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Abstract

Proton radiotherapy uses a beam of protons to irradiate cancer tissue. It has been
suggested that real-time imaging can be used to help optimize treatment delivery via
prompt gamma ray image data collected with a Compton camera. When a prompt
gamma deposits energy twice, it is called a “double” and physicists assume that it has
deposited all of its energy after the second collision, thereby being absorbed and the to-
tal of the energy depositions is considered to be the initial energy of the prompt gamma
ray. This initial energy is used during reconstruction to help determine the origin of
the prompt gamma and leads to a well formed reconstruction but the assumption that
a double deposits all of its energy is not always true leading to improper origins based
on incorrect initial energies. Here, we present a deep residual fully connected regression
neural network which can make estimations of the initial energy of double events on
data generated by a Monte Carlo simulation using Compton camera detector effects.
We conduct a hyperparameter search to explore different models. We then present and
discuss the results of the currently best performing regression neural network model.
We suggest further improvements that can help further reduce loss and improve model
estimations for reconstructed images.

1 Introduction

Proton beams’ primary advantage in cancer treatment as compared to other forms of ra-
diation therapy, such as x-rays, is their finite range. The radiation delivered by the beam
reaches its maximum, known as the Bragg peak, at the very end of the beam’s range. Little
to no radiation is delivered beyond this point. By exploiting the properties of the Bragg
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peak, it is possible to only irradiate cancerous tissues, avoiding any damage to the healthy
surrounding tissues [8]. However, without some way to image proton beams in real time,
limitations exist in our ability to take full advantage of the dose delivery properties of the
proton Bragg peak. This is due to uncertainties in the beam’s position in the body relative
to important organs that should not be irradiated.

The Compton camera is one method for real-time imaging, which works by detecting
prompt gamma rays emitted along the path of the beam. By analyzing how prompt gamma
rays scatter through the camera, it is possible to reconstruct their origin. However, the raw
data that the Compton camera outputs does not explicitly record the sequential order of
the interaction data, which represents scatterings of a single prompt gamma ray. Previous
work done in [4] addresses approaches to reordering of scatter events and removal of false
prompt gamma couplings. Compton camera outputs likewise cannot determine the initial
energy for some types of multi-scatter events. Notably, the true doubles events must be
estimated. In comparison to single and true triple events which follow straight-forward
calculations described in Section 3.3, true doubles events include some uncertainty that
cannot be accounted for.

We approach the determination of the true doubles initial energy problem by leveraging
deep learning techniques. We use neural networks, which, in general, represent data transfor-
mations. Our network is trained by passing data through it, then updating it systematically
so as to reduce the loss of its output. Doing this properly can create a model that exploits
subtleties in the data which traditional models are unable to use [2]. We show how this can
be done in the following sections. Additional discussion about the impact of the approach
on the application area can be found in [7].

Our neural network output contains estimations of the initial energies for true double
events. We are then able to take these estimations and use a reconstruction algorithm to
create an image of the beam. By comparing the reconstructions of the neural network data
to that of the original data, we are then able to compare image quality. We also discuss
possible improvements to the network and to the data that may improve the quality of the
neural network estimations.

The remainder of the paper is organized as follows. Section 2 discusses the biomedical
application for this research. Section 3 describes a Compton camera and how we use it to
collect data for our neural network. The network is then described in Section 4, where we
discuss parts of the network’s architecture. The model is tested on data in Section 5, where
the resulting estimations are used for reconstruction. Section 6 makes general conclusions
and proposes future directions for the research.

2 Proton Beam Therapy

To a first order approximation, the radiation dosage emitted by a proton beam is inversely
proportional to the kinetic energy of the particles within the beam. Because the beam’s
particles lose kinetic energy as they traverse the patient, the amount of radiation delivered
by the beam is low at its entry point, gradually rising until the beam nears the end of
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its range, at which point the delivered dosage rapidly reaches its maximum. This point of
maximum dosage is called the Bragg peak. Little to no radiation is delivered beyond the
Bragg peak. These characteristics of proton beam therapy give it a distinct advantage over
x-rays. Exploiting its finite range, medical practitioners can confine the radiation of the
beam to solely areas affected by cancerous tumors. Vital organs beyond the tumor can be
spared [8].

