̂(u(0), t) δ(x− x̂) (1.3)

is the superposition of the release of calcium at all CRUs.
The indicator function Sx̂(u(0), t) in each term of the sum in (1.3) houses the stochastic aspect of the

sparking mechanism of the CRU at x̂. The model allows the CRU to open with probability

Jprob(u(0)) =
Pmax (u(0))nprob

(Kprob)nprob + (u(0))nprob
(1.4)

as a function of the local calcium concentration u(0) [6, p. 104]. This probabilistic model is checked at the
spark times that are every unit in time ∆ts = 1 ms apart. That is, for all CRUs that is eligible to open,
Jprob(u(0)) is compared to a random number 0 ≤ r ≤ 1, and if Jprob > r the CRU is switched on by setting
Sx̂ to 1. We use uniformly distributed random numbers generated by the popular Mersenne twister code
[7]. If a CRU opens at a time t = t̂, it stays open for a duration topen = 5 ms, that is, the indicator function
Sx̂ = 1 for t ∈ [t̂, t̂+ topen]. The desired effect of this design is that the calcium released at one CRU diffuses
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to a neighboring CRU, whose probability for opening increases with the increased calcium concentration.
If the calcium concentration then reaches a third CRU and it opens, the effect is that of a wave forming
throughout the cell [3, 6]. After a CRU closes again, it stays closed for a time period tclosed = 100 ms before
it is eligible to open again. Therefore, calcium waves through the cell are separated in time by at least
100 ms. We see that to simulate a sequence of repeated calcium waves, we need to be able to calculate for
long times, such as, up to the final time tfin = 1,000 ms.

The experimentally obtained coefficient σ models the amount of calcium released at one CRU [4, 6]. It
is a function of the calcium current ISR by σ = ISR/(2F ), where F denotes the Faraday constant and the
factor of 2 is the valence of a calcium ion (i.e., Ca2+). The range of ISR from 10 to 20 pA is “back-calculated
from the size of sparks” [5, p. 96]. This quantity has crucial influence on whether calcium waves self-organize
or not because it determines how much calcium is released into the cell at one CRU, σ, which via diffusion
raises the value of Jprob in (1.4) at nearby CRUs and thus influences strongly whether they open or not.

1.3 Outline

One interesting validation for this model of calcium waves is to consider several values of σ in ISR and observe
whether calcium waves self-organize. This is the purpose of Section 2, in which we consider several values
of σ, while keeping all other model parameters as in Table 2.1 of [2]. The application studies in [2] indicate
that too much calcium seems to be released into the cytosol at the CRUs with the current model parameters.
Using a value of σ, which consistently leads to a self-initiating wave, in Section 3 we vary parameters in the
pump and leak mechanism (1.2) to try to control the increase of total calcium concentration in the cell.

2 Critical Flux Density Interval Determination via Simulations

As stated in Section 1.2, one parameter that influences self-initiation of calcium waves in the cell is the
flux density σ in (1.3), which is a function of the calcium current ISR. Since our main goal is to study the
self-initiation of calcium waves as a function of the problem parameters in (1.1), we vary the flux density
in this section and observe for which values a calcium wave self-initiates. From [2, Section 4.4], we know
that for σ ≈ 51.82 µmol/L µm3/s, which corresponds to ISR = 10 pA, simulation runs resulted in no wave
self-organization; and for σ = 103.64 µmol/L µm3/s, which corresponds to ISR = 20 pA, simulation runs
resulted in a wave self-organization.

2.1 Simulation Method

The model can be used to approximate a critical σ range above which a wave is likely to self-initiate
and below which a wave is not likely to self-initiate. One way of locating this critical σ range is to run
multiple simulations with different values of σ and determine the percentage of simulations in which a wave
self-organizes. We use σ = 50, 60, 70, 80, 90, and 100, while maintaining all other model parameters as in
Table 2.1 in [2]. We consider two spacial discretizations of the domain Ω = (−6.4, 6.4)×(−6.4, 6.4)×(−32, 32)
in the studies, one with 16× 16× 64 finite elements resulting in 56,355 degrees of freedom for the 3-species
model and one with 32 × 32 × 128 yielding 421,443 degrees of freedom. Since a pseudo-random number
generator is involved in each simulation, we run the simulations for each value of σ with 20 different seeds
to the pseudo-random number generator.

