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Abstract
The convergence of finite element methods for elliptic and parabolic

partial differential equations is well-established if source terms are sufficiently
smooth. Noting that finite element computation is easily implemented even
when the source terms are measure-valued — for instance, modeling point
sources by Dirac delta distributions — we prove new convergence rate results
in dimensions d = 2, 3 both for elliptic and for parabolic equations with mea-
sures as source terms. These analytical results are confirmed by numerical
tests using COMSOL Multiphysics.

1 Introduction

This paper is concerned with two related problems: the parabolic (time-
dependent) diffusion problem

ut −∇·D∇u = ϕ + BC with u |t=0= 0 (1.1)
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onQ = QT = [0, T ]×Ω, which is our primary concern, and the corresponding
steady state problem

−∇·D∇u = ϕ + BC (1.2)

on Ω, restricting attention to autonomous linear problems so D = D(x), etc.
Our focus will be on convergence rate error estimates of the form

‖u− UV‖Y ≤ Khα‖ϕ‖X (1.3)

where u is the solution of (1.1) or (1.2), U = UV is the corresponding finite
element solution of each problem, using the finite element space V , and h =
h(T ) → 0 is the mesh parameter of the triangulation T determining V . Thus
(1.3) would be estimating approximation error in the space Y for data in the
space X — assuming, of course, that V ⊂ Y , that X embeds in the dual V∗
and that the solution u would be in Y for data in X .

Throughout we will take Y to be L2(Ω) for measuring approximation
error for (1.2) and as a space of spatially L2(Ω)-valued functions of t for
(1.1). [The convergence rate estimate will always be expressed in terms of
the regularity of the data ϕ ∈ X , rather than that of the solution u.] One
well-known example of the form (1.3) (cf., e.g., [12]) is for ϕ ∈ X = L2 data:
that

One has α = 2 in (1.3) when X = L2(Ω), Y = L2(Ω). (1.4)

The use of a finite element space of continuous piecewise affine functions
certainly admits the formal possibility of using the Finite Element Method
(FEM) for such problems with measure data and our focus here is to justify
and analyze this formal procedure by seeking Y = L2(Ω) error estimates for
piecewise affine finite element approximations to (1.1) and (1.2) in dimensions
d = 2, 3 where the solutions would be in Y for data in M.

Our own contact with these problems started when modeling calcium flow
in heart cells, where the injection of calcium ions at locations throughout
the interior of the cell is modeled as point sources represented by Dirac delta
distributions; see [8, 5] and references therein for the application background.
In both of these papers, heuristic arguments and numerical evidence for time-
dependent problems of the form (1.1) suggest estimates of the form (1.3) with
α ≈ 2− d/2 for domains Ω ⊂ Rd; see Figure 1.

Thus, the purpose of this paper is to prove rigorous results of the form
(1.3) for cases when the source term ϕ in (1.2) is not a function in L2, but
is permitted to be a delta function or, somewhat more generally, a measure
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µ in M = [C(Ω̄)]∗. There has been considerable interest recently in such
equations and their numerical solution See, e.g., [10], [4], [1], etc., but one
may go farther back, almost 40 years, to Ridgway Scott [11]. The papers
[4], [1] are not quite comparable with our present concerns and, despite its
title, [2] does not consider measure-valued data. Most significantly, we note
that [11] gives an O(h2−d/2) error estimate for a single delta function as the
right-hand side, but the relevant result there is not in the form (1.3) and
does not apply directly to more general source terms.

We will also be concerned to get estimates for finite element approxima-
tion of (1.1). Indeed, we are thinking of the time-dependent problem (1.1) as
our primary interest, where ϕ in (1.1) would be a time-dependent M-valued
function µ(t) with results depending on our assumptions for its t-variation.
The equations (1.1) and (1.2) are closely related structurally and it seems
appropriate to consider them together and, in fact, to treat the more easily
handled (1.2) first. Our arguments will largely follow [11] with the use of [12]
and semigroup theory for the parabolic problem.

This paper is organized as follows: Section 2 states the formulation and
defines the notation used throughout. Sections 3 and 4 analyze the stationary
problem (1.2), with the main result in Theorem 4.2. Section 5 provides the
main result for the time-dependent problem (1.1) in Theorem 5.2. Finally,
Section 6 presents the computational studies that accompany the analytical
results.