While the characteristics of proton beam therapy explained above would in principle
greatly reduce the negative effects of radiation therapy, there are still practical limitations.
In current practice, the patient’s body is imaged before undergoing treatment in order to
map the position of the tumor. Because proton beam therapy consists of multiple sessions
over a period of one to five weeks, the relative size and position of the tumor within the
patient’s body may change as surrounding tissues swell, shrink, and shift as a response to
radiation. Therefore, whenever using proton beams, a safety margin must be added to the
position of the Bragg peak in order to fully irradiate the tumor. This rules out certain beam
trajectories that would otherwise minimize damage to healthy tissue [8].

Figure 2.1: (a) Optimal proton beam trajectory. (b) Suboptimal trajectory necessary to
protect heart.

Figure 2.1 compares two possible beam trajectories through a cross-section of the chest [8].
In this case, the heart, outlined in purple is positioned at the top-center of the figure and
a tumor, outlined in green is located next to it. The optimal trajectory, shown in the left
image, uses a single beam, which is represented as the space between the dashed white
lines, to fully irradiate the tumor while stopping before reaching the heart. However, due
to uncertainty in the exact location that the Bragg peak occurs (and the beam stops), a
safety margin is added to the end of the optimal beam path to ensure the tumor always
receives the prescribed dose even in the presence of day-to-day changes in patient setup and
patient internal anatomy. This safety margin is represented in the figure as an orange strip
at the end of the beam. This margin partially overlaps with the heart, which would mean
a portion of the heart would receive the full treatment radiation dose. Since the heart is
highly sensitive to radiation damage, it is very important that the radiation dose received
by the heart is kept to a minimum. Therefore, in practice, the optimal trajectory is not used
for treatment and instead the trajectory in the right image with two separate beams is used.
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Using two beams reduces the dose to the heart, but is considered suboptimal as these beams
result in more radiation being delivered to a larger amount of healthy lung tissue. However,
although suboptimal, it is considered preferable for treatment, since the beams avoid the
heart [8].

If we were able to provide real-time information on the proton beam as it passes through
the patient during live treatment, then we could ensure it is covering the tumor as intended,
and safety margins (used to ensure tumor coverage) could be smaller and, thus, the more
optimal treatments could be used. For instance, with proper real-time monitoring of the
proton beam delivery, the optimal single beam treatment shown in Figure 2.1 (a) could be
used without delivering high radiation doses to the heart while minimizing radiation to the
lungs.

3 Compton Camera Imaging

3.1 Introduction to the Compton Camera

In order to exploit the full advantages of proton therapy, many researchers are investigating
methods to image the beam in real time as it passes through the patient’s body [8]. One
proposed method for real-time imaging is by detecting prompt gamma rays that are emitted
along the path of the beam using a Compton camera.

As the proton beam enters the body, protons in the beam interact with atoms in the body,
emitting prompt gamma rays. These prompt gamma rays exit the body, some of which enter
the Compton camera. Modules within the Compton camera record interactions with energy
levels above some trigger-threshold. These modules have a non-zero time-resolution during
which all interactions are recorded as occurring simultaneously. For each interaction (that is,
Compton scatter) an (x, y, z) location and the energy deposited are recorded. The collection
of all interaction data that a camera module collects during a single readout cycle is referred
to as an event [6].

In principle, it is possible to use the data that the Compton camera outputs (paired
with a suitable reconstruction algorithm) to image the proton beam, however, this has been
shown to only be feasible at low energy levels. At the higher energy levels more typical of
proton beam therapy, reconstructions of the beam are far too noisy to be helpful. This is a
result of two main limitations in how the Compton camera records events.

At the higher energy levels typically used in treatment, proton beams emit a larger
number of prompt gamma rays per unit time, increasing the likelihood of false events. Also,
prompt gamma rays are more likely to scatter at higher energy levels, leading to more multi-
scatter events which will be unordered. These two effects greatly diminish the accuracy of
Compton camera reconstructions at high energy levels, making them unusable as explained
further in [6].

There are several prompt gamma image reconstructions which can be used in conjunction
with Compton camera data, such as the shifted histogram method seen in [5], but they
produce bad results and thus cannot be effectively used with raw Compton camera data.
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Figure 3.1: An illustration of events.

The algorithms have a base assumption that the data has no false events and no misorderings.
The order of interactions is directly connected to the path the prompt gamma took from
the origin point. If the order of the interactions is shuffled, then the origin point of the
prompt gamma will change and no longer be representative of the proton beam. These
algorithms assume that the data they are working on is mostly perfect and all events within
are suitable for use. If the Compton camera data could be denoised in an accurate, fast, and
systematic way, then the Compton camera would be a viable method for prompt gamma
image reconstruction.

