
Parallel Performance Studies for an Elliptic Test Problem on the
Cluster tara

Andrew M. Raim and Matthias K. Gobbert (gobbert@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2010–2, www.umbc.edu/hpcf > Publications

Abstract

The performance of parallel computer code depends on an intricate interplay of the processors, the architec-
ture of the compute nodes, their interconnect network, the numerical algorithm, and its implementation. The
solution of large, sparse, highly structured systems of linear equations by an iterative linear solver that requires
communication between the parallel processes at every iteration is an instructive test of this interplay. This
note considers the classical elliptic test problem of a Poisson equation with Dirichlet boundary conditions in
two spatial dimensions, whose approximation by the finite difference method results in a linear system of this
type. Our existing implementation of the conjugate gradient method for the iterative solution of this system
is known to have the potential to perform well up to many parallel processes, provided the interconnect net-
work has low latency. Since the algorithm is known to be memory bound, it is also vital for good performance
that the architecture of the nodes in conjunction with the scheduling policy does not create a bottleneck. The
results presented here show excellent performance on the cluster tara with up to 512 parallel processes when
using 64 compute nodes. The results support the scheduling policy implemented, since they confirm that it is
beneficial to use all eight cores of the two quad-core processors on each node simultaneously, giving us in effect
a computer that can run jobs efficiently with up to 656 parallel processes when using all 82 compute nodes.
The cluster tara is an IBM Server x iDataPlex purchased in 2009 by the UMBC High Performance Computing
Facility (www.umbc.edu/hpcf). It is an 86-node distributed-memory cluster comprised of 82 compute, 2 develop,
1 user, and 1 management nodes. Each node features two quad-core Intel Nehalem X5550 processors (2.66 GHz,
8 MB cache), 24 GB memory, and a 120 GB local hard drive. All nodes and the 160 TB central storage are
connected by an InfiniBand (QDR) interconnect network.

1 Introduction

The numerical approximation of the classical elliptic test problem given by the Poisson equation with homogeneous
Dirichlet boundary conditions on a unit square domain in two spatial dimensions by the finite difference method
results in a large, sparse, highly structured system of linear equations. The parallel, matrix-free implementation
of the conjugate gradient method as appropriate iterative linear solver for this linear system involves necessarily
communications both between all participating parallel processes and between pairs of processes in every iteration.
Therefore, this method provides an excellent test problem for the overall, real-life performance of a parallel com-
puter. The results are not just applicable to the conjugate gradient method, which is important in its own right as
a representative of the class of Krylov subspace methods, but to all memory bound algorithms. Section 2 details
the test problem and discusses the parallel implementation in more detail, and Section 3 summarizes the solution
and method convergence data.

Past results using an implementation of this method [1, 2, 3, 4, 7] show that the interconnect network between
the compute nodes must be high-performance, that is, have low latency and wide bandwidth, for this numerical
method to scale well to many parallel processes. This note is an update to the technical report [7] and considers
the same problem for the new cluster tara. This 86-node distributed-memory cluster was purchased in 2009 by the
UMBC High Performance Computing Facility (www.umbc.edu/hpcf) comprised of 82 compute, 2 develop, 1 user,
and 1 management nodes. Each node features two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB
cache), 24 GB memory, and a 120 GB local hard drive, thus up to 8 parallel processes can be run simultaneously
per node. All nodes and the 160 TB central storage are connected by an InfiniBand (QDR = quad-data rate)
interconnect network. The cluster is an IBM System x iDataPlex.1 An iDataPlex rack uses the same floor space as
a conventional 42 U high rack but holds up to 84 nodes, which saves floor space. More importantly, two nodes share
a power supply which reduces the power requirements of the rack and make it potentially more environmentally
friendly than a solution based on standard racks.2 For tara, the iDataPlex rack houses the 84 compute and develop
nodes and includes all components associated with the nodes in the rack such as power distributors and ethernet
switches. The user and management nodes with their larger form factor are contained in a second, standard rack
along with the InfiniBand switch. The PGI 9.0 C compiler has been used to create the executables which were
utilized in this report.

1Vendor page www-03.ibm.com/systems/x/hardware/idataplex/
2Press coverage for instance www.theregister.co.uk/2008/04/23/ibm idataplex/

1

www.umbc.edu/hpcf
www.umbc.edu/hpcf
www.umbc.edu/hpcf
www-03.ibm.com/systems/x/hardware/idataplex/
www.theregister.co.uk/2008/04/23/ibm_idataplex/

Section 4 describes the parallel performance studies in detail and provides the underlying data for the following
summary results. Table 1.1 summarizes the key results of the present study by giving the observed wall clock time
(total time to execute the code) in HH:MM:SS (hours:minutes:seconds) format. We consider the test problem on
six progressively finer meshes, resulting in progressively larger systems of linear equations with system dimensions
ranging from about 1 million to over 1 billion equations. The parallel implementation of the conjugate gradient
method is run on increasing numbers of nodes from 1 to 64 while varying the number of processes per node from
1 to 8. Specifically, the upper-left entry of each sub-table with 1 process per node on 1 node represents the serial
run of the code, which takes 29 seconds for the 1024× 1024 mesh that results in a system of about 1 million linear
equations to be solved. The lower-right entry of each sub-table lists the run using all cores of both quad-core
processors on 64 nodes for a total of 512 parallel processes working together to solve the problem, which takes
less than one second for this mesh. More strikingly, one realizes the advantage of parallel computing for the large
16384 × 16384 mesh with over 268 million equations: The serial run of about 34 hours can be reduced to about
7 minutes using 512 parallel processes. Furthermore, refining the mesh to 32768 × 32768 yields a problem with
more than 1 billion equations, which is not feasible to solve on a single compute node due to memory limitations.
However, this large problem can be solved using 512 parallel processes in under an hour, in fact. Results shown as
00:00:00 indicate that the observed wall clock time was less than 1 second for that case.

The summary results in Table 1.1 are arranged to study two key questions: (i) whether the code scales linearly
to 64 nodes, which ascertains the quality of the InfiniBand interconnect network, and (ii) whether it is worthwhile
to use multiple processors and cores on each node, which analyzes the quality of the architecture of the nodes and
in turn guides the scheduling policy (whether it should be default to use all cores on a node or not).

(i) Reading along each row of Table 1.1, speedup in proportion to the number of nodes used is observable.
This is discussed in detail in Section 4 in terms of the number of parallel processes. The results show some
experimental variability with better-than-optimal results in some entries. But more remarkably, there is
nearly optimal halving of the execution time even from 16 to 32 and from 32 to 64 nodes in the final columns
of the table for the 4096× 4096, 8192× 8192, and 16384× 16384 meshes. These excellent results successfully
demonstrate the scalability of the algorithm and its implementation up to very large numbers of nodes as
well as highlight the quality of the new quad-data rate InfiniBand interconnect.

(ii) To analyze the effect of running 1, 2, 4, 6, or 8 parallel processes per node, we compare the results column-
wise in each sub-table. It is apparent that the execution time of each problem is in fact roughly halved
with doubling the numbers of processes per node. This is an excellent result, as a slow-down is more typical
traditionally on multi-processor nodes. These results confirm that it is not just effective to use both processors
on each node, but also to use all cores of each quad-core processor simultaneously. Roughly, this shows
that the architecture of the IBM nodes purchased in 2009 has sufficient capacity in all vital components to
avoid creating any bottlenecks in accessing the memory of the node that is shared by the processes. These
results thus justify the purchase of compute nodes with two processors (as opposed to one processor) and
of multi-core processors (as opposed to single-core processors). Moreover, these results guide the scheduling
policy implemented on the cluster: On the one hand, it is not disadvantageous to run several serial jobs
simultaneously on one node. On the other hand, for jobs using several nodes, it is advantageous to make use
of all cores on all nodes reserved by the scheduler.