2 Formulation and Notation

For (1.2) with homogeneous Dirichlet boundary conditions one considers the
solution u as satisfying the weak form

〈∇v,D∇u〉 = 〈v, ϕ〉 for all admissible v (2.1)

and, given a finite element space V (e.g., of piecewise affine functions on some
triangulation T ), the finite element Galerkin approximation U = UV ∈ V is
obtained as satisfying

〈∇v,D∇U〉 = 〈v, ϕ〉 for all v ∈ V . (2.2)

For simplicity we will assume throughout that the spatial region Ω ⊂ Rd

is open, bounded and connected with adequately regular boundary ∂Ω. We
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further assume that d ≤ 3 and that the diffusion coefficient D is smooth
enough to ensure that for (1.2) with homogeneous Dirichlet conditions

We have u ∈ H2(Ω) ∩H1
0 (Ω) for data ϕ ∈ L2(Ω).

H2(Ω) ∩H1
0 (Ω) ⊂ C0,λ(Ω) for (some) 0 < λ < 2− d/2.

(2.3)

Noting standard elliptic regularity results and the Sobolev Embedding The-
orem, we note that this is effectively a mild geometric assumption on the
regularity of ∂Ω supplemented, e.g., by requiring D ∈ W 1,∞(Ω) as well as
uniform ellipticity. What we will actually use is a consequence of this: that
the map: ϕ 7→ u is continuous from L2(Ω) to C0,λ(Ω) so, by duality and
noting the divergence form of the equation (1.2), we have

S : Mλ(Ω) = [C0,λ(Ω)]∗ → L2(Ω) is continuous: ‖S‖ <∞ (2.4)

for the solution operator S of (1.2).
Throughout this paper, for our concern with spatial discretization we

will let T denote a regular partition of the region Ω and will let V denote
the associated space of continuous piecewise affine functions. Thus we as-
sume that the region Ω is to be partitioned by a triangulation T , consisting
of simplices E with compatible faces; the mesh parameter h = h(T ) =
maxE∈T {diam(E)} then indicates the scale of the triangulation. The notion
of regularity here means that the elements have roughly the same shape as
the reference simplex E∗ and, for each value h > 0 of the scale parameter
are of roughly the same size, taking diam(E∗) = 1. We make this precise by
assuming that, for each E ∈ T , there is an affine map of the form:

ψ = ψE : E∗ → E : x∗ 7→ x = v + hAEx∗ (2.5)

with h = h(T ) and all the matrices {AE} restricted to some fixed compact
set A ⊂ GL(d). We then denote by T = TA the family of all such triangula-
tions with the same set A and let Th = {T ∈ T : h(T ) ≤ h}.

Corresponding to each such triangulation T ∈ T is the space W(T ) con-
sisting of all functions on Ω which are affine on each simplex E ∈ T . The
finite element space under consideration is then V = W ∩ C0(Ω), noting the
homogeneous Dirichlet boundary conditions. It will also be convenient to
let W(E) be the (d+ 1)-dimensional space of affine functions on E for each
E ∈ T , so W(E) = ψ−1

E W(E∗) and W(T ) = ⊕W(E).
Note that no norm is specified for V or W(T ), but when desired we may

use appropriate subscripts to indicate use of a specified norm: e.g., we write
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W = Wp(T ) for use of the Lp(Ω)-norm ‖ · ‖p. We will write ‖ · ‖ for the
L2-norm, identifying other norms by appropriate subscripts.

In our estimations we will use K to denote an arbitrary positive constant
(replaceable by any larger constant and not necessarily the same at each
appearance) which may depend on d,Ω,A, . . . or prior instantiations of K,
but does not depend on any particular ϕ, u,V , etc., and specifically does not
depend on the mesh parameter h except that it may require that h > 0 be
‘sufficiently small’. It follows from the regularity assumption that we have

‖AE‖ ≤ K, 1/K ≤ | det AE| ≤ K, h/K ≤ diam (E) ≤ Kh

for all E ∈ T as consequences of the compactness of A.

3 An Elliptic Estimate Based on [11]

We begin here with the relevant estimate from [11].

Theorem 3.1. [Scott] Let Ω ⊂ Rd with d = 2, 3 and let ϕ = δξ, a delta
function located at the point ξ ∈ Ω. Let V be the finite element space of
piecewise affine elements on a regular triangulation T . Then, for each ξ ∈ Ω
there is a function f = f ξ ∈ L2(Ω) satisfying

a) 〈f,Φ〉 = 〈δξ,Φ〉 = Φ(ξ) for all Φ ∈ V ⊂ W(T )

b) ‖f‖L2(Ω) ≤ c(ξ)h−d/2

c) ‖f − δξ‖X− ≤ Khα∗ with α∗ = 2− d/2.