3.2 The Representation of Events

Multi-scatter events can be classified into five categories: False Triples, False Doubles, Double
to Triple, True Triples, and True Doubles. A False Triple event consists of three interactions
which all originate from separate prompt gamma rays that happened to enter the same
module of the camera at the same time. These should be removed from the data before
reconstruction. Similarly, False Double events contain two interactions originating from
separate prompt gamma rays. These too should be removed. A Double to Triple event
contains two interactions corresponding to the same prompt gamma ray, and one interaction
from a different prompt gamma ray. The non-corresponding interaction should be removed
before reconstruction. The two remaining categories of events are True Double and True
Triple events, which, once properly ordered, can be used for reconstruction. Detecting the
correct ordering for the interactions of true events is, by itself, a non-trivial task. The
studies in this paper focus solely on True and False Double events. However, the general
neural network architecture used for the Double events in this paper is also used on the other
multi-scatter event categories [1].

Figure 3.1 shows a schematic of the Compton camera as it records events. The left side
shows events produced at low energy levels and the right shows higher energy levels. Each
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row represents an independent module of the camera. The red arrows represent scatters,
with those originating from the same prompt gamma ray being connected by a dotted line.
A raised pulse represents a single readout cycle within a module of length TA. The value n is
how many interactions occur during the readout cycle. Looking at just the left side, the first
two rows show a True Double and True Triple event, respectively. The third row shows a
False Double event consisting of two scatters originating from different prompt gamma rays.
The fourth and fifth rows show two True Single events that consist of separate scatters by
the same prompt gamma ray. The right side representing higher energy levels shows a far
greater proportion of false events.

The raw data output but the Compton camera for each interaction is of the form
(ei, xi, yi, zi), where for i = 1, 2, 3, ei is the energy level, and xi, yi, zi are the x-, y-, and
z-coordinates respectively. It is important to note that for any event i could be 1, 2, or 3 as
each event can have up to 3 interactions included. For events with less than 3 interactions,
for the values of i that are not included in the event, the corresponding (ei, xi, yi, zi) would
be left empty or as NaN.

3.3 Initial Energy for Multi-scatter Events

As demonstrated in Figure 3.2, the Compton camera can record deposited energies from
individual interactions but cannot determine the origin of the gamma ray.

The determination of the initial energy for a multi-scatter event depends on the event
type. For single scatter events, the initial energy calculation is straight-forward: the recorded
energy listed is the initial energy for that event. For true triple scatter events, we have three
interactions (ei, xi, yi, zi) for i = 1, 2, 3. By using the deposited energy from each interaction
as well as the scattering angles, we are able to calculate the initial energy,

E0 = ∆E1 +
1

2

(
∆E2 +

√
∆E2

2 +
4∆E2mec2

1− cos θ2

)
. (3.1)

For true double scatter events, it is assumed that the prompt gamma rays deposit all
their energy and are absorbed after the second collision, but this is not always true. The
energy could also be carried away by the gamma ray as it escapes the camera. This prompts
the need for a way of estimating an accurate initial energy for the true double events so that
the prompt gamma image reconstruction is as accurate as possible.

4 Deep Learning

In the context of our problem, there is no known equation that determines initial energy
and also accounts for the energy that may by carried away by the prompt gamma ray within
a true double scatter event. The benefit of deep learning and specifically, using a neural
network, is its ability to recognize hidden patterns in raw data and continuously learn and
improve in its assigned task.
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Figure 3.2: The origin cone detected by a three-stage CC. The scattering angles, θ1 and θ2,
as well as the initial gamma energy, E0, can be derived from the interaction positions and
the two energies deposited, E1 and E2. The CC cannot determine the origin of the gamma
ray, but because scattering angle θ1 is known, the origin of the gamma ray is restricted to
the surface of the origin cone, as described in [5].

In this work, we train a neural network to make an estimation of initial energy for true
doubles events. The use of these estimations help with determining the origin of the prompt
gamma and contribute to an accurate image reconstruction. This provides the ability to
better visualize the path of the proton beam within the patient, with the ultimate goal to
make real-time adjustments to patient treatment plans.

