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Abstract
In many areas, amongst others in Mathematics, one is supposed to deal with very

large problems. In order to compute some of those problems fast processors and a lot of
storage space are needed. So the idea is to focus on using different processes and divid-
ing the problem into a lot of subproblems. This report describes the Poisson problem,
a way to solve it numerically and introduces an implementation of a parallel algorithm
for that. As a linear equation solver I chose the Conjugate Gradient (CG) Method. As
a programming languange C and the MPI package were used. Tara of the High Perfor-
mance Computing Facility, University of Maryland, Baltimore County (UMBC) was
the cluster on which the studies were performed. This report also compares the studies
with other reports to confirm correctness of the algorithm and efficient programming.
As a result this special problem can be solved well with parallel computing resulting
in good speed-up.

1 Introduction

Parallelizing algorithms can be a useful method to solve very large problems in a short
amount of time. The idea behind it is simple: By using p processes, the parallel algorithm
should optimally be p times quicker than the serial algorithm.

Since too much communication between processes is the reason why parallel algorithms
may perform slowly, parallelizing is not always an option. The Jacobi-Method and the Gauss-
Seidel-Method are good examples for linear equation solvers (both described in [3]). On the
one hand, the computation of each vector component is independent of the other components
in the Jacobi-Method, whereas in the Gauss-Seidel-Method the single components need to
be computed in a specific order because of their dependencies. As a result it is fairly easy
to find an algorithm for the Jacobi-Method, not for the Gauss-Seidel-Method.

However in this report a parallel version of the Conjugate Gradient (CG) Method will be
presented in order to solve linear equation systems. Since we are looking at the discretization
of the Poisson problem with Dirichlet boundary conditions, the Finite Difference Method
leads to a system of linear equations with a symmetric, positive definite, sparse, highly
structured matrix. Thus the CG Method is also an option as a linear equation system. The
number of iterations and the performance of the CG Method in comparison to the Jacobi-
Method and the Gauss-Seidel-Method suggest to actually use the CG Method. The goal
was to find a parallel algorithm solving the Poisson problem with almost optimal seed-up
qualities.

The studies for this report were performed at the University of Maryland, Baltimore
County (UMBC) under the supervision of Dr. Gobbert as part of a semester abroad.
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Technical details of the computing environment: The Cluster tara

Tara is an 86-node distributed-memory cluster at UMBC. It was purchased in 2009 by the
UMBC High Performance Computing Facility (www.umbc.edu/hpcf) and it comprises 82
compute, 2 develop, 1 user and 1 management nodes. Each node features two quad-core
Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache), 24 GB memory and a 120 GB
local hard drive, thus up to 8 parallel processes can be run simultaneously per node. All
nodes and the 160 TB central storage are connected by an InfiniBand (QDR = quad-data
rate) interconnect network. The cluster is an IBM System x iDataPlex. An iDataPlex rack
uses the same floor space as a conventional 42 U high rack but holds up to 84 nodes, which
saves floor space. More importantly, two nodes share a power supply which reduces the
power requirements of the rack and make it potentially more environmentally friendly than
a solution based on standard racks. For tara, the iDataPlex rack houses the 84 compute and
development nodes and includes all components associated with the nodes in the rack such
as power distributors and ethernet switches. The user and management nodes with their
larger form factor are contained in a second, standard rack aling with the InfiniBand switch.
The PFI 9.0 C compiler has been used to create the executables which were utilized in the
report. The results are based on the MVAPICH2 implementation of MPI. Amongst other
adjustments, the user can decide if his job uses nodes exclusively or if he accepts to share
nodes. Sharing nodes means that different jobs can use different processes on one node at
the same time.

2 The Poisson Problem

We consider the Poisson Equation in 2D with Dirichlet boundary conditions

−∆u(x, y) = f(x, y) in Ω,
u(x, y) = 0 on ∂Ω,

on the unit square domain Ω = (0, 1)× (0, 1) with ∂Ω being defined as the boundary of Ω.
∆u denotes the Laplacian Operator ∆u(x, y) = uxx(x, y) + uyy(x, y).