(3.1)

Letting u = uξ be the solution of (1.2) with ϕ = δξ and U = UV be the FEM
approximation, satisfying (2.2), one then has

‖u− UV‖ ≤ c(ξ)hα∗ . (3.2)

The auxiliary space X− used in the paper [11] is the space Ξ−2 from [9] and,
as noted in [11], the asymptotics

c(ξ) = O(|ξ − ∂Ω|−2) as ξ → ∂Ω (3.3)

come from this choice. Note that we need dimension d < 4 to have α∗ > 0.
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Since c(ξ) → ∞ as ξ → ∂Ω, we cannot expect to deduce from this an
O(hα∗) estimate of the form (1.3) with X = M. Instead, we introduce the
c-weighted norm

‖µ‖c =

∫
Ω

c(x) |µ|(dx). (3.4)

and consider as the space of source terms only those signed measures for
which this norm is finite.

Theorem 3.2. Let X be the the space Mc = {µ ∈ M(Ω) : ‖µ‖c < ∞} .
Then one has the O(h2−d/2) convergence rate, i.e., with α∗ = 2−d/2 one has

‖u− UV‖ ≤ hα∗ ‖ϕ‖X for source terms ϕ = µ ∈ X = Mc(Ω). (3.5)

Proof: Write ũ = ũ(ξ, ·) for the solution u with ϕ = δξ as ξ varies over
Ω and observe that (ξ, x) 7→ ũ(ξ, x) is then just the fundamental solution
of the system. In much the same way we have Ũ(ξ, ·) as the corresponding
FEM solution, satisfying (2.2) with finite element space V .

As is standard, linearity gives
∫
ũ(ξ, x)ϕ(ξ) dξ as the solution Sϕ of (1.2)

for, e.g., smooth ϕ. We have continuity of S : M → Y = L2(Ω) so, by the
density in M of such smooth functions, we have the representations

u = Sµ =

∫
Ω

ũ(ξ, ·)µ(dξ), U = UV =

∫
Ω

ŨV(ξ, ·)µ(dξ) (3.6)

for u and U satisfying (1.2) and (2.2), respectively. Using (3.2), this gives

‖u− UV‖ =

∥∥∥∥∫
Ω

[ũ(ξ, ·)− Ũ(ξ, ·)]µ(dξ)

∥∥∥∥
≤

∫
Ω

[c(ξ)hα∗ ] |µ|(dξ) = hα∗‖µ‖Mc .

which is just (3.5).

As a possibly useful corollary we obtain the following slightly simpler
result (provided we can restrict attention to measures with support in a
subset Ω′ compactly contained in Ω).

Corollary 3.3. Fix Ω′ b Ω and let M(Ω′) = [C(Ω′)]∗ be identified with the
subspace {µ ∈ M : µ(S) = 0 forA ⊂ [Ω \ Ω′]} of measures in M = M(Ω)
with support in Ω′, taking ‖µ‖M(Ω′) = ‖µ‖M =

∫
Ω′
|µ|(dξ). Then one has

‖u− UV‖ ≤ K h2−2/d ‖ϕ‖M for source terms ϕ = µ ∈M(Ω′). (3.7)
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Proof: Take K = max{c(ξ) : ξ ∈ Ω′} in replacing ‖µ‖c by ‖µ‖M(Ω′);
this gives K <∞ as Ω′ is bounded away from ∂Ω.

Remark 3.4. The use of the space Ξ−2 from [9] leaves a regularity gap
here since [9] assumes, for simplicity, that Ω has a C∞ boundary — yet any
possibility of exact triangulation by simplices means that ∂Ω must be piecewise
affine. In [11] this issue is parenthetically addressed by the suggestion that
one might consider the use of elements at the boundary with curved faces.
In relying on Theorem 3.1 to obtain Theorem 3.2 we are conforming to the
treatment in [11].