2.2 Simulation Results

Simulation runs gave equivalent results when either of the Ω domain discretization was used. Therefore, this
section presents simulation results obtained using the spacial discretization of the Ω domain with 32×32×128
finite elements.

Figures 1 and 2 show results for the case study with σ = 50. The studies for σ = 50 here consider
essentially the same case as for σ ≈ 51.82 in [2, Section 4.4], when no wave self-organization occurred.
Figure 1 shows the number of open CRU at different spark time for a simulation ran with a σ value of
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50. Each dot indicates that the CRU at the spatial point is open (and does not represent the value of any
quantity). For the duration of the simulation, very few CRUs are open without discernible pattern. Clearly
the number of open CRUs isn’t enough to initiate a wave. Figure 2 shows the corresponding isosurface plot
of calcium concentration with a critical isolevel of 65 µmol/L. We can clearly see that the critical isolevel
is crossed at very few CRUs and only for the duration that the CRU at the location is firing. Equivalent
results for the self-initiation of a wave were observed for all 20 simulation runs for this σ value. In looking
for a criterion to determine if a calcium wave occurs during the simulation that is more immediate than
considering several subplots in figures such as Figures 1 and 2, we plot the total number of open CRUs
throughout the cell as a function of time in Figure 3 (a) for σ = 50. It is evident that no more than about
16 CRUs are ever open at any given moment, which is a very small number compared to the total of about
7,000 CRUs throughout the cell.

Figures 4 and 5 show results for the case study with σ = 70. Figure 4 shows the locations of open
CRUs at different times. We see that from t = 100 ms to t = 400 ms a number of CRUs are open without
discernible pattern. At t = 600 ms, two waves of CRU have self-organized; at some time between 500 and
600 ms, the concentration near the center and left side of the domain has reached higher levels that caused
several other CRUs to open. This, in turn, engendered more CRUs to be open; by t = 600 ms, we have a
wave traveling throughout the cell. Figure 5 shows the corresponding isosurface with a critical isolevel of
65 µmol/L. We see that from t = 100 ms to t = 500 ms, the concentration has crossed the critical isolevel
only at a few CRUs. By t = 600 ms, however, in the wake of both waves, we see significantly increased
levels of calcium, which by t = 1,000 ms have reached levels above the critical isolevel throughout the entire
domain. Looking at the number of open CRUs in Figure 3 (d) for σ = 70, we observe that somewhere
between t = 500 ms and 600 ms, the number of open CRUs reaches more than 300 and oscillates between
400 and 200 for the remainder of the simulation. This exhibits a wave self-initiation. Equivalent results were
consistently obtained for all 20 simulation runs for this σ value, with only slight variations from simulation
to simulation. For all larger σ = 80, 90, and 100, a wave self-organization occurred in a manner similar to
the case of σ = 70. This conclusion was originally drawn from plots analogous to Figures 4 and 5. But we
find that it can be reached directly from the plots of total number of open CRUs throughout the domain
as function of time in Figures 3 (e), (f), and (g), which all show an oscillatory behavior around a mean of
several hundreds of open CRUs. Therefore, we will use plots of the total number of open CRUs throughout
the cell as function of time in the following to conclude whether a calcium wave self-organized or not.

For σ = 60, some of the 20 simulation runs performed resulted in no wave self-organization (as in the
σ = 50 case) within the 1,000 ms simulation time, while the remaining runs might eventually result in
wave self-organization (as in the σ = 70 case). More precisely, in 18 out of the 20 simulations performed,
we observed no self-organization of a calcium wave; a representative plot of the number of open CRUs is
presented in Figure 3 (b) for σ = 60, which shows that never more than about 16 CRUs are open at any
moment in time. In the remaining 2 out of the 20 simulations, we observe in the representative Figure 3 (c)
that the total number of open CRUs eventually increases for a time greater than 900 ms; we claim a wave
has initiated. While the self-organization of a wave is not conclusive, the case of σ = 60 demonstrates that
different runs can lead to different results and that one may consider this value of σ in the critical transition
range.

Based on the simulation results, we can summarize the following conclusions:

• For σ values less than or equal to about 50 µmol/L µm3/s, no wave self-organization can be expected.

• For σ values between 50 and 70 µmol/L µm3/s, waves may or may not self-organize.

• For σ values greater than or equal to about 70 µmol/L µm3/s, wave self-organization is virtually
assured.