The finite difference method approximates the solution at certain points, therefore we
take a look at xi = ih, yi = ih, , i = 1, . . . , N , with h = 1

N+1
and get the points (xi, yj) for

i, j = 1, . . . , N . This results in the mesh

Ωh = {(xi, yj)|i = 0, . . . , N + 1, j = 0, . . . , N + 1} ⊂ Ω ∪ ∂Ω

with (N + 2)2 points. uij denotes the approximation of u(xi, yj). Because of the boundary
condition there are only N2 unknown approximations.

Using approximations for the second derivatives leads to

−∆u(xi, yj) '
−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1

h2
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for i, j = 1, . . . , N . This can be transformed into a system of linear equations with matrix

A =


Ã −I
−I . . . . . .

. . . . . . −I
−I Ã

 ∈ RN2×N2

,

with

Ã =


4 −1

−1
. . . . . .
. . . . . . −1
−1 4

 ∈ RN×N and I =


1

. . .
. . .

1

 ∈ RN×N

and vector
u = (u1, . . . , uN2)T , ui+Nj = uij.

The matrix A is symmetric, positive definite, sparse and highly structured. There are several
options to solve this linear equation system. A solver which takes advantage of those qualities
would be the CG-Method for symmetric, positive definite matrices. The other properties of
the matrix lead to the idea of an efficient, matrix-free implementation of the CG-Method for
this particular equation system. Which means, instead of implementing the matrix A, we
use a routine in order to compute the matrix-vector product.

So the question now is, how to implement a parallel version of the CG-Method. Since
we don’t need the actual matrix, we can focus on the vectors. If p processes are being
used, a vector of size n = N2 is divided into p sub-vectors with size local n = n

p
. We

assume that n is a multiple of p. Thus the first process has access to the subvector with
components 1, . . . , local n, the second process has access to the subvector with components
local n+ 1, . . . , 2local n and so forth.

Additions and scalar multiplications of vectors can be performed locally, no communica-
tion between processes is necessary. That leaves three tasks:

• dot-product

• norm

• matrix-vector mulitplication

Obviously all of these problems require communication between the processes. The dot-
product is the sum of every component of the first vector multiplied with the corresponding
component of the second vector. The multiplications of components and local n−1 additions
can be performed locally. Finally we receive p different dot-products of the sub-vectors.
Adding all these dot-products results in the actual dot-product of the original vectors. The
MPI command MPI Allreduce does exactly that and additionally sends the result to every
process.
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The norm is just the squareroot of the dot-product, so there is no use in implementing a
specific routine.

The matrix-vector multiplication is the most complicated task to parallelize. Every
subvector on each process has local n = n

p
= N N

p
components describing a certain part

of the 2D mesh, specifically N
p

number of rows of size N . This helps to visualize the amount
of comminucation necessary. At most five mesh points can play a role in order to compute
one component of the solution. In terms of the mesh, every point itself and his neighbours
define the corresponding component of the solution. Every neighbour with respect to x
is stored locally (inside one row), but the neighbour with respect to y is in the previous,
respectively next row. Thus there are two rows per process which need data from a row
stored on a different process: The first and the last row. At the same time, these rows play
an important part on other processes. All in all, with few exceptions, every process has to
send and receive two vectors of size N . Therefore every process stores four vectors for the
CG-Method and two vectors to compute the parallel matrix-vector multiplication.

The most efficient way would be to communicate between processes while computing,
since most of the needed data is stored locally. The non-blocking communication commands
MPI Isend and MPI Irecv are perfect to use in this context. More information about the
MPI commands can be found in [1].

The numerical theory (in [2] and [6]) predicts that the error will converge as ‖u− uh‖L∞(Ω) ≤
Ch2, as h→ 0, where C is a constant independent of h. As a result we get

‖u− u2h‖L∞
‖u− uh‖L∞

≈ C(2h)2

Ch2
= 4

by using half the step size. In other words, the error is supposed to get four times smaller
with only half the step size. Thus this ratio is a practical criterion to prove the correctness
of the implementation of the algorithm.