The results shown in Table 1.1 used the MVAPICH2 implementation of MPI. They may be compared with the
results in Table 1.2, where OpenMPI has been used. From the raw timings it is difficult to tell a clear winner
between the two implementations, but a careful comparison highlights a few patterns. Fixing our attention to the
largest problem with complete data (N = 16384), we notice that when more nodes are in use (16, 32, and 64) with
more processes per node, the MVAPICH2 timings seems to reduce more quickly than OpenMPI, as processes-per-
node increases. When the number of nodes in use is smaller (1, 2, 4, or 8), the pattern does not seem to be as clear.
Sometimes OpenMPI achieves a better time, and sometimes it does not. However, we notice that in a few cases
the difference is large. For example consider the case of 2 nodes and 4 processes per node; in this case MVAPICH2
achieves a time of 05:01:41 but OpenMPI trails behind at 06:21:11. But for instance for N = 8192 with one node
and 1 process per node, the MVAPICH2 time of 04:36:37 is far worse than the OpenMPI time of 03:47:52. For
smaller cases of N , the differences in absolute times are usually small. It can be seen in Section 5 that the efficiency
for OpenMPI tends to be worse than for MVAPICH2, when mesh resolutions are larger, as the number of processes
scales up. Some of the differences observed here may be due to experimental variability, and more studies (also
with other codes) will be useful. But because of its potential to perform better for large cases (codes with large
memory) for large numbers of nodes and, importantly, with all cores on the nodes in use, MVAPICH2 was chosen
as the default MPI implementation for tara. This choice has the potential for the most effective use of the cluster
for production, because it is optimized for high throughout of jobs using all available computational cores.

2

Table 1.1: Wall clock time in HH:MM:SS on tara using MVAPICH2 for the solution of the elliptic test problem on
N ×N meshes using 1, 2, 4, 8, 16, 32, and 64 compute nodes with 1, 2, 4, 6, and 8 processes per node.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:29 00:00:14 00:00:06 00:00:04 00:00:02 00:00:01 00:00:01
2 processes per node 00:00:14 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01
4 processes per node 00:00:08 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01
6 processes per node 00:00:06 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
8 processes per node 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:03:53 00:02:10 00:01:09 00:00:32 00:00:14 00:00:08 00:00:05
2 processes per node 00:01:57 00:01:05 00:00:29 00:00:14 00:00:07 00:00:04 00:00:03
4 processes per node 00:01:12 00:00:34 00:00:17 00:00:07 00:00:04 00:00:02 00:00:02
6 processes per node 00:00:58 00:00:35 00:00:14 00:00:05 00:00:03 00:00:02 00:00:02
8 processes per node 00:00:47 00:00:23 00:00:11 00:00:04 00:00:02 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:31:16 00:18:36 00:09:15 00:04:49 00:02:15 00:01:05 00:00:30
2 processes per node 00:15:47 00:08:19 00:04:26 00:02:05 00:01:02 00:00:29 00:00:15
4 processes per node 00:10:07 00:04:53 00:02:20 00:01:17 00:00:36 00:00:16 00:00:08
6 processes per node 00:07:51 00:03:33 00:01:50 00:01:01 00:00:33 00:00:13 00:00:07
8 processes per node 00:06:39 00:03:09 00:01:35 00:00:49 00:00:23 00:00:09 00:00:05

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 04:36:37 02:20:54 01:14:14 00:38:47 00:19:31 00:09:20 00:04:36
2 processes per node 02:07:34 01:08:57 00:34:11 00:18:09 00:08:25 00:04:14 00:02:08
4 processes per node 01:15:55 00:40:23 00:20:55 00:09:38 00:05:52 00:03:00 00:01:30
6 processes per node 00:56:59 00:29:28 00:14:43 00:07:32 00:04:26 00:02:29 00:01:23
8 processes per node 00:53:55 00:26:26 00:12:54 00:06:30 00:03:20 00:01:43 00:00:50

(e) Mesh resolution N ×N = 16384× 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 33:57:41 19:44:19 09:54:27 05:01:30 02:34:15 01:17:16 00:37:23
2 processes per node 16:21:30 08:31:15 04:31:04 02:23:42 01:09:54 00:34:00 00:17:01
4 processes per node 10:03:34 05:01:41 02:41:11 01:24:53 00:47:29 00:22:45 00:11:43
6 processes per node 08:20:03 04:04:07 02:02:50 01:02:55 00:32:32 00:17:35 00:08:59
8 processes per node 07:07:54 03:39:54 01:57:19 00:56:47 00:26:50 00:13:44 00:07:04

(f) Mesh resolution N ×N = 32768× 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A N/A N/A N/A 05:21:27
2 processes per node N/A N/A N/A N/A N/A N/A 02:15:16
4 processes per node N/A N/A N/A N/A N/A N/A 01:27:53
6 processes per node N/A N/A N/A N/A N/A N/A 01:03:53
8 processes per node N/A N/A N/A N/A N/A N/A 00:55:07

The results in Table 1.1 can also be compared to corresponding ones obtained on the cluster hpc in 2008,
reported in [7, Table 1]. For the resolutions that hpc could fit into memory of one node, that is, for N = 1024,
2048, 4096, and 8192, the serial runs in the entry for 1 process per node on tara are about 3 times as fast as
the hpc results. This shows the core-by-core performance improvement of an Intel Nehalem processor from 2009
compared to an AMD Opteron from 2008. A similar factor of speed improvement can be observed for other directly
comparable cases of 2 and 4 processes per node on 2, 4, 8, 16, and 32 nodes used. It is even more striking to compare
the performance on a nodal basis, that is using all available cores per node, which is 8 on tara and 4 on hpc. In this
comparison, tara running the maximum possible 8 processes per node is often from 3 to 5 times faster than hpc
running the maximum possible 4 processes per node, albeit with a significant amount of experimental variability.

3

Table 1.2: Wall clock time in HH:MM:SS on tara using OpenMPI for the solution of the elliptic test problem on
N ×N meshes using 1, 2, 4, 8, 16, 32, and 64 compute nodes with 1, 2, 4, 6, and 8 processes per node.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:27 00:00:15 00:00:06 00:00:04 00:00:02 00:00:01 00:00:01
2 processes per node 00:00:16 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01
4 processes per node 00:00:09 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:01
6 processes per node 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
8 processes per node 00:00:06 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:04:15 00:02:02 00:01:02 00:00:31 00:00:15 00:00:08 00:00:05
2 processes per node 00:02:17 00:01:05 00:00:31 00:00:14 00:00:07 00:00:04 00:00:03
4 processes per node 00:01:26 00:00:37 00:00:23 00:00:08 00:00:04 00:00:02 00:00:02
6 processes per node 00:01:04 00:00:30 00:00:14 00:00:06 00:00:03 00:00:02 00:00:02
8 processes per node 00:00:53 00:00:24 00:00:13 00:00:05 00:00:02 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:30:37 00:16:30 00:08:37 00:04:25 00:02:11 00:01:04 00:00:31
2 processes per node 00:14:52 00:08:00 00:05:19 00:02:22 00:01:07 00:00:31 00:00:16
4 processes per node 00:10:31 00:05:09 00:02:38 00:01:47 00:00:50 00:00:17 00:00:09
6 processes per node 00:07:12 00:03:42 00:03:16 00:01:18 00:00:45 00:00:14 00:00:07
8 processes per node 00:06:30 00:03:17 00:01:47 00:01:04 00:00:28 00:00:10 00:00:05