Therefore, for the purpose of studying wave self-initiation as function of problem parameters, we choose a
value of σ = 70 µmol/L µm3/s in the following, as this value virtually guarantees self-initiation of a wave
throughout the cell. The results of this section also demonstrate that one can use the plot of the total
number of open CRUs throughout the cell as a function of time as a criterion for judging whether a calcium
wave self-organizes or not in a particular simulation.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 1: Open calcium release units throughout the cell with σ = 50.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 2: Isosurface plots of the calcium concentration throughout the cell with σ = 50.
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(a) σ = 50 (b) σ = 60 — dominant case

(c) σ = 60 — subordinate case (d) σ = 70.

(e) σ = 80 (f) σ = 90

(g) σ = 100

Figure 3: Plots of the number of open CRUs vs. time for σ = 50, 60(two cases), 70, 80, 90, and 100.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 4: Open calcium release units throughout the cell with σ = 70.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 5: Isosurface plots of the calcium concentration throughout the cell with σ = 70.
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(a) (b)

Figure 6: (a) Fraction of simulation runs resulting in wave self-initiation for each σ. (b) Average time for
wave self-initiation and its standard deviation as error bar for each σ.

Each plot in Figure 3 displays the total number of open CRUs vs. time for a representative run for each σ
into one plot and information on self-initiation of a wave can be gleaned from it. In Figure 6, we summarize
this information for all 20 runs for all σ values in one plot. For more detail, additional values of σ between
50 and 70 were considered for this figure. In Figure 6 (a), we start by plotting the fraction of simulation runs
resulting in wave self-initiation for each value of σ considered in the studies. The transition of the fraction
from 0 to 1 indicates that the critical transition value for σ lies around 60. Figure 6 (b) expands on the
information of Figure 6 (a) for those cases of σ that resulted in runs with self-initiated waves. Namely, it
shows the average time for wave self-initiation and its standard deviation as error bar among the runs for
each σ that resulted in a self-organized wave; if the number of these runs is fewer than the 20 runs performed
for that σ, Figure 6 (b) indicates the number. That is, the average and its standard deviation is computed
only when, for a specific value of σ, a wave does self-organize in at least one run of the 20 performed for
each σ. We consider a wave to have self-initiated for a particular run, if the total number of open CRUs
becomes greater than or equal to 100 at any point in time during the simulation. Then, in a plot of the type
in Figure 3, the initiation time is the first time that the total number of open CRUs is greater than or equal
to 100. Figure 6 (b) indicates that the average time for wave self-initiation decreases as σ increases.

3 Effect of the Pump and Leak Mechanisms on Self-Organizing
Wave Behavior and Total Calcium Concentration

The results of long-time simulations for this application problem in Section 4.4 of [2] point to the fact that
the calcium concentration in the cell appears to grow without bound. Specifically, isosurface plots of the
calcium concentration in Figure 4.5 of [2] for the large value σ ≈ 103.64 show calcium concentration above
the critical isolevel of 65 µM throughout the entire cell for times t ≥ 400 ms. The results of the previous
section in this report show the same behavior in Figure 5 for σ = 70 for times t ≥ 800 ms. Plotting the total
calcium concentration Q(0) :=

∫
Ω
u(0)(x, t) dx throughout the cell vs. time t for these simulations confirms

that the concentration values are indeed not just above the critical isolevel but indeed grow without apparent
limit in the simulations. This behavior is clearly unphysical and this section considers one possible way at
controlling the growth of calcium in the cell.

3.1 Simulation Method

As introduced in Section 1, the pump term Jpump in (1.1) provides a method in which calcium is extruded from
the cytosol. We expect this mechanism to regulate the calcium concentration in the cell and to maintain
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Table 1: Value of the constant leak term Jleak for each (Vpump,Kpump) case.

Kpump = 0.2 Kpump = 1.6 Kpump = 3.2 Kpump = 6.4
Vpump = 0.2 0.01176 3.0517e-06 1.9073e-07 1.1920e-08
Vpump = 1.6 0.09411 2.4413e-05 1.5258e-06 9.5367e-08
Vpump = 3.2 0.18823 4.8827e-05 3.0517e-06 1.9073e-07
Vpump = 6.4 0.37647 9.7654e-05 6.1035e-06 3.8146e-07

the total calcium concentration throughout the cell bounded. In (1.2), we see that two parameters are
available to be varied in our investigation, namely Vpump and Kpump. Therefore, we define sixteen cases for
comparison by varying both Vpump and Kpump through the values 0.2, 1.6, 3.2, and 6.4 and listing each case
as an ordered pair (Vpump,Kpump). The (Vpump,Kpump) = (0.2, 0.2) is the base case with Vpump and Kpump