3 Convergence Study for the Model Problem

In order to test the algorithm of the Finite Difference Method, respectively the CG Method,
we consider the Poisson problem described in Section 2 on the unit square Ω = (0, 1)× (0, 1)
with right-hand side function

f(x1, x2) = (−2π2)(cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)).

The function u(x1, x2) = sin2(πx1) sin2(πx2) is the known solution for this particular prob-
lem.

By using different mesh sizes, we can confirm the numerical theory regarding the Fi-
nite Difference Method and analyze the performance of the CG Method. Concerning the
CG Method, as an initial guess we use the zero vector. The method terminates when the
Euclidean vector norm of the residual is smaller than 10−6.
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Table 3.1: ν and N describe the mesh size, n the degrees of freedom, Eν the finite difference
error and Rν an error fraction.

ν N = 2ν n = N2 Eν = ‖u− uh‖L∞(Ω) Rν = Eν−1

Eν

5 32 1,024 3.013e-3 N/A
6 64 4,096 7.781e-4 3.87
7 128 16,384 1.976e-4 3.94
8 256 65,536 4.980e-5 3.97
9 512 262,144 1.249e-5 3.99
10 1024 1,048,576 3.127e-6 3.99
11 2048 4,194,304 7.802e-7 4.01

Table 3.1 and Table 3.2 are the results of various one-process runs of the parallel code.
Table 3.1 focuses on the error, whereas Table 3.2 shows performance results. Regarding
Table 3.1, ν and N describe the mesh size (N = 2ν), n is the number of degrees of freedom,
Eν is the finite difference error and Rν a fraction of errors. The error clearly decreases if
finer mesh resolutions are being used. The last column of Table 3.1 confirms that, showing
that the implementation of the algorithm computes as expected and the Finite Difference
Method is a second order method.

Table 3.2 lists again the mesh sizes (described by ν or N) , the number of degrees of
freedom, the number of iterations of the CG Method and the wall clock time, one column
for hours, minutes and seconds and another column just for seconds. It shows that refining
the mesh results in more iterations of the CG Method. The increasing number of degrees of
freedom also suggests that the comlexity of computations increases per iteration by decreas-
ing the step size. As a result the wall clock time increases dramatically. In order to prevent
hours of wall clock time for large problems, parallelizing is a reasonable way to solve those
problems.

These results are consistent to the results of [5, Table 3.1, Section 3.3.2], where the same
problem is solved by Matlab’s pcg function and the results are presented in a table similar
to Table 3.1 and Table 3.2.

The comparison with [4, Table 3.1, Section 3] shows differences in the number of iterations
and in the error values. Each error value in Table 3.1 is slightly smaller and each run of the
code needs one or two more iterations then the runs of the corresponding code in [4, Table
3.1, Section 3]. Since we just confirmed the number of iterations and the errors values of this
report, the results of [4, Table 3.1, Section 3] seem to be slightly inaccurate. One possible
explanation would be a usage of a smaller step size then presented in the source, since the
number of iterations is always smaller.

4 Parallel Performance Studies

The idea behind parallel computing was already mentioned in Section 1: By using p processes,
the parallel algorithm should be p times faster than the serial algorithm. In reality this is
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Table 3.2: ν and N describe the mesh size, n the degrees fo freedom, iter the number of
iterations. The last two columns describe the wall clock time in two different formats.

ν N n = N2 #iter wall clock time
HH:MM:SS seconds

5 32 1,024 48 <00:00:01 <0.01
6 64 4,096 96 <00:00:01 0.01
7 128 16,384 192 <00:00:01 0.05
8 256 65,536 387 <00:00:01 0.32
9 512 262,144 783 00:00:03 2.56
10 1024 1,048,576 1581 00:00:28 27.97
11 2048 4,194,304 3192 00:03:40 219.80

not always the case but the parallel algorithms still perform better than serial algorithms.
Thus a very important criterion is that using more processes should always leads to (not
necessarily optimal) speed-up.