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 03:47:52 02:20:25 01:07:00 00:34:49 00:17:45 00:08:55 00:04:32
2 processes per node 02:01:22 01:06:54 00:38:13 00:21:28 00:11:27 00:04:49 00:02:44
4 processes per node 01:22:52 00:37:51 00:23:49 00:12:30 00:07:18 00:03:39 00:01:45
6 processes per node 00:59:35 00:32:43 00:16:30 00:13:43 00:06:50 00:03:27 00:01:35
8 processes per node 00:54:21 00:26:33 00:14:33 00:09:04 00:05:34 00:02:40 00:00:50

(e) Mesh resolution N ×N = 16384× 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 35:50:59 19:14:26 09:16:08 04:47:07 02:29:53 01:16:47 00:39:42
2 processes per node 21:06:42 08:26:28 04:52:10 02:58:04 01:34:56 00:48:27 00:20:56
4 processes per node 12:22:37 07:21:12 02:49:45 01:37:28 00:59:10 00:29:55 00:15:03
6 processes per node 08:05:50 04:35:21 02:18:58 01:08:19 00:42:47 00:27:52 00:14:04
8 processes per node 08:11:19 03:36:54 01:55:42 00:58:25 00:35:20 00:17:47 00:11:23

(f) Mesh resolution N ×N = 32768× 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A N/A N/A N/A 05:10:45
2 processes per node N/A N/A N/A N/A N/A N/A 03:16:56
4 processes per node N/A N/A N/A N/A N/A N/A 02:00:14
6 processes per node N/A N/A N/A N/A N/A N/A 01:52:48
8 processes per node N/A N/A N/A N/A N/A N/A 01:38:21

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant
no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional substantial support from
the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on HPCF
and the projects using its resources. Andrew Raim additionally acknowledges financial support as HPCF RA.

4

2 The Elliptic Test Problem

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary
conditions (see, e.g., [9, Chapter 7])

−4u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit square domain Ω = (0, 1) × (0, 1) ⊂ R2. Here, ∂Ω denotes the boundary of the domain Ω and the
Laplace operator in is defined as

4u =
∂2u

∂x2
1

+
∂2u

∂x2
2

.

Using N + 2 mesh points in each dimension, we construct a mesh with uniform mesh spacing h = 1/(N + 1).
Specifically, define the mesh points (xk1 , xk2) ∈ Ω ⊂ R2 with xki = h ki, ki = 0, 1, . . . , N, N + 1, in each dimension
i = 1, 2. Denote the approximations to the solution at the mesh points by uk1,k2 ≈ u(xk1 , xk2). Then approximate
the second-order derivatives in the Laplace operator at the N2 interior mesh points by

∂2u(xk1 , xk2)
∂x2

1

+
∂2u(xk1 , xk2)

∂x2
2

≈ uk1−1,k2 − 2uk1,k2 + uk1+1,k2

h2
+

uk1,k2−1 − 2uk1,k2 + uk1,k2+1

h2
(2.2)

for ki = 1, . . . , N , i = 1, . . . , d, for the approximations at the interior points. Using this approximation together
with the homogeneous boundary conditions (2.1) gives a system of N2 linear equations for the finite difference
approximations at the N2 interior mesh points.

Collecting the N2 unknown approximations uk1,k2 in a vector u ∈ RN2
using the natural ordering of the mesh

points, we can state the problem as a system of linear equations in standard form A u = b with a system matrix
A ∈ RN2×N2

and a right-hand side vector b ∈ RN2
. The components of the right-hand side vector b are given by

the product of h2 multiplied by right-hand side function evaluations f(xk1 , xk2) at the interior mesh points using
the same ordering as the one used for uk1,k2 . The system matrix A ∈ RN2×N2

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N ×N each. Concretely, we have

A =


S T
T S T

.
T S T

T S

 ∈ RN2×N2
(2.3)

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of A and with T = −I ∈ RN×N

denoting a negative identity matrix for the off-diagonal blocks of A.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for

solving this linear system. The system matrix A is known to be symmetric positive definite and thus the method
is guaranteed to converge for this problem. In a careful implementation, the conjugate gradient method requires
in each iteration exactly two inner products between vectors, three vector updates, and one matrix-vector product
involving the system matrix A. In fact, this matrix-vector product is the only way, in which A enters into the
algorithm. Therefore, a so-called matrix-free implementation of the conjugate gradient method is possible that
avoids setting up any matrix, if one provides a function that computes as its output the product vector q = A p
component-wise directly from the components of the input vector p by using the explicit knowledge of the values
and positions of the non-zero components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate
gradient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual
r, the search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method,
each vector is split into as many blocks as parallel processes are available and one block distributed to each process.
That is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in
full on any process. To understand what this means for parallel programming and the performance of the method,
note that an inner product between two vectors distributed in this way is computed by first forming the local
inner products between the local blocks of the vectors and second summing all local inner products across all
parallel processors to obtain the global inner product. This summation of values from all processes is known as
a reduce operation in parallel programming, which requires a communication among all parallel processes. This
communication is necessary as part of the numerical method used, and this necessity is responsible for the fact
that for fixed problem sizes eventually for very large numbers of processors the time needed for communication —

5

increasing with the number of processes — will unavoidably dominate over the time used for the calculations that
are done simultaneously in parallel — decreasing due to shorter local vectors for increasing number of processes.
By contrast, the vector updates in each iteration can be executed simultaneously on all processes on their local
blocks, because they do not require any parallel communications. However, this requires that the scalar factors
that appear in the vector updates are available on all parallel processes. This is accomplished already as part of
the computation of these factors by using a so-called Allreduce operation, that is, a reduce operation that also
communicates the result to all processes. This is implemented in the MPI function MPI_Allreduce. Finally, the
matrix-vector product q = A p also computes only the block of the vector q that is local to each process. But
since the matrix A has non-zero off-diagonal elements, each local block needs values of p that are local to the two
processes that hold the neighboring blocks of p. The communications between parallel processes thus needed are
so-called point-to-point communications, because not all processes participate in each of them, but rather only
specific pairs of processes that exchange data needed for their local calculations. Observe now that it is only
a few components of q that require data from p that is not local to the process. Therefore, it is possible and
potentially very efficient to proceed to calculate those components that can be computed from local data only,
while the communications with the neighboring processes are taking place. This technique is known as interleaving
calculations and communications and can be implemented using the non-blocking MPI communications commands
MPI_Isend and MPI_Irecv.