The network contains three main components: an input layer which accepts the data,
hidden layers which each perform some transformation on the data, and an output layer
which returns the transformed data in some prescribed format [2]. We would like to train
the neural network to transform the provided data in some useful way. In the case of the
simulated data output by the Compton camera, we would like the neural network to make
an accurate prediction of the initial energy for True Doubles scatter events.

To improve the network’s performance, it is typical to train the network on all available
data multiple times. One pass through all the training data, or data isolated specifically for
training the model, is referred to as an epoch. Often, the network will be trained for hundreds
or thousands of epochs. It is standard practice to set aside some data with which to evaluate
the network after each epoch. These data are called the validation data. By evaluating

7



the network at the end of each epoch, it is possible to plot how the network’s performance
improves over the training process, giving insight into whether or not the network has been
fully trained. After the network has finished training, a final data set separate from the
training data and validation data is used to test the network. This data set is referred to as
the test data.

4.1 Fully Connected Residual Blocks

Figure 4.1: A fully connected residual block takes an input and passes it through n layers
eventually adding it to the output of the n layers.

The network used in Section 5 is a deep fully connected neural network. Neural networks,
especially fully connected ones, break down once they start becoming notably deep and
complex. One of the first problems is that the values start to become very small during
the forward propagation process. This leads to zeros and like-zero values becoming more
prominent as you go deeper and deeper. A fix to this forward propagation issue is to opt
to use Leaky ReLU over the traditional ReLU. However, the second problem occurs during
back propagation. During back propagation we start to see the gradient becoming like-
zero causing little to no update to existing weights which causes learning stagnation. This
phenomenon is discussed more intimately in [3] where they detail these effects. The major
breakthrough to this problem inspired by ideas in [3] where they create ResNet, a network
built from “residual blocks”. A visual representation of a residual block can be seen in
Figure 4.1. Consider some record x. We pass it as an input to a small group of n layers with
their own activators. The result of the layer digestion we can call y. Finally, we concatenate
x and y. The concatenation in our case, and the case of the original ResNet, is addition.
This addition operation helps push non-zero values through the forward propagation process
which helps keep input data to each block fresh and non-zero. This also helps prevent
vanishing gradients during the back propagation process. Residual blocks were originally
used with convolutional layers whereas we are using fully connected layers.

4.2 Network Design

We used Tensorflow 2.5 with the bundled Keras module for our neural network backbone.
The network design is built on the fully connected residual blocks described in Section 4.1.
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The architecture starts with an input layer with 256 neurons. The hidden layers are com-
prised of 128 fully connected residual blocks. Each block is made up of 2 layers, each
consisting of 256 neurons with Leaky ReLU serving as the inter-layer activation function for
the hidden layers. This gives us 256 hidden layers in total. As this is a regression network,
there is no activation function in the output layer to allow the network to freely make an
estimation that can be any number. The network training process used Keras’ provided
Adam optimizer with Mean Squared Error (MSE) loss,

1

n

n∑
i=1

(Yi − Ỹi)
2. (4.1)

MSE assesses the average of the squared difference between the ground truth values (Yi) and
model prediction values (Ỹi). It is generally the most used error function with regression
neural networks, and has the quality of weighing outlier predictions heavily.

5 Results

The effectiveness of a neural network is dependent both on the architecture of the network
as well as the data provided to it. After training the neural network, we want to test how
accurate the model is with estimating initial energy for true doubles events and how these
estimations can influence the reconstruction process of the proton beam.

5.1 Data and Hardware Configuration

The training and testing of the neural network alongside the reconstruction process use
the distributed-memory cluster taki in the UMBC High Performance Computing Facil-
ity (hpcf.umbc.edu). In particular, the networks were trained and tested on a hybrid
CPU/GPU node with two NVIDIA K20 GPUs (2496 computational cores over 13 SMs,
4 GB onboard memory), two 8-core Intel E5-2650v2 Ivy Bridge CPUs (2.6 GHz clock speed,
20 MB L3 cache, 4 memory channels), and 64 GB of memory.

The neural network is trained on simulated true doubles data where there are no misor-
derings and there are no false events present. For our studies, we use 150MeV (Mega electron
Volt) beams with two different dosage rates: 20kMU (kilo Monitor Unit) and 180kMU. The
larger kMU value corresponds to a more intense dosage rate.