assuming (approximately) their values specified in Table 2.1 of [2]. Figure 7 shows the plot of Jpump(u(0))
as function of the calcium concentration u(0) to visualize concretely the effect of changing Vpump and Kpump

in each of the sixteen cases.
In each of these cases, care was taken to ensure the model’s rest point remains at the calcium concentration

u(0) = 0.1 µM. Therefore, when varying Vpump and Kpump for each case we set Jleak = Jpump(u(0)) in our
simulations, as defined in Section 1 after (1.2). This gives the values of Jleak specified in Table 1.

As in the previous section, all other model parameters are kept as specified in Table 2.1 of [2], with
the exception of setting σ = 70, identified in the previous section as the smallest value to give rise to a
self-organizing wave.

We take the spatial discretization to be Nx × Ny × Nz = 32 × 32 × 128 in all simulations. Since a
pseudo-random number generator is involved in each simulation, we perform 4 simulation runs with different
seeds to the pseudo-random number generator in each run.

3.2 Simulation Results

Within each case, the 4 simulation runs for different seeds achieved equivalent results, therefore we plot only
one representation of the results for each case in Figures 8 and 9.

In Figure 8, we plot the total number of open CRUs throughout the cell as a function of time for each
case. This is intended to confirm that a calcium wave self-organizes in each case. For the cases, where
(Vpump,Kpump) = (1.6, 0.2), and (3.2, 0.2) in the first column of Figure 8, the number of open CRUs never
reaches more than 12 at any point in time, implying that no waves self-organize. The last plot in the first
column shows that as Vpump is increased to 6.4, the number of open CRUs does start to grow after 600 ms,
but this growth is not sufficient to organize a wave. Considering the first two rows of plots in Figure 8, we
observe that every combination for (Vpump,Kpump) except (1.6, 0.2) shows the number of CRUs eventually
oscillate around several hundreds of CRUs. These cases however also exhibit the troubling behavior of
unbounded calcium concentration as shown in the first two rows of Figure 9, where we plot the total calcium
concentration Q(0) throughout the cell as a function of time for each case. We see that there are rapid
increases of total calcium concentration reaching a maximum at the end time with magnitudes of order 106.

Examining the last two rows of both Figure 8 and Figure 9, the (Vpump,Kpump) cases (3.2, 1.6), (6.4, 1.6)
and (6.4, 3.2) show some signs of oscillations in the number of open CRUs and furthermore the calcium
concentrations seem to be reaching an asymptotic bound. However, after viewing movies depicting the
opening and closing of CRUs over time, we conclude that no waves are organized for these cases in the time
frame considered. The remaining three cases for (Vpump,Kpump), that is, (3.2, 3.2), (3.2, 6.4) and (6.4, 6.4),
definitively show oscillations in the opening and closing of CRUs. Moreover, the oscillatory behavior also
shows itself in the calcium concentration. In these three cases the oscillations seem to grow over time. Longer
simulation time may be necessary to determine the nature of the amplitude. For the cases (3.2, 3.2) and
(3.2, 6.4), the maximum peak of oscillation is of order 105. For the (6.4, 6.4) case, the maximum peak is of
order 104. We note that the second, third, and fourth plots in the first column of Figure 9 show a relatively
constant value for the calcium concentration, indicating the absence of a self-organized wave.
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In summary, the cases with self-organizing waves and with Vpump = 0.2 or 1.6 have total calcium con-
centrations throughout the cell that grow dramatically over time. For cases with self-organizing waves and
with Vpump = 3.2 or 6.4, the total calcium concentration throughout the cell oscillates with growing peaks
over time.
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(6.4, 0.2) (6.4, 1.6) (6.4, 3.2) (6.4, 6.4)

Figure 7: Plots of Jpump vs. calcium concentration for each (Vpump,Kpump) case.
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(3.2, 0.2) (3.2, 1.6) (3.2, 3.2) (3.2, 6.4)

(6.4, 0.2) (6.4, 1.6) (6.4, 3.2) (6.4, 6.4)

Figure 8: Plots of the total number of open CRUs throughout the cell vs. time for each (Vpump,Kpump) case.
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Figure 9: Plots of the total calcium concentration throughout the cell vs. time for each (Vpump,Kpump) case.
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