3 Convergence Study for the Model Problem

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit square
Ω = (0, 1)× (0, 1) with right-hand side function

f(x1, x2) = (−2π2)
(

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
)
, (3.1)

for which the solution u(x1, x2) = sin2(πx1) sin2(πx2) is known. On a mesh with 33× 33 points and mesh spacing
h = 1/32 = 0.03125, the numerical solution uh(x1, x2) can be plotted vs. (x1, x2) as a mesh plot as in Figure 3.1 (a).
The shape of the solution clearly agrees with the true solution of the problem. At each mesh point, an error is
incurred compared to the true solution u(x1, x2). A mesh plot of the error u − uh vs. (x1, x2) is plotted in
Figure 3.1 (b). We see that the maximum error occurs at the center of the domain of size about 3.2e–3, which
compares well to the order of magnitude h2 ≈ 0.98e–3 of the theoretically predicted error.

To check the convergence of the finite difference method as well as to analyze the performance of the conjugate
gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of
the N ×N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension of the linear system), the norm of
the finite difference error ‖u− uh‖L∞(Ω) , the number of conjugate gradient iterations #iter, the observed wall clock
time in HH:MM:SS and in seconds, and the predicted and observed memory usage in MB for studies performed

(a) Numerical solution uh (b) Error u− uh

Figure 3.1: Mesh plots of (a) the numerical solution uh vs. (x1, x2) and (b) the error u− uh vs. (x1, x2).

6

Table 3.1: Convergence study (using MVAPICH2) listing the mesh resolution N , the number of degrees of freedom
(DOF), the norm of the finite difference error ‖u− uh‖L∞(Ω) , the number of conjugate gradient iterations to
convergence, the observed wall clock time in HH:MM:SS and in seconds, and the predicted and observed memory
usage in MB for a one-process run.

N DOF ‖u− uh‖L∞(Ω) #iter wall clock time memory usage (MB)
HH:MM:SS seconds predicted observed

32 1,024 3.2189e–3 47 <00:00:01 < 0.01 < 1 12
64 4,096 8.0356e–4 95 <00:00:01 0.01 < 1 12

128 16,384 2.0081e–4 191 <00:00:01 0.06 < 1 12
256 65,536 5.0191e–5 385 <00:00:01 0.39 2 13
512 262,144 1.2543e–5 781 00:00:04 3.59 8 19

1024 1,048,576 3.1327e–6 1,579 00:00:29 28.75 32 44
2048 4,194,304 7.8097e–7 3,191 00:03:53 233.42 128 140
4096 16,777,216 1.9356e–7 6,447 00:31:16 1,876.06 512 524
8192 67,108,864 4.6817e–8 13,028 04:36:37 16,596.76 2,048 2,061

16384 268,435,456 8.0469e–9 26,321 33:57:41 122,261.31 8,192 8,207
†32768 1,073,741,824 2.9562e–9 53,136 N/A N/A 32,768 33,923
† A serial run is not possible due to memory limitations. This result uses 64 nodes with one process

per node. The timing is not shown here, since it should not be compared to the serial runs.

in serial. More precisely, the runs used the parallel code run on one process only, on a dedicated node (no other
processes running on the node), and with all parallel communication commands disabled by if-statements. The
wall clock time is measured using the MPI_Wtime command (after synchronizing all processes by an MPI_Barrier
command). The memory usage of the code is predicted by noting that there are 4N2 double-precision numbers
needed to store the four vectors of significant length N2 and that each double-precision number requires 8 bytes;
dividing this result by 10242 converts its value to units of MB, as quoted in the table. The memory usage is
observed in the code by checking the VmRSS field in the the special file /proc/self/status. For the one case where
multiple processes were needed, this number is summed across all running processes to get the total usage. For the
runs that take under one second, the observed memory appears to be dominated by some system overhead, rather
than reflecting the problem size directly.

In nearly all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time
that the mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent,
as predicted by the numerical theory for the finite difference method [6, 8]. The fact that this convergence order is
attained also confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate
solution of the linear system. For the two finest mesh resolutions, the reduction in error appears slighly more erratic,
which points to the tolerance not being tight enough beyond these resolutions. The increasing numbers of iterations
needed to achieve the convergence of the linear solver highlights the fundamental computational challenge with
methods in the family of Krylov subspace methods, of which the conjugate gradient method is the most important
example: Refinements of the mesh imply more mesh points, where the solution approximation needs to be found,
and makes the computation of each iteration of the linear solver more expensive. Additionally, more of these
more expensive iterations are required to achieve convergence to the desired tolerance for finer meshes. And it is
not possible to relax the solver tolerance too much, because otherwise its solution would not be accurate enough
and the norm of the finite difference error would not show a second-order convergence behavior, as required by
its theory. The good agreement between predicted and observed memory usage in the last two columns of the
table indicates that the implementation of the code does not have any unexpected memory usage. The wall clock
times and the memory usages for these serial runs indicate for which mesh resolutions this elliptic test problem
becomes challenging computationally. Notice that the very fine meshes show very significant run times and memory
usage; parallel computing clearly offers opportunities to decrease run times as well as to decrease memory usage
per process by spreading the problem over the parallel processes.

We finally note that the results for the finite difference error and the conjugate gradient iterations in Table 3.1
agree with past results for this problem; see [7] and the references therein. This ensures that the parallel performance
studies in the next section are practically relevant in that a correct solution of the test problem is computed.

7

4 Performance Studies on tara with MVAPICH2

The run times for the finer meshes observed for serial runs in Table 3.1 bring out one key motivation for parallel
computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced by spreading
the work across a group of parallel processes. More precisely, the ideal behavior of code for a fixed problem size
using p parallel processes is that it be p times as fast. If Tp(N) denotes the wall clock time for a problem of a fixed
size parametrized by N using p processes, then the quantity Sp = T1(N)/Tp(N) measures the speedup of the code
from 1 to p processes, whose optimal value is Sp = p. The efficiency Ep = Sp/p characterizes in relative terms how
close a run with p parallel processes is to this optimal value, for which Ep = 1. The behavior described here for
speedup for a fixed problem size is known as strong scalability of parallel code.

The results given in this section are based on the MVAPICH2 implementation of MPI. We have also presented
the same study in Appendix 5 using the OpenMPI implementation. Table 4.1 lists the results of a performance
study for strong scalability. Each row lists the results for one problem size, parametrized by the mesh resolution N .
Each column corresponds to the number of parallel processes p used in the run. The runs for Table 4.1 distribute
these processes as widely as possible over the available nodes, that is, each process is run on a different node up to
a maximum number of 64 nodes. In other words, up to p = 64, seven of the eight cores available on each node are
idling, and only one core performs calculations. For p = 128, p = 256, and p = 512, this cannot be accommodated
on 64 nodes, thus 2 processes run on each node for p = 128, 4 processes per node for p = 256, and 8 processes per
node for p = 512. Comparing adjacent columns in the raw timing data in Table 4.1 (a) indicates that using twice
as many processes speeds up the code by a factor two approximately, at least up to p = 32. To quantify this more
clearly, the speedup in Table 4.1 (b) is computed, which shows near-optimal speedup with Sp ≈ p for all cases
except N = 1024, up to p = 64, which is expressed in terms of efficiency Ep ≈ 1 in Table 4.1 (c). The customary
visualizations of speedup and efficiency are presented in Figure 4.1 (a) and (b), respectively. Figure 4.1 (a) shows
very clearly the excellent speedup up to p = 64 parallel processes. The efficiency plotted in Figure 4.1 (b) is directly
derived from the speedup, but the plot is still useful because it can better bring out any interesting features for
small values of p that are hard to tell in a speedup plot. Here, we notice that the variability of the results for
small p is visible. In fact, we notice here, as in the table, that a number of results show apparently better than
optimal behavior, with efficiency greater than 1.0. This can happen due to experimental variability of the runs,
for instance, if the single-process timing T1(N) used in the computation of Sp = T1(N)/Tp(N) happens to be
slowed down in some way. Another reason for excellent performance can also be that runs on many processes
result in local problems that fit or nearly fit into the cache of the processor, which leads to fewer cache misses
and thus potentially dramatic improvement of the run time, beyond merely distributing the calculations to more
processes. It is customary in results for fixed problem sizes that the speedup is better for larger problems, since the
increased communication time for more parallel processes does not dominate over the calculation time as quickly
as it does for small problems. Thus, it is in fact remarkable how well the speedup is for the smaller values of mesh
resolution N here. To see this clearly, it is vital to have the precise data in Table 4.1 (b) and (c) available and not
just their graphical representation in Figure 4.1. The conclusions discussed so far apply to up to p = 64 parallel
processes. In each case, only 1 parallel process is run on each node, with the other seven cores available to handle
all other operating system or other duties. For p = 128, p = 256, and p = 512, 2, 4, or 8 processes share each
node necessarily, as 64 nodes are available, thus one expects slightly degraded performance as we go from p = 64 to
p = 128, p = 256, and p = 512. This is born out by all data in Table 4.1 as well as clearly visible in Figure 4.1 for
p > 64. However, the times in Table 4.1 (a) for all finer meshes with N > 1024 clearly demonstrate an improvement
by using more cores, just not at the optimal rate of halving the timing any more.