5.2 Hyperparameter Space

For this study, the possible hyperparameters that could be altered included the following:

• Dropout rate: 0.45

• Number of neurons per layer: 64, 128, 256, 512

• Number of layers: 64, 128
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• Batch size: 1024, 2048, 4096, 8192, 16384, 32768

• Number of epochs: 128, 256, 512, 1024

• Learning Rate: See Section 5.2.1

• Activation function : Leaky ReLU, SeLU

• Batch normalization : false

Generally, experiments that involved changing the number of neurons per layer and number
of layers with a value outside those listed above resulted in NaN values for their loss output.
This is indicative of exploding gradients, a problem commonly found in neural networks
where the gradient that helps with updating the weights becomes so large that it over-
flows and results in model instability. Multiple experiments also found that parameters like
dropout rate and batch normalization did not have significant effects on model performance
when altered, so these parameters were kept at a default of 0.45 and false, respectively.
Additionally, some combinations above are not possible and so were not tested. An exam-
ple of this would be SeLU being chosen as an activation function and batch normalization
set to true. This is because the SeLU activation function makes the neural network self-
normalizing. Overall, a total of 154 models with various combinations of hyperparameters
were tested.

5.2.1 Learning Rates

Learning rate is another parameter that has a large influence over performance of a neu-
ral network, as it is the amount of which the model changes its weights in response to
error. Around eight different learning rates were explored, ranging from static rates or
those that vary depending on number of epochs. The learning current rate for presented
model uses a non-adaptive non-constant learning rate scheduler implemented in the Keras
LearningRateScheduler callback which prescribes the learning rate ti for epoch i with

ti = L(i) =


5 · 10−4 1 ≤ i ≤ p

3
,

1 · 10−4 p
3
< i ≤ 2p

3
,

1 · 10−5 2p
3
< i ≤ 5p

6
,

1 · 10−6 5p
6
< i ≤ p,

(5.1)

where p denotes the total number of epochs used for training. In this schedule, the learning
rate steadily decreases based on how many epochs the model has trained for. This is a
generally followed technique with the rationale that it will increase the chance of convergence
with the global minima of the cost function. A learning rate that is too small initially will
require many more epochs to reach the global minima, while a learning rate that is too large
will likely converge at a suboptimal local minima.
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5.2.2 Final Model Hyperparameters

The neural network with the best performance has the lowest training and validation loss
values. Out of all models tested, the best performing neural network has the following
parameters:

• Dropout rate: 0.45

• Number of neurons per layer: 256

• Number of layers: 64

• Batch size: 4096

• Number of epochs: 512

• Learning Rate: see Equation (5.1)

• Activation function: Leaky ReLU

• Batch normalization: False

5.3 Neural Network Results

The performance results for the current performing neural network can be visualized with
a scatter plot showing a direct comparison of the predicted initial energies to that of the
true initial energy. The estimations are made on a scale ranging from −1 to 1. A good
model produces estimations that are scattered across the diagonal of the graph. This would
indicate that the true and estimated initial energy values are both similar values. We don’t
expect that the scatter plot would be a perfect diagonal line; in fact, if it was, this would
indicate that instead of learning from the training data, it has memorized it and would likely
underperform when shown new data. This is also known as overfitting. What is expected in
this scatter plot is that generally the model’s estimations follow along the diagonal.

Figure 5.1 shows the model’s results after being tested with the training data. The figure
shows dense concentrations along the diagonal and also that for positive true initial energy
values within the range of 0.0 to 0.6, some corresponding estimations are a negative value.
This indicates that for some values whose true values are higher, the model is predicting a
lower value.

Additionally, loss curves generally serve as a good diagnostic tool to help analyze the
behavior of a neural network. The loss curve for our network for epochs 300 to 400 can be
seen in Figure 5.2. To clarify, validation loss (orange) is a metric of how well the network
functions on data it has not seen. Training loss (blue) is a metric of how well the network
functions on the data it was trained with. We see validation loss value is steady around
a value of 0.0089. Likewise, the training loss has a close value of about 0.0092. These
validation and training loss values were the lowest values out of the many models explored
in Section 5.2 during the hyperparameter search. As loss is a subjective metric that depends
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Figure 5.1: Scatter plot of the neural network’s performance when tested with the training
data. The position of each point on the graph represents the true initial energy value on the
x-axis, and the estimated initial energy value on the y-axis.

on the problem and the data, this loss can be considered high in this case as the range of
values it is trying to make an estimate for is within −1 to 1. Figure 5.2 does reveal that
albeit very subtle, these loss lines are still trending downwards as opposed to reach a plateau,
indicating the model is underfitting and could be trained more. The ideal loss for the neural
network in this case would be an MSE value for training and validation losses to be around
0.001 as an indicator of optimal performance.