Table 4.1 lists the different wall clock times for certain problems. The table consist of
various sub-tables each describing the Poisson problem for one particular mesh resolution.
The different columns describe the number of nodes being used (1, 2, 4, or 8) and the rows
show how many processes per node were used (again 1, 2, 4, or 8). Thus the table compares
the wall clock times of the algorithm using between one and 64 processes. The nodes were
used exclusively.

The table clearly shows that using more processes always decreases the wall clock time.
Regarding speed-up we have to divide the results: First if the number of processes per node
is fixed, the results indicate almost optimal speed-up. But if the number of nodes is fixed,
we still observe speed-up, only not as good as in the other case. Nevertheless the results
encourage that using parallel algorithms and various nodes is an efficient way of saving time
(and storage), the more nodes the better.

In [4, Table 1.1, Section 1], where the table is presented in the same fashion as Table 4.1,
the same problem using the same computing environment is described. Regarding the wall
clock times, there are no dramatic differences. Seemingly the results in Table 4.1 are slightly
better, but there are always single times worse for every mesh resolution. Additionally, as
described in Section 3, the two codes do not have equal results. But having comparable wall
clock times is still worth mentioning, especially because the code used for this report needed
more iterations.

Table 4.2 shows the results of the same code, only with the sharing node feature instead
of using nodes exclusively. Except for wall clock time, all results are equal and independent
of how the nodes were used. Wall clock times in red font imply that this specific run of the
code was slower then the corresponding run in Table 4.1, blue font implies that the run was
faster. Table 4.3 uses the same idea of coloring and describes the actual differences between
Table 4.2 and Table 4.1.

Both Table 4.2 and Table 4.3 point out that in most cases using shared nodes leads to
a worse performance. Especially in Table 4.3 it becomes obvious how much of an impact
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Table 4.1: Each sub-table lists the results of the studies (exclusive nodes) in terms of wall
clock time (HH:MM:SS) for a specific mesh resolution. A column represents a certain number
of nodes and a row represents the processes per node.

Mesh resolution N ×N = 1024× 1024, n = 1,048,576
1 node 2 nodes 4 nodes 8 nodes

1 process per node 00:00:28 00:00:14 00:00:06 00:00:03
2 processes per node 00:00:14 00:00:06 00:00:03 00:00:02
4 processes per node 00:00:09 00:00:03 00:00:02 00:00:01
8 processes per node 00:00:05 00:00:02 00:00:01 00:00:00

Mesh resolution N ×N = 2048× 2048, n = 4,194,304
1 node 2 nodes 4 nodes 8 nodes

1 process per node 00:03:40 00:01:53 00:00:58 00:00:29
2 processes per node 00:01:39 00:00:58 00:00:28 00:00:13
4 processes per node 00:01:08 00:00:39 00:00:17 00:00:07
8 processes per node 00:00:44 00:00:22 00:00:10 00:00:04

Mesh resolution N ×N = 4096× 4096, n = 16,777,216
1 node 2 nodes 4 nodes 8 nodes

1 process per node 00:29:58 00:14:49 00:08:03 00:03:55
2 processes per node 00:15:21 00:07:27 00:03:56 00:01:59
4 processes per node 00:08:38 00:05:04 00:02:32 00:01:36
8 processes per node 00:05:53 00:02:58 00:01:30 00:00:46

Mesh resolution N ×N = 8192× 8192, n = 67,108,864
1 node 2 nodes 4 nodes 8 nodes

1 process per node 03:53:37 02:00:05 01:08:02 00:31:53
2 processes per node 01:53:15 01:00:08 00:31:23 00:15:55
4 processes per node 01:07:39 00:38:09 00:19:41 00:10:21
8 processes per node 00:48:06 00:24:07 00:12:06 00:06:06

the sharing of nodes can have. Surprisingly the single-process run for N = 8192 is a clear
exception, but other than that the results of the shared node studies are never more than
ten seconds faster than the corresponding exclusive node studies. In fact, the exclusive node
time for the single-process run is only 4.57% slower, while the shared node time for the same
mesh resolution using two nodes with two processes per node is 56.52% slower. Additionally,
most of the exclusive node times are clearly better. Note that the results confirm that for
eight processes per node sharing does not affect the times for obvious reasons.