To analyze the impact of using more than one core per node, we use 2 processes per node in Table 4.2 and
Figure 4.2, 4 processes per node in Table 4.3 and Figure 4.3, and we use 8 processes per node in Table 4.5 and
Figure 4.5 wherever possible. That is, p = 512 requires 8 processes per node also in Table 4.2 and Figure 4.2, as
64 nodes are available. And p = 1 is always computed on a dedicated node, i.e., using running only this job on the
node, and p = 2 in Table 4.3 and Figure 4.3 runs only this two-process job on its node, and so forth. The results
in the efficiency plots of Tables 4.2 (b), 4.3 (b), and 4.5 (b) show generally good efficiency for the larger problem
sizes. However, it is curious that the efficiency for larger problem sizes degrades as p increases, and seems to peak
at N = 4096. Notably, when p = 512 and 1 process per node is in use the efficiency for N = 16384 is below that of
N = 2048. Scanning across the row for N = 16384 in Table 4.1, we can see that the efficiency drops dramatically
after p = 128. A similar pattern occurs for 2 processes per node. However when using 4, 6, or 8 processes per
node, the drop in efficiency starts at a much smaller p, and is much more gradual. A drop in efficiency for larger
problem sizes defies our intuition, but focusing on the raw timings in Tables 4.1 (a), 4.2 (a), 4.3 (a), and 4.5 (a),
we can see that increasing the number of parallel processes is very effective for reducing the required wall time to
solve the larger problem sizes.

8

We have shown the performance in solving a very fine 32768× 32768 mesh as well. This has been done for 64
nodes when p = 64, 128, 256, 512, and the full results can be seen in Table 4.1. It is clear that an optimal halving of
run times is not occuring — for example when in increasing from p = 256 to p = 512, the wall time only decreases
from about 11/2 hours to 55 minutes. However, this result would likely have taken on the order of two weeks if it
could have been run in serial (note however from Table 3.1 that it can not fit on a single node). To make this
rough estimate of two weeks, notice that the serial timings in Table 4.1 seem to be increasing by a factor of 81/2 to
10 each time the problem size increases.

We have also shown the scaling behavior when 6 processes per node are used, see Table 4.4, and Figure 4.4.
Intel Nehalem processors have three memory channels per processor [5]. One might reason that running 6 processes
per node, which limits the number of parallel processes to the number of memory channels per node, might show
a better performance than using more. Comparing Table 4.4 to Table 4.5, we notice similar scaling behavior as
p increases. However, focusing on the results for the p = 384 and p = 512 runs, we notice that the efficiency is
slightly better when p = 8. Therefore, it does not appear that limiting ourselves to 6 processes per node gives any
special boost in performance.

The results presented so far indicate clearly the well-known conclusion that best performance improvements,
in the sense of halving the time when doubling the number of processes, is achieved by only running one parallel
process on each node. But for production runs, we are not interested in this improvement being optimal, but we
are interested in the run time being the smallest on a given number of nodes. Thus, given a fixed number of nodes,
the question is if one should run 1, 2, 4, 6, or 8 processes per node. This is answered by the data organized in
the form of Table 1.1 in the Introduction. It is these results, which are the same raw timing data as in Tables 4.1,
4.2, 4.3, 4.4 and 4.5, that make it clear that using 8 processes per node is in fact the best way to use this cluster,
and that in fact the improvement of timings is nearly optimal by doubling processes per node, as well. This is an
excellent result, and it is remarkable that it is applicable for cases as small as N = 2048, which is not a particularly
large problem by today’s standards; see Table 3.1.

9

Table 4.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:29 00:00:14 00:00:06 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00
2048 00:03:53 00:02:10 00:01:09 00:00:32 00:00:14 00:00:08 00:00:05 00:00:03 00:00:02 00:00:01
4096 00:31:16 00:18:36 00:09:15 00:04:49 00:02:16 00:01:05 00:00:30 00:00:15 00:00:08 00:00:05
8192 04:36:37 02:20:54 01:14:14 00:38:47 00:19:31 00:09:20 00:04:36 00:02:08 00:01:30 00:00:50

16384 33:57:41 19:44:19 09:54:27 05:01:30 02:34:15 01:17:16 00:37:23 00:17:01 00:11:43 00:07:04
32768 N/A N/A N/A N/A N/A N/A 05:21:27 02:15:16 01:27:53 00:55:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0035 4.5927 8.1676 14.8196 21.4552 29.0404 35.0610 48.7288 87.1212
2048 1.0000 1.7964 3.4016 7.3588 16.2097 30.1187 50.7435 79.9384 128.2527 315.4324
4096 1.0000 1.6811 3.3794 6.4934 13.8455 28.7651 62.4729 121.4278 223.3405 394.1303
8192 1.0000 1.9632 3.7264 7.1310 14.1746 29.6418 60.0592 129.5711 183.7958 333.8717

16384 1.0000 1.7206 3.4279 6.7584 13.2099 26.3748 54.5196 119.7103 173.8222 288.4474
32768 N/A N/A N/A N/A N/A N/A 64.0000 152.0894 234.0873 373.2662

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0017 1.1482 1.0210 0.9262 0.6705 0.4538 0.2739 0.1903 0.1702
2048 1.0000 0.8982 0.8504 0.9198 1.0131 0.9412 0.7929 0.6245 0.5010 0.6161
4096 1.0000 0.8406 0.8449 0.8117 0.8653 0.8989 0.9761 0.9487 0.8724 0.7698
8192 1.0000 0.9816 0.9316 0.8914 0.8859 0.9263 0.9384 1.0123 0.7180 0.6521

16384 1.0000 0.8603 0.8570 0.8448 0.8256 0.8242 0.8519 0.9352 0.6790 0.5634
32768 N/A N/A N/A N/A N/A N/A 1.0000 1.1882 0.9144 0.7290