4 An Alternative Approximation Theorem

Our goal in this section is to prove another approximation result, now ap-
plying to approximation by elements of the space V ⊂ W(T ) of continuous
piecewise affine functions on a regular triangulation T of Ω for more 1 gen-
eral measures µ ∈M. The properties (4.1) of the selection ΠVµ 7→ f will be
comparable to (3.1) for the approximation of δξ by an L2 function used in [11]
and we also apply this to get a convergence rate for the elliptic (steady state)
problem of the form (1.3) for X = M. Now relying on the assumption (2.3),
the key distinction between this construction and that of Theorem 3.1 is the
replacement of the auxiliary space X− = Ξ−2 from [9] used there by the use
here of X− = Mλ(Ω) = [C0,λ(Ω)]∗ (where C0,λ(Ω) is the space of Hölder
continuous functions with exponent λ). The resulting Theorem 4.1 can then
be used for estimating the FEM convergence rate when X = M.

Theorem 4.1. Take 0 < λ < 1 as in (2.3) and V as above with h = h(T ).
Then, for any measure µ ∈M there is a function f = ΠVµ ∈ L2(Ω) satisfy-
ing

a) 〈f,Φ〉 = 〈µ,Φ〉 for all Φ ∈ V ⊂ W(T )

b) ‖f‖L2(Ω) ≤ Kh−d/2 ‖µ‖M
c) ‖f − µ‖X− ≤ Khλ ‖µ‖M

(4.1)

now with X− = Mλ(Ω) = [C0,λ(Ω)]∗ where C0,λ(Ω) is the space of Hölder
continuous functions with exponent λ.
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We begin with the observation that, for any triangulation T and for
1 ≤ p <∞ one has Lp(Ω) = ⊕Lp(E): for any function f ∈ Lp(Ω) there are
(unique) functions fE = f |E ∈ Lp(E) for E ∈ T and, using (2.5), one has

‖f‖p
Lp(Ω) =

∫
Ω

|f(x)|p dx =
∑
E∈T

∫
E

|fE|p dx

=
∑
E∈T

∫
E∗

|fE ◦ ψ|p | det (ψ′)| dx∗

= hd
∑
E∈T

| det (AE)| ‖fE ◦ ψ‖p
Lp(E∗)

so: ‖f‖Lp(Ω) ≤ Khd/p
∑
E∈T

‖fE ◦ ψ‖Lp(E∗)

(4.2)

Having introduced the space of (signed) measures M = [C(Ω)]∗, we now also
note that one can analogously decompose a measure µ ∈M as

µ =
∑
E

µE ‖µ‖M(Ω) =
∑
E∈T

‖µE‖M(Ω) supp (µE) ⊂ E. (4.3)

[This decomposition is almost unique: we need only note that a bit of selec-
tion may be needed in case |µ|might assign nontrivial measure to some subset
of a face E ∩ E ′, requiring that this be split, somewhat arbitrarily, between
µE and µE′ . Observe, however, that this consideration is more relevant to
the analysis than to the computation.] Note that each µE is in M = M(Ω),
but can also be viewed in M(E) = [C(E)]∗ with ‖µE‖M(E) = ‖µE‖M since
each ϕ ∈ C(E) can be extended to Ω without increase in norm.] We also
note that we may use (2.5) here again to get

‖µE‖M(E) =

∫
E

|µE| dx =

∫
E∗

| det (ψ′)| |µE ◦ ψ| dx∗

= hd | det(AE)| ‖µE ◦ ψ‖M(E∗)

(4.4)

For the Hölder space C0,λ(Ω) for 0 ≤ λ < 1 and its dual Mλ = Mλ(Ω) =
[C0,λ(Ω)]∗ we use the norms

‖ϕ‖C0,λ(Ω) = sup
x∈Ω

{|ϕ(x)|} + sup
x 6=y∈Ω

{
|ϕ(x)− ϕ(y)|
|x− y|λ

}
(4.5)

8



with the corresponding dual norm for µ ∈Mλ

‖µ‖Mλ = ‖µ‖[C0,λ(Ω)]∗ = sup {〈µ, ϕ〉 : ‖ϕ‖C0,λ(Ω) ≤ 1}. (4.6)

Clearly C0,λ(Ω) ↪→ C(Ω) so, by duality, M ↪→ Mλ. [If µ ∈ M is
decomposed as in (4.3), then each µE is in Mλ(Ω), but can also be viewed in
Mλ(E) = [C0,λ(E)]∗. Note that ‖µE‖Mλ(E) = ‖µE‖Mλ(Ω) since, again, each
ϕ ∈ C0,λ(E) can be extended to Ω without increase in C0,λ-norm.] With
these preliminaries we are ready to prove Theorem 4.1.

