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Tornadoes pose a forecast challenge to National Weather Service forecasters because of their quick development and potential
for life-threatening damage. The use of machine learning in severe weather forecasting has recently garnered interest, with
current efforts mainly utilizing ground weather radar observations. In this study, we investigate machine learning techniques
to discriminate between nontornadic and tornadic storms solely relying on the Rapid Update Cycle (RUC) sounding data that
represent the pre-storm atmospheric conditions. This approach aims to provide for early warnings of tornadic storms, before
they form and are detectable by weather radar observations. Feature analysis of a Random Forest machine learning model
uncovers that the pressure variable has little impact on the classification process, which is consistent with known key physical
attributes of tornado formation, demonstrating the ability of machine learning techniques to provide insight solely based on
the data.
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1 Introduction

Tornadoes can develop quickly, cause severe damage across a large spatial area, and create life-threatening conditions, thus
posing a forecast challenge. Approximately 1,200 tornadoes are reported in the U.S. each year, resulting in roughly 80 deaths
and millions of dollars in damage. Timely and accurate predictions of these severe weather events are key to mitigating
casualties. However, tornadoes are very difficult to predict, as most severe weather will not lead to tornadogenesis.

The majority of studies of severe weather exclusively rely on commonly used parameters that describe the environment
(e.g., how much instability or wind shear is in the atmosphere). The goal of this programme is to explore the use of machine
learning techniques to predict significant tornadoes using only Rapid Update Cycle (RUC) sounding data that represent the
pre-storm atmospheric conditions. This approach aims to provide for early warnings of tornadic storms, before they form and
are detectable by ground weather radar observations. In this particular study, we investigate whether novel structures in the
modeled sounding data, that discriminate between nontornadic and tornadic storms, can be found by the power of machine
learning without preconceived computed environmental parameters.

The severe weather event database used in this study is that of [1] and [2], expanded to include the years 2005–2017 for
tornadic thunderstorms and 2005–2015 for nontornadic thunderstorms. All tornado, significant hail (sighail), and significant
wind (sigwind) reports are filtered for the largest magnitude report per hour on a 40 km spacing Rapid Update Cycle (RUC)
model analysis grid and then assigned to the closest analysis hour. Since roughly 80% of tornadic events originate from
supercell storms, we focus on identifying if a supercell will become tornadic. The 20,194 supercells in the dataset consist of
10,839 significantly severe nontornadic cases, 7,743 weakly tornadic (F0–F1) tornadic damage cases, and 1,612 significantly
tornadic (F2–F5) tornado damage cases.

2 Results

After pre-processing the data, we build and test a Random Forest model [3, 4] using the machine learning package sklearn
(https://scikit-learn.org/stable/) in Python. See [5] for details, pre-processing, and additional results. For our base model,
hyperparameter settings are as follows: class_weight = balanced, max_depth = 200, n_estimators = 200 (all other parameters
use their default settings). We use the ‘balanced’ setting for class weights because we have imbalanced data: 54% nontornadic,
38% weakly tornadic, and 8% significantly tornadic. The balanced setting weighs the classes inversely proportional to their
frequency of occurrence. Using these settings, and a training-testing split of 80-20, the Random Forest Model predictions on
the testing data results in an overall accuracy score of 71.6%.
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Fig. 1: Feature importance scores in (a) and variable contributions in (b).

Performance testing using various ranges of hyperparameters indicate that the model is performing optimally given the
current settings and the current form of the input data. In testing a range of max_depth settings from 10 to 400, the minimum
accuracy score is 64.79% (for max_depth = 10), the maximum is 71.6% (for max_depth = 200), the average accuracy score
is 69.78%, and the standard deviation is ±1.65%. We also experiment with increasing the size of the forest (n_estimators),
varying choices between 100 to 2000. There were no significant gains in accuracy for larger forests, and the best accuracy is
observed at around n_estimators = 200.

The ability to easily and efficiently perform feature importance analysis is our primary motivation for using the Random
Forest model on this data set. Feature importance analysis can lead to insights regarding our data and can lead to model
improvements. After calculating the tree-specific feature importance for each tree in our forest, we average the results to
compute a feature importance score. This is done automatically using the sklearn function feature_importances_.

Our data has 222 features, however, these features are split equally across six variables, temperature, dewpoint, relative
humidity, u-wind, v-wind, and pressure, corresponding to thirty-seven standardized heights ranging from 10 m to 16.3 km.
Since each feature corresponds to a specific height, we plot the feature importance scores of each variable across the range of
heights in Figure 1 (a), along with the cumulative feature importance scores for each variable in Figure 1 (b), in which we add
up each variable’s feature importance scores for every height. These figures indicate the v-wind variable scored significantly
higher than other variables, specifically at heights below 4 km. We also note that the first few humidity readings were of more
importance than subsequent humidity readings. But the pressure variable scores are consistently lower than other variables
across all height levels, as seen in Figure 1 (a).

These feature importance results are consistent with known key features of tornado formation. Low-altitude relative hu-
midity is decent predictor of downdraft coldness. Lower relative humidity allows for more evaporation and typically colder
downdrafts. This colder, denser air at the surface resists being converged and stretched into a tornado. Along these lines,
low-altitude vertical wind shear is well correlated with the strength of the convergence and stretching by the supercell on
developing vortices [6].

Accurate prediction of significant tornadoes using machine learning algorithms is a relatively new and challenging data
science problem. Solutions to this problem could, in time, provide a useful tool in severe weather forecasting and may provide
additional insight into conditions surrounding tornado formation. We show an initial exploration of using Rapid Update Cycle
(RUC) sounding data for supercell storms, that describes the pre-storm atmospheric conditions of a supercell, to train Random
Forest classification for tornado prediction. Feature analysis of the model uncovers that the pressure variable has little impact
on the classification process, which is consistent with known key physical attributes of tornado formation, demonstrating the
ability of machine learning techniques to provide insight solely based on the data.
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