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

10

Table 4.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:29 00:00:14 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00
2048 00:03:53 00:01:57 00:01:05 00:00:29 00:00:14 00:00:07 00:00:04 00:00:03 00:00:02 00:00:01
4096 00:31:16 00:15:47 00:08:19 00:04:26 00:02:05 00:01:02 00:00:29 00:00:15 00:00:08 00:00:05
8192 04:36:37 02:07:34 01:08:57 00:34:11 00:18:09 00:08:25 00:04:14 00:02:08 00:01:30 00:00:50

16384 33:57:41 16:21:30 08:31:15 04:31:04 02:23:42 01:09:54 00:34:00 00:17:01 00:11:43 00:07:04
32768 N/A N/A N/A N/A N/A N/A 05:21:27 02:15:16 01:27:53 00:55:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0246 4.6672 9.0125 15.0524 23.7603 31.5934 35.0610 48.7288 87.1212
2048 1.0000 1.9978 3.5702 7.9179 16.5546 31.3737 54.4103 79.9384 128.2527 315.4324
4096 1.0000 1.9818 3.7566 7.0560 14.9917 30.0747 63.7682 121.4278 223.3405 394.1303
8192 1.0000 2.1683 4.0117 8.0907 15.2404 32.8590 65.2158 129.5711 183.7958 333.8717

16384 1.0000 2.0761 3.9857 7.5172 14.1805 29.1543 59.9344 119.7103 173.8222 288.4474
32768 N/A N/A N/A N/A N/A N/A 64.0000 152.0894 234.0873 373.2662

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0123 1.1668 1.1266 0.9408 0.7425 0.4936 0.2739 0.1903 0.1702
2048 1.0000 0.9989 0.8926 0.9897 1.0347 0.9804 0.8502 0.6245 0.5010 0.6161
4096 1.0000 0.9909 0.9392 0.8820 0.9370 0.9398 0.9964 0.9487 0.8724 0.7698
8192 1.0000 1.0841 1.0029 1.0113 0.9525 1.0268 1.0190 1.0123 0.7180 0.6521

16384 1.0000 1.0380 0.9964 0.9397 0.8863 0.9111 0.9365 0.9352 0.6790 0.5634
32768 N/A N/A N/A N/A N/A N/A 1.0000 1.1882 0.9144 0.7290

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

11

Table 4.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:29 00:00:14 00:00:08 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00
2048 00:03:53 00:01:57 00:01:12 00:00:34 00:00:17 00:00:08 00:00:04 00:00:02 00:00:02 00:00:01
4096 00:31:16 00:15:47 00:10:07 00:04:53 00:02:20 00:01:17 00:00:36 00:00:16 00:00:08 00:00:05
8192 04:36:37 02:07:34 01:15:55 00:40:23 00:20:55 00:09:38 00:05:52 00:03:00 00:01:30 00:00:50

16384 33:57:41 16:21:30 10:03:34 05:01:41 02:41:11 01:24:53 00:47:29 00:22:45 00:11:43 00:07:04
32768 N/A N/A N/A N/A N/A N/A 05:21:27 02:15:16 01:27:53 00:55:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0246 3.7097 8.9564 18.0818 33.0460 44.2308 50.4386 48.7288 87.1212
2048 1.0000 1.9978 3.2339 6.8754 13.5473 31.1227 58.3550 96.0576 128.2527 315.4324
4096 1.0000 1.9818 3.0918 6.4058 13.4129 24.2542 52.0549 117.9170 223.3405 394.1303
8192 1.0000 2.1683 3.6433 6.8509 13.2258 28.7032 47.1231 92.1530 183.7958 333.8717

16384 1.0000 2.0761 3.3761 6.7544 12.6415 24.0038 42.9121 89.5445 173.8222 288.4474
32768 N/A N/A N/A N/A N/A N/A 64.0000 152.0894 234.0873 373.2662

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0123 0.9274 1.1195 1.1301 1.0327 0.6911 0.3941 0.1903 0.1702
2048 1.0000 0.9989 0.8085 0.8594 0.8467 0.9726 0.9118 0.7505 0.5010 0.6161
4096 1.0000 0.9909 0.7729 0.8007 0.8383 0.7579 0.8134 0.9212 0.8724 0.7698
8192 1.0000 1.0841 0.9108 0.8564 0.8266 0.8970 0.7363 0.7199 0.7180 0.6521

16384 1.0000 1.0380 0.8440 0.8443 0.7901 0.7501 0.6705 0.6996 0.6790 0.5634
32768 N/A N/A N/A N/A N/A N/A 1.0000 1.1882 0.9144 0.7290

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes
per node.

12

Table 4.4: MVAPICH2 performance on tara by number of processes used with 6 processes per node, except for
p = 1 which uses 1 process per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384

1024 00:00:29 00:00:06 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048 00:03:53 00:00:58 00:00:35 00:00:14 00:00:05 00:00:03 00:00:02 00:00:02
4096 00:31:16 00:07:51 00:03:33 00:01:50 00:01:01 00:00:33 00:00:13 00:00:07
8192 04:36:37 00:56:59 00:29:28 00:14:43 00:07:32 00:04:26 00:02:29 00:01:23

16384 33:57:41 08:20:03 04:04:07 02:02:50 01:02:55 00:32:32 00:17:35 00:08:59
32768 N/A N/A N/A N/A N/A N/A N/A 01:03:53
(b) Observed speedup Sp

N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384
1024 1.0000 4.4782 11.5927 23.5656 36.3924 54.2453 54.2453 51.3393
2048 1.0000 4.0287 6.7462 17.0878 42.8294 73.8671 110.6256 144.9814
4096 1.0000 3.9806 8.8231 17.0566 30.6096 56.2031 149.4869 277.5237
8192 1.0000 4.8542 9.3888 18.7972 36.6885 62.5066 111.7100 200.8807

16384 1.0000 4.0750 8.3470 16.5891 32.3832 62.6368 115.8589 226.9309
32768 N/A N/A N/A N/A N/A N/A N/A 384.0000
(c) Observed efficiency Ep

N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384
1024 1.0000 0.7464 0.9661 0.9819 0.7582 0.5651 0.2825 0.1337
2048 1.0000 0.6714 0.5622 0.7120 0.8923 0.7694 0.5762 0.3776
4096 1.0000 0.6634 0.7353 0.7107 0.6377 0.5854 0.7786 0.7227
8192 1.0000 0.8090 0.7824 0.7832 0.7643 0.6511 0.5818 0.5231

16384 1.0000 0.6792 0.6956 0.6912 0.6747 0.6525 0.6034 0.5910
32768 N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.4: MVAPICH2 performance on tara by number of processes used with 6 processes per node, except for
p = 1 which uses 1 process per node.