Proof:
Step 1: We begin by decomposing µ as in (4.3) and considering each E
separately. Each W(E) is a finite dimensional subspace of C(E) and we let
µ̃E be the restriction of µE toW(E) so an element of [W(E)]∗. In considering
W(E) as a subspace of C(E) we are implicitly using the sup-norm for W(E)
— denoting this by W∞(E) — and observe that, as a restriction, we have

‖µ̃E‖[W∞(E)]∗ ≤ ‖µE‖[C(E)]∗ = ‖µE‖M (4.7)

Since W(E) is finite dimensional, there is then a unique fE ∈ W(E) — i.e.,
with supp (fE) ⊂ E — such that

〈µE, w〉 =

∫
E

fE w dx for all w ∈ W(E). (4.8)

[Given any basis {bj} for W(E), we may find coefficients αjk such that∫
E

(
∑

k αjkbk) bj dx = 〈µ̃E, bj〉 for each j.] If we were to use the L2(E)-norm
for W(E), getting W2(E), we could equally well consider µ̃E as an element
of [W2(E)]∗ since W2(E) is a Hilbert space and we then get

‖fE‖W2(E) =

[∫
E

|fE|2 dx
]1/2

= ‖µ̃E‖[W2(E)]∗ (4.9)

We now define f ∈ L2(Ω) as f =
∑

E fE giving f ∈ W(T ) = ⊕W(E). For
any Φ ∈ W(T ), decomposed as Φ =

∑
ΦE, one then has

〈µ,Φ〉 =
∑
E∈T

〈µE,ΦE〉 =
∑
E∈T

〈µ̃E,ΦE〉 =
∑
E∈T

∫
E

fE ΦE dx =

∫
Ω

f Φ dx

so we have (4.1-a).
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Step 2: We have ‖µ̃E‖[W∞(E)]∗ ≤ ‖µE‖M and, using (4.8) and (2.5), we
obtain

‖µ̃E‖[W∞(E)]∗

= sup

{∫
E

fE w dx : w ∈ W(E), |w| ≤ 1

}
= hd| det(AE)| sup

{∫
E

[fE ◦ ψ] [w ◦ ψ] dx : w ◦ ψ ∈ W(E∗), |w| ≤ 1

}
= hd| det(AE)| ‖fE ◦ ψ‖[W∞(E∗)]∗

while, for comparison, we have

‖fE‖W2(E) =

[∫
E

|fE|2 dx
]1/2

= hd/2| det (AE)|1/2‖fE ◦ ψ‖W2(E∗).

Since W(E∗) is a fixed finite dimensional space, we note that all norms on it
are equivalent so there is a constant K such that

‖w‖W2(E∗) ≤ K‖w‖[W∞(E∗)]∗ for all w ∈ W(E∗). (4.10)

Note that [fE ◦ ψ] = w ∈ W(E∗) in each of our cases so

‖fE‖W2(E) = hd/2| det (AE)|1/2‖fE ◦ ψ‖W2(E∗)

≤ hd/2| det (AE)|1/2K‖fE ◦ ψ‖[W∞(E∗)]∗

= h−d/2| det (AE)|−1/2K‖µ̃E‖[W∞(E)]∗ ≤ Kh−d/2‖µE‖M.

The triangle inequality then gives (4.1-b).

Step 3: For (4.1-c) we again proceed for each E separately. We begin,
somewhat similarly to the above, by noting that

‖fE‖M = sup

{∫
E

fE w dx : w ∈ C(E), |w| ≤ 1

}
≤ ‖fE‖W1(E) ≤ hd| det(AE)|‖fE ◦ ψ‖W1(E∗)

≤ hd| det(AE)|K‖fE ◦ ψ‖[W∞(E∗)]∗

= K‖µ̃E‖[W∞(E∗)]∗ ≤ KµE‖M.

We then have

‖fE − µE‖Mλ = ‖fE − µE‖Mλ(E) = sup {〈fE − µE, w〉 : w ∈ B(E)}

where B(E) = {w ∈ C(E) : |w| ≤ 1, |w(x)− w(y)| ≤ |x− y| for x, y ∈ E}.
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Given any w ∈ B(E), we pick xE ∈ E and set w0 ≡ w(xE) so, by definition,

|w(x)− w0(x)| = |w(x)− w(xE)| ≤ |x− xE|λ ≤ diam(E)λ ≤ Khλ

— i.e., ‖w−w0‖C(E) ≤ Khλ. Since the constant function w0 is in W(E), we
have 〈fE − µE, w0〉 = 0 by the definition of fE whence

〈fE − µE, w〉 = 〈fE − µE, w − w0〉
≤ ‖fE − µE‖M ‖‖w − w0‖C(E) ≤ Khλ‖µE‖M

since ‖fE − µE‖M ≤ ‖fE‖M + ‖µE‖M ≤ K‖µE‖M. The triangle inequality
then gives (4.1-c), completing the proof.