On the one hand if performance studies are supposed to be created, sharing nodes may
have a negative impact on wall clock times. On the other hand sharing nodes can help
finishing more jobs faster which can be helpful. But the results of this report only emphasize
using exclusive nodes for actual performance studies.
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Table 4.2: Wall clock times for the studies with shared nodes, each sub-table lists the
results for a specific mesh resolution. Red color implies that the result is worse then the
corresponding result of the exclusive node study, blue color that the result is better.

Mesh resolution N ×N = 1024× 1024, n = 1,048,576
1 node 2 nodes 4 nodes 8 nodes

1 ppn 00:00:28 00:00:14 00:00:06 00:00:03
2 ppn 00:00:16 00:00:08 00:00:03 00:00:02
4 ppn 00:00:11 00:00:05 00:00:02 00:00:01
8 ppn 00:00:05 00:00:02 00:00:01 00:00:00

Mesh resolution N ×N = 2048× 2048, n = 4,194,304
1 node 2 nodes 4 nodes 8 nodes

1 ppn 00:04:53 00:01:56 00:01:08 00:00:29
2 ppn 00:02:31 00:01:17 00:00:36 00:00:16
4 ppn 00:01:23 00:00:42 00:00:19 00:00:10
8 ppn 00:00:44 00:00:22 00:00:10 00:00:04

Mesh resolution N ×N = 4096× 4096, n = 16,777,216
1 node 2 nodes 4 nodes 8 nodes

1 ppn 00:36:21 00:18:18 00:09:47 00:03:56
2 ppn 00:20:07 00:10:15 00:04:35 00:02:17
4 ppn 00:11:19 00:05:58 00:02:50 00:01:31
8 ppn 00:05:54 00:02:58 00:01:30 00:00:46

Mesh resolution N ×N = 8192× 8192, n = 67,108,864
1 node 2 nodes 4 nodes 8 nodes

1 ppn 03:43:25 02:30:02 01:33:27 00:31:44
2 ppn 02:21:53 01:34:11 00:37:36 00:18:36
4 ppn 01:36:25 00:49:59 00:24:25 00:12:13
8 ppn 00:48:04 00:24:11 00:12:07 00:06:06
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Table 4.3: Difference between corresponding wall clock times of Table 4.2 and Table 4.1.
Mesh resolution N ×N = 1024× 1024,

n = 1,048,576
1 node 2 nodes 4 nodes 8 nodes

1 ppn 00:00 00:00 00:00 00:00
2 ppn +00:02 +00:02 00:00 00:00
4 ppn +00:02 +00:02 00:00 00:00
8 ppn 00:00 00:00 00:00 00:00

Mesh resolution N ×N = 2048× 2048,
n = 4,194,304

1 node 2 nodes 4 nodes 8 nodes
1 ppn +01:13 +00:03 +00:10 00:00
2 ppn +00:53 +00:19 +00:08 +00:03
4 ppn +00:15 +00:03 +00:02 +00:03
8 ppn 00:00 00:00 00:00 00:00

Mesh resolution N ×N = 4096× 4096,
n = 16,777,216

1 node 2 nodes 4 nodes 8 nodes
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4 ppn +02:41 +00:54 +00:18 −00:05
8 ppn +00:01 00:00 00:00 00:00
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1 node 2 nodes 4 nodes 8 nodes
1 ppn −10:12 +29:57 +25:25 −00:09
2 ppn +28:00 +34:03 +06:13 +02:41
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8 ppn −00:02 +00:04 +00:01 00:00
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