13

Table 4.5: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:29 00:00:14 00:00:08 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:03:53 00:01:57 00:01:12 00:00:47 00:00:23 00:00:11 00:00:04 00:00:02 00:00:01 00:00:01
4096 00:31:16 00:15:47 00:10:07 00:06:39 00:03:09 00:01:35 00:00:49 00:00:23 00:00:09 00:00:05
8192 04:36:37 02:07:34 01:15:55 00:53:55 00:26:26 00:12:54 00:06:30 00:03:20 00:01:43 00:00:50

16384 33:57:41 16:21:30 10:03:34 07:07:54 03:39:54 01:57:19 00:56:47 00:26:50 00:13:44 00:07:04
32768 N/A N/A N/A N/A N/A N/A 05:21:27 02:15:16 01:27:53 00:55:07

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 2.0246 3.7097 5.4554 15.6250 33.4302 58.6735 73.7179 92.7419 87.1212
2048 1.0000 1.9978 3.2339 4.9245 9.9923 21.5730 57.4926 110.6256 206.5664 315.4324
4096 1.0000 1.9818 3.0918 4.7037 9.9053 19.7792 38.4124 80.9344 207.2994 394.1303
8192 1.0000 2.1683 3.6433 5.1309 10.4665 21.4550 42.5198 83.1584 161.5571 333.8717

16384 1.0000 2.0761 3.3761 4.7621 9.2663 17.3688 35.8901 75.9486 148.3322 288.4474
32768 N/A N/A N/A N/A N/A N/A 64.0000 152.0894 234.0873 373.2662

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.0123 0.9274 0.6819 0.9766 1.0447 0.9168 0.5759 0.3623 0.1702
2048 1.0000 0.9989 0.8085 0.6156 0.6245 0.6742 0.8983 0.8643 0.8069 0.6161
4096 1.0000 0.9909 0.7729 0.5880 0.6191 0.6181 0.6002 0.6323 0.8098 0.7698
8192 1.0000 1.0841 0.9108 0.6414 0.6542 0.6705 0.6644 0.6497 0.6311 0.6521

16384 1.0000 1.0380 0.8440 0.5953 0.5791 0.5428 0.5608 0.5933 0.5794 0.5634
32768 N/A N/A N/A N/A N/A N/A 1.0000 1.1882 0.9144 0.7290

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.5: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

14

5 Performance Studies on tara with OpenMPI

This section summarizes results of analogous studies to the previous sections, using the OpenMPI implementation
of the MPI standard. Otherwise, the same cluster and compiler have been used. The goal of this study is to answer
the question, between MVAPICH2 and OpenMPI, which MPI implementation should be the default?

An analogous study for the convergence of the method as reported in Table 3.1 using MVAPICH2 was performed,
and identical numerical results were observed when using OpenMPI, which confirms the correctness of the studies.
Table 1.2 in the Introduction summarizes the raw timing results for our OpenMPI studies, analogously to Table 1.1
in the Introduction. Reading the data row-wise (varying number of nodes) or column-wise (varying processes per
node), we again observe excellent scalability, Tables 5.1, 5.2, 5.3, 5.4, 5.5 and Figures 5.1, 5.2, 5.3, 5.4, 5.5 show
detailed performance results, including speedup and efficiency. These results at first glance appear very similar to
the 1, 2, 4, 6, and 8 process per node results from Section 4. However, comparing the two carefully reveals some
major differences. Consider Table 5.5, and notice the poor efficiency for N = 8192 as p increases. When p = 256,
the efficiency is down to about 33%, while the efficiency for the same case with MVAPICH2 is about 63%. There
are two results influencing this calculation; one is the serial case, which finished much more quickly for OpenMPI
than for MVAPICH2 (03:47:52 vs. 04:36:37). The other is the p = 256 result itself, which was relatively much
faster for MVAPICH2 than OpenMPI (00:01:43 vs. 00:02:40), although less than a minute faster in actual wall
time. It is also very interesting to note that in Table 5.5, the efficiency greatly improves between the p = 256 and
p = 512 runs, where 64 nodes are used with all 8 processor cores engaged, rather than just 32 nodes. This effect
is present in several of the other MVAPICH2 and OpenMPI results, but not nearly as dramatically. As in the
MVAPICH2 results, we notice that the efficiency seems to be degrading as the problem size increases, peaking at
about N = 4096. For OpenMPI the pattern seems to be more drastic however, with efficiencies dropping down
below 40%.

References

[1] Kevin P. Allen. A parallel matrix-free implementation of the conjugate gradient method for the Poisson equation.
Senior thesis, University of Maryland, Baltimore County, 2003.

[2] Kevin P. Allen. Efficient parallel computing for solving linear systems of equations. UMBC Review: Journal of
Undergraduate Research and Creative Works, vol. 5, pp. 8–17, 2004.

[3] Kevin P. Allen and Matthias K. Gobbert. A matrix-free conjugate gradient method for cluster computing.
Technical Report, University of Maryland, Baltimore County, 2003.

[4] Kevin P. Allen and Matthias K. Gobbert. Coarse-grained parallel matrix-free solution of a three-dimensional
elliptic prototype problem. In Vipin Kumar, Marina L. Gavrilova, Chih Jeng Kenneth Tan, and Pierre L’Ecuyer,
editors, Computational Science and Its Applications—ICCSA 2003, vol. 2668 of Lecture Notes in Computer
Science, pp. 290–299. Springer-Verlag, 2003.

[5] Ganesh Balakrishnan and Ralph M. Begun. Optimizing the performance of IBM System x and BladeCenter
servers using Intel Xeon 5500 series processors. IBM Corporation, March 2009.

[6] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[7] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical Report HPCF–2008–1,
UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2008.

[8] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied
Mathematics. Cambridge University Press, second edition, 2009.

[9] David S. Watkins. Fundamentals of Matrix Computations. Wiley, second edition, 2002.

15

Table 5.1: OpenMPI performance on tara by number of processes used with 1 process per node, except for p = 128
which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:27 00:00:15 00:00:06 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00
2048 00:04:15 00:02:02 00:01:02 00:00:31 00:00:15 00:00:08 00:00:05 00:00:03 00:00:02 00:00:01
4096 00:30:37 00:16:30 00:08:37 00:04:25 00:02:11 00:01:04 00:00:31 00:00:16 00:00:09 00:00:05
8192 03:47:52 02:20:25 01:07:00 00:34:49 00:17:45 00:08:55 00:04:32 00:02:44 00:01:45 00:00:50

16384 35:50:59 19:14:26 09:16:08 04:47:07 02:29:53 01:16:47 00:39:42 00:20:56 00:15:03 00:11:23
32768 N/A N/A N/A N/A N/A N/A 05:10:45 03:16:56 02:00:14 01:38:21

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.7670 4.1664 7.5613 12.9463 19.6593 26.0196 48.2545 51.0385 120.6364
2048 1.0000 2.0932 4.1417 8.3429 17.4733 32.5842 54.9376 99.4008 145.9771 323.3671
4096 1.0000 1.8560 3.5508 6.9320 14.0371 28.8480 60.1519 116.6375 208.5176 391.6930
8192 1.0000 1.6228 3.4010 6.5449 12.8423 25.5326 50.1989 83.2806 130.6467 273.0613

16384 1.0000 1.8632 3.8678 7.4917 14.3517 28.0113 54.1884 102.7522 142.9730 188.9394
32768 N/A N/A N/A N/A N/A N/A 64.0000 100.9910 165.4030 202.2180

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 0.8835 1.0416 0.9452 0.8091 0.6144 0.4066 0.3770 0.1994 0.2356
2048 1.0000 1.0466 1.0354 1.0429 1.0921 1.0183 0.8584 0.7766 0.5702 0.6316
4096 1.0000 0.9280 0.8877 0.8665 0.8773 0.9015 0.9399 0.9112 0.8145 0.7650
8192 1.0000 0.8114 0.8502 0.8181 0.8026 0.7979 0.7844 0.6506 0.5103 0.5333

16384 1.0000 0.9316 0.9669 0.9365 0.8970 0.8754 0.8467 0.8028 0.5585 0.3690
32768 N/A N/A N/A N/A N/A N/A 1.0000 0.7890 0.6461 0.3950