For the elliptic problem (1.2) we then easily obtain the anticipated con-
vergence rate:

Theorem 4.2. For dimensions d = 2, 3 and any 0 ≤ λ < α∗ = 2 − d/2 for
which (2.3), (2.4) hold, there is a constant K such that one has the L2(Ω)
error bound

‖u− U‖L2(Ω) ≤ Khλ‖µ‖M(Ω) (4.11)

where, for an arbitrary measure in M(Ω) = [C(Ω)]∗, we have the solution
u = Sµ ∈ L2(Ω) of (1.2) and the corresponding FEM solution U = SV µ,
obtained by (2.2) for any regular triangulation T ∈ Th.

[We emphasize that K in (4.11) depends on Ω and on the choice of λ (pre-
sumably with K ↗ ∞ as λ ↗ α∗), but not on the particular µ or on the
particular triangulation used.]
Proof: By Theorem 4.1 we can introduce f = ΠVµ ∈ L2(Ω), satisfying
(4.1). By (4.1-a) one then has the same right hand side in (2.2) for ϕ = f as
for ϕ = µ so these give the same finite element solution: U = SVµ = SV f
— although ũ = Sf will not be the same as u = Sµ. We now use (2.4) for
S : X− = Mλ(Ω) → L2(Ω) so, using (4.1-c), we do have

‖u− ũ‖ = ‖S [µ− f ]‖ ≤ K‖f − µ‖X− ≤ Khλ‖µ‖M(Ω). (4.12)

Using (1.4) with (4.1-b) now gives

‖ũ− U‖ = ‖Sf − SVf‖ ≤ K h2‖f‖ ≤ Kh2−d/2‖µ‖M. (4.13)

Finally, combining (4.12) with (4.13),

‖u− U‖ ≤ ‖u− ũ‖+ ‖ũ− U‖ ≤ Khλ‖µ‖M +Kh2−d/2‖µ‖M
which just gives (4.11) for λ < α∗.
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5 The Parabolic Problem

Our goal in this section is to show that the same approximation Theorem 4.1
just used for FEM solution of the elliptic problem (1.2) also provides conver-
gence rates for FEM semidiscretization of the parabolic problem (1.1). [For
results on full discretization — in time as well as space — we refer to [12]
with such minor adaptation as may be made necessary for the setting here.]

For the parabolic problem (1.1) the results obtainable depend, to a large
extent, on what is assumed about the right-hand side as a function: [0, T ] →
M. For simplicity, we consider the problem here in continuous time (semidis-
cretization, corresponding to application of the Trotter-Kato Theorem) so the
finite element solution U = U(t) = UV(t) for (1.1) is given, much as in (2.2),
by

U(t) ∈ V , U(0) = 0, 〈U ′, v〉+ 〈∇U,∇v〉 = 〈ϕ, v〉 for all v ∈ V (5.1)

for each t ∈ [0, T ]. As with Theorem 4.2, we will use a known finite element
error estimate ‖S − SV‖ ≤ Kh2 (cf.,e.g., [12]) for L2-valued data ϕ ; more
precisely, given some p ∈ [0,∞] and any ϕ ∈ Lp([0, T ] → L2(Ω)), one has for
V ∈ Vh

‖u− U‖Lp([0,T ]→L2(Ω)) ≤ Kh2‖ϕ‖Lp([0,T ]→L2(Ω)). (5.2)

We will also need some standard information regarding the equation (1.1).
For this we will use a semigroup formulation, noting that the unbounded
operator A = (−∆) on L2(Ω) — with domain D = H2(Ω) ∩ H1

0 (Ω) — is
selfadjoint and positive definite so −A is the infinitesimal generator of an
analytic semigroup S(·) on L2(Ω). Thus, the mild solution of (1.1) is given
by

u(t) =

∫ t

0

S(t− s)ϕ(s) ds (5.3)

provided ϕ(s) ∈ L2(Ω) and the integral in (5.3) is well defined. For fractional
powers of A (i.e., Aσ with σ ≥ 0) we note (2.3) and the estimate for analytic
semigroups