5.4 Reconstruction Results

Based on the estimations of the data from the neural network, we created a new dataset,
where there are no misorderings or false events. We reconstructed the proton beam using
three versions of the data, as shown in Figure 5.3. Figure 5.3 (a) and (d) shows the recon-
struction image from the original test data for each respective dosage. In other words, these
images are simply the raw test data being sent through the reconstruction algorithm with
no changes. Figure 5.3 (b) and (e) shows the reconstruction image from the neural network
estimation data. We took the original test data and sent it through the neural network to
generate estimations, and then sent those estimations through the reconstruction algorithm.
Figure 5.3 (c) and (f) shows the “perfect” reconstruction. The perfect reconstruction is
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Figure 5.2: Loss curve for the featured neural network from epochs 300 to 400.

20kMU Dosage

(a) Original (b) Neural Network (c) Perfect

180kMU Dosage

(d) Original (e) Neural Network (f) Perfect

Figure 5.3: Comparison of gamma ray images reconstructed with (a/d) original data and
(b/e) neural network estimation data to the (c/f) perfect reconstruction.
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found using the following adjustments to the original test data:

e2 := E0 − e1

if e2 < 0, then e2 := E20 , e1 := E0 − e2

if e1 < 0, then e1 := E10

We take the known initial energy from the original simulation data E0 and subtract the first
interaction energy e1 and set this to the second interaction energy e2. We then check to see
if this value is negative. If it is negative, then we revert e2 to the value it had originally
(E20), and then use this value to find e1. Likewise, we determine if e1 is now found to be
negative and if so, revert to the original value (E10).

This adjustment takes into account the phenomenon that there are multiple prompt
gamma rays that happen to collide at the same point. This can inflate the energy value for
an individual interaction and result in negative values, which are not possible in the context
of our problem but still can be seen within the original reconstructions. This adjustment
corrects the data in this case from this phenomenon, resulting in a “perfect” reconstruction
with noticeably less noise present. Overall, the neural network estimation reconstructions
should closely resemble the perfect reconstructions more so than the originals. There is
visibly less noise present between Figure 5.3 (a) and (b) and also between (d) and (e).
However, the Bragg peaks in Figure 5.3 (b) and (e) are more round shaped as opposed to
the more linear shape we see in the perfect reconstructions.

This is likely due to a few possible things. It was mentioned earlier that this neural
network has a high loss value relative to the range of values it is trying to estimate within.
We can see the results of this in the neural network estimation reconstruction’s circular
Bragg peak, demonstrating that where there are supposed to be higher energy values, it is
predicting lower energy values. Additionally, the neural network is also training with the
same data that does include the presence of those events where the multiple prompt gamma
rays are colliding at the same point. This could be having an effect on its final estimations
for areas of high radiation values. Additionally, the nature of reconstructing a proton beam
based on scattering data is inherently difficult and not without its own challenges. The
nature of reconstruction itself is beyond the scope of this work and can be seen in [8].

6 Conclusions

Section 5.3 describes the best performing neural network model out of various models tested
in the hyperparameter space described in Section 5.2. We chose this model based on its
performance as determined by its training and validation loss values. In Section 5.4, we can
visibly see that there is less noise in the neural network reconstructions than the original
data reconstructions. However, the appearance of the Bragg peak is distorted, indicating the
neural network still needs improvement. Various directions can be taken with this research
to improve the estimations. Firstly, it is possible that this particular neural network can be
trained for more epochs to reach an ideal loss value that is closer to 0.001. It is also possible
that adaptive learning rates could be utilized. By using information from past training
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histories, an adaptive learning rate may produce better results and have more flexibility
than the schedules that were hand-designed in this experiment. Using an alternative loss
function may also help with better network performance, as MSE has a tendency to weigh
outlier estimations heavily.

Additionally, exploring data discretization might also be lucrative. Our regression neural
network model currently seeks to estimate some value between the continuous range of −1
to 1. Alternatively, we can instead split that range into some set number of bins, where each
bin represents an initial energy estimation. A classification neural network model can then
sort the data to one of the bins, and then reconstruct an image based on its classification,
which may result in improved reconstructions.

Overall, improvement in true double initial energy value estimations will result in more
accurate image reconstructions, which in practice can reduce the amount of uncertainty of
the region influenced via the proton beam.
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