‖Aσ S(t)‖ ≤ K t−σ for 0 < t ≤ T (5.4)

and also note in the present case (cf., [3], [7]) that the domain D(Aσ) (say,
for 1/2 < σ < 1 so the boundary condition is relevant) is H2σ(Ω) ∩ H1

0 (Ω)
and we then have
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Lemma 5.1. Given (2.3) there is σ < 1 such that H2σ(Ω) ↪→ C0,λ(Ω) so
A−σ : L2(Ω) → C0,λ(Ω). By duality and selfadjointness we then also have

‖A−σµ‖L2(Ω) ≤ K‖µ‖Mλ(Ω). (5.5)

We now turn to (1.1) with ϕ = µ(·) ∈ Lp([0, T ] → Mλ(Ω)). If we
choose σ < 1 as in Lemma 5.1, then the Balakrishnan-Washburn version

u(t) =

∫ t

0

[Aσ S(t− s)] [A−σ µ(s)] ds of (5.3) applies and (5.4) gives

‖u(t)‖L2(Ω) ≤ K

∫ t

0

(t− s)−σ ‖µ(s)‖Mλ(Ω) ds. (5.6)

We recognize (5.6) as bounding ‖u(·)‖ by the convolution of the integrable
function t−σ and the Lp function ‖µ(·)‖Mλ , hence bounding ‖u(·)‖ in Lp̂(0, T )
(for p < p̂ < p/[1− (1− σ)p]) by a standard convolution estimate to get

‖u‖Lp([0,T ]→L2(Ω)) ≤ K ‖µ‖Lp([0,T ]→Mλ(Ω)). (5.7)

Theorem 5.2. For dimensions d = 2, 3 and any 0 ≤ λ < α∗ = 2 − d/2 for
which we have (2.3), one has the Lp([0, T ] → L2(Ω)) error bound (for each
1 ≤ p ≤ ∞)

‖u− U‖Lp([0,T ]→L2(Ω)) ≤ Khλ‖µ‖Lp([0,T ]→M(Ω)) (5.8)

for an arbitrary measure-valued function µ(·) ∈ Lp([0, T ] →M(Ω)), where u
is the solution S ∗µ of (1.1) with ϕ = µ and U = SV ∗µ is the corresponding
FEM solution, obtained by (5.1) for regular triangulations T ∈ Th.
[Again we emphasize that K in (5.8) will depend on the choice of λ < α∗.]

Proof: As in the proof of Theorem 4.2 we introduce f , obtained point-
wise in t from µ. We did not assert any continuity or linearity of ΠV in Theo-
rem 4.1, but it is easy to see from the construction that the function [t 7→ f(t)
can be taken measurable whence (4.1- b), gives f ∈ Lp([0, T ] → L2(Ω) and,
by (4.1- a), the construction in the Finite Element Method gives the same
right hand side in (5.1) for ϕ = f as for ϕ = µ so these give the same finite
element solution U , although the solution ũ of (1.1) is not u. Applying (5.7)
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to the difference ũ− u, and using the known error estimate (5.2) along with
(4.1- b, c) then gives

‖u− U‖Lp([0,T ]→L2(Ω))

≤ ‖ũ− u‖Lp([0,T ]→L2(Ω)) + ‖ũ− U‖Lp([0,T ]→L2(Ω))

≤ K ‖f − µ‖Lp([0,T ]→Mλ(Ω)) +Kh2‖f‖Lp([0,T ]→L2(Ω))

≤ K(hλ + hα∗) ‖µ‖Lp([0,T ]→M(Ω))

(5.9)

and so (5.8) as desired.

[Note also that taking µ ∈ M(Q) = M([0, T ] →M(Ω)) would correspond,
roughly, to taking p = 1 in Theorem 5.2.]

Finally, we note that the sup-norm estimate for p = ∞ here gives a
convergence rate estimate pointwise in t: For dimensions d = 2, 3 and any
0 ≤ λ < α∗ = 2− d/2, one has

‖u(t)− U(t)‖L2(Ω) ≤ C hλ for each t ∈ [0, T ]

with C = K ‖µ‖L∞([0,T ]→M(Ω)).
(5.10)

[Again, C,K depend on λ. By a density argument, we note that u ∈
C([0, T ] → L2(Ω)) even for µ(·) ∈ L∞([0, T ] →M(Ω)), discontinuous in t.

Remark 5.3. It might seem plausible that if we were to have a measure-
valued source term with support bounded away from ∂Ω or, somewhat more
generally, taking values in Mc(Ω) , then, as in the elliptic case of Theo-
rem 3.2, this convergence rate could be improved somewhat from λ < α∗ in
(5.8), (5.10) to λ = α∗ by using (3.1) instead of (4.1). Certainly, in the
context of Remark 3.4 and [9], we can take σ = 1 to replace Lemma 5.1 and
the estimate (5.5) by

‖A−1µ‖L2(Ω) ≤ K‖µ‖Ξ−2(Ω)

— however, we note that the convolution argument used above requires the
integrability of t−σ, so taking σ < 1 which leaves us with the estimate of
Theorem 5.2 taking λ < α∗.

6 Computational Results

In this section, we provide results of numerical tests which illustrate the con-
vergence result Theorem 5.2 of the previous Section 5 for the time-dependent
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linear parabolic problem (1.1). The analogous numerical tests of Theorem 4.2
of Section 4 for the stationary problem (1.2) are already included in [6].

Specifically, we consider the linear parabolic heat equation (1.1) with
D ≡ 1 in Ω, imposing homogeneous Dirichlet boundary conditions, u = 0
on ∂Ω, in the spatial dimensions d = 2, 3 of interest. The domain is chosen
to be Ω = (−1, 1)d ⊂ Rd with the initial condition u = 0 for compatability
with the boundary conditions in order to focus the numerical studies on the
non-smoothness of the source term. As a non-smooth test problem, we used
a single Dirac delta distribution as source term constant in t so ϕ(x, t) = δ(x)
for all t ∈ [0, T ] so the injection site is positioned at the center of the domain.
On physical grounds, it is clear that the solution, starting from the initial
condition u = 0, will develop a sharp spike at the injection site, growing over
time as one unit of material per unit of time is injected by the model. The
form (5.10) of Theorem 5.2 applies.

The theory developed in the previous sections applies to first-order nodal
finite elements in dimension d = 2, 3, that is, elements with basis functions
centered at the vertices of the mesh that are linear in each spatial variable
on each mesh element.

The initial computations [8, 5] used special-purpose code in C to im-
plement the linear Lagrange finite elements. The more general tests of the
convergence behavior of finite elements used the software package COMSOL
Multiphysics (www.comsol.com), chosen for its convenience and reliability.
See [13] for a tutorial introduction, then [6] for a numerical investigation of
Lagrange elements also of higher than linear order and of different domain
shapes for the elliptic problem (1.2); in effect these computational studies
complement the analytical results in [11] and Theorem 4.2. Based on this,
we use COMSOL also in this paper to extend those studies to the time-
dependent problem (1.1); see [14] for more information on the techniques
used.

The domain Ω has piecewise smooth boundaries and can be discretized
by the mesh elements without error, using triangles in two dimensions and
tetrahedra in three dimensions. The convergence studies employ a sequence
of meshes with h halved in each refinement, uniformly refining an initial mesh
repeatedly, starting from a coarse initial mesh to allow as many refinements
as possible. For the initial mesh, we take advantage of the shape of Ω to
have at each stage a mesh point at the origin, where δ(x) is centered.

Figures 1 (a) and (b) show the log-log plots of the error norm ‖u(t) −
U(t)‖L2(Ω) vs. the reciprocal 1/h of the mesh spacing for dimensions d = 2 and
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(a) d = 2 triangular mesh (b) d = 3 tetragonal mesh

Figure 1: Non-smooth test problem: log(‖u(t)− U(t)‖L2(Ω)) vs. log(1/h).

3, respectively. The predicted slopes of α∗ = −1.0 for d = 2 and −α∗ = −0.5
for d = 3, respectively, are shown as dashed lines in each plot The three solid
lines show observed convergence orders at three points in time t = 2, 3, 4,
whose observed slopes λ clearly confirm the theoretical prediction that we
may take λ ≈ α∗ in estimating the error.

In the form (5.10), we compute C and λ by linear regression in the log-log
representation of the line for each time t in these plots. This gives λ ≈ 0.97
for the lines in d = 2 dimensions and λ ≈ 0.47 in d = 3 dimensions. Both
the plots and these quantitative results confirm the analytic result that the
asymptotic convergence rate is (approximately) given by α∗ = 2− d/2.
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