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.1: OpenMPI performance on tara by number of processes used with 1 process per node, except for p = 128
which uses 2 processes per node p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

16

Table 5.2: OpenMPI performance on tara by number of processes used with 2 processes per node, except for p = 1
which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:27 00:00:16 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00
2048 00:04:15 00:02:17 00:01:05 00:00:31 00:00:14 00:00:07 00:00:04 00:00:03 00:00:02 00:00:01
4096 00:30:37 00:14:52 00:08:00 00:05:19 00:02:22 00:01:07 00:00:31 00:00:16 00:00:09 00:00:05
8192 03:47:52 02:01:22 01:06:54 00:38:13 00:21:28 00:11:27 00:04:49 00:02:44 00:01:45 00:00:50

16384 35:50:59 21:06:42 08:26:28 04:52:10 02:58:04 01:34:56 00:48:27 00:20:56 00:15:03 00:11:23
32768 N/A N/A N/A N/A N/A N/A N/A 03:16:56 02:00:14 01:38:21

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.6536 4.1730 8.2679 13.6804 23.0783 43.5082 48.2545 51.0385 120.6364
2048 1.0000 1.8659 3.9545 8.2700 18.0665 34.3360 60.9690 99.4008 145.9771 323.3671
4096 1.0000 2.0602 3.8276 5.7653 12.8988 27.2760 59.4127 116.6375 208.5176 391.6930
8192 1.0000 1.8776 3.4061 5.9631 10.6149 19.8984 47.2334 83.2806 130.6467 273.0613

16384 1.0000 1.6981 4.2471 7.3623 12.0802 22.6590 44.3924 102.7522 142.9730 188.9394
32768 N/A N/A N/A N/A N/A N/A N/A 128.0000 209.6383 256.2991

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 0.8268 1.0432 1.0335 0.8550 0.7212 0.6798 0.3770 0.1994 0.2356
2048 1.0000 0.9329 0.9886 1.0337 1.1292 1.0730 0.9526 0.7766 0.5702 0.6316
4096 1.0000 1.0301 0.9569 0.7207 0.8062 0.8524 0.9283 0.9112 0.8145 0.7650
8192 1.0000 0.9388 0.8515 0.7454 0.6634 0.6218 0.7380 0.6506 0.5103 0.5333

16384 1.0000 0.8490 1.0618 0.9203 0.7550 0.7081 0.6936 0.8028 0.5585 0.3690
32768 N/A N/A N/A N/A N/A N/A N/A 1.0000 0.8189 0.5006

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.2: OpenMPI performance on tara by number of processes used with 2 processes per node, except for p = 1
which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

17

Table 5.3: OpenMPI performance on tara by number of processes used with 4 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, p = 512 which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:27 00:00:16 00:00:09 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:01 00:00:00
2048 00:04:15 00:02:17 00:01:26 00:00:37 00:00:23 00:00:08 00:00:04 00:00:02 00:00:02 00:00:01
4096 00:30:37 00:14:52 00:10:31 00:05:09 00:02:38 00:01:47 00:00:50 00:00:17 00:00:09 00:00:05
8192 03:47:52 02:01:22 01:22:52 00:37:51 00:23:49 00:12:30 00:07:18 00:03:39 00:01:45 00:00:50

16384 35:50:59 21:06:42 12:22:37 06:21:11 02:49:45 01:37:28 00:59:10 00:29:55 00:15:03 00:11:23
32768 N/A N/A N/A N/A N/A N/A N/A N/A 02:00:14 01:38:21

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.6536 2.9456 8.1162 15.3410 27.3608 39.6119 57.6957 51.0385 120.6364
2048 1.0000 1.8659 2.9698 6.8820 11.0302 31.3064 64.0251 107.7890 145.9771 323.3671
4096 1.0000 2.0602 2.9108 5.9407 11.6327 17.2056 36.7041 109.0879 208.5176 391.6930
8192 1.0000 1.8776 2.7499 6.0214 9.5699 18.2237 31.2478 62.3560 130.6467 273.0613

16384 1.0000 1.6981 2.8965 5.6428 12.6716 22.0681 36.3517 71.8835 142.9730 188.9394
32768 N/A N/A N/A N/A N/A N/A N/A N/A 256.0000 312.9798

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 0.8268 0.7364 1.0145 0.9588 0.8550 0.6189 0.4507 0.1994 0.2356
2048 1.0000 0.9329 0.7424 0.8603 0.6894 0.9783 1.0004 0.8421 0.5702 0.6316
4096 1.0000 1.0301 0.7277 0.7426 0.7270 0.5377 0.5735 0.8522 0.8145 0.7650
8192 1.0000 0.9388 0.6875 0.7527 0.5981 0.5695 0.4882 0.4872 0.5103 0.5333

16384 1.0000 0.8490 0.7241 0.7054 0.7920 0.6896 0.5680 0.5616 0.5585 0.3690
32768 N/A N/A N/A N/A N/A N/A N/A N/A 1.0000 0.6113

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.3: OpenMPI performance on tara by number of processes used with 4 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes per
node.

18

Table 5.4: OpenMPI performance on tara by number of processes used with 6 processes per node, except for p = 1
which uses 1 process per node

(a) Wall clock time in HH:MM:SS
N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384

1024 00:00:27 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048 00:04:15 00:01:04 00:00:30 00:00:14 00:00:06 00:00:03 00:00:02 00:00:02
4096 00:30:37 00:07:12 00:03:42 00:03:16 00:01:18 00:00:45 00:00:14 00:00:07
8192 03:47:52 00:59:35 00:32:43 00:16:30 00:13:43 00:06:50 00:03:27 00:01:35

16384 35:50:59 08:05:50 04:35:21 02:18:58 01:08:19 00:42:47 00:27:52 00:14:04
32768 N/A N/A N/A N/A N/A N/A N/A 01:52:48
(b) Observed speedup Sp

N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384
1024 1.0000 3.8464 10.8327 20.1061 33.1750 49.1481 49.1481 50.0755
2048 1.0000 4.0230 8.5210 18.0155 39.8534 79.8312 132.3627 161.6835
4096 1.0000 4.2476 8.2668 9.3880 23.5096 40.7236 134.2865 255.1444
8192 1.0000 3.8246 6.9632 13.8104 16.6177 33.3696 66.1450 144.1757

16384 1.0000 4.4274 7.8116 15.4789 31.4869 50.2840 77.1888 152.9115
32768 N/A N/A N/A N/A N/A N/A N/A 384.0000
(c) Observed efficiency Ep

N p = 1 p = 6 p = 12 p = 24 p = 48 p = 96 p = 192 p = 384
1024 1.0000 0.6411 0.9027 0.8378 0.6911 0.5120 0.2560 0.1304
2048 1.0000 0.6705 0.7101 0.7506 0.8303 0.8316 0.6894 0.4211
4096 1.0000 0.7079 0.6889 0.3912 0.4898 0.4242 0.6994 0.6644
8192 1.0000 0.6374 0.5803 0.5754 0.3462 0.3476 0.3445 0.3755

16384 1.0000 0.7379 0.6510 0.6450 0.6560 0.5238 0.4020 0.3982
32768 N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.4: OpenMPI performance on tara by number of processes used with 6 processes per node, except for p = 1
which uses 1 process per node.

19

Table 5.5: OpenMPI performance on tara by number of processes used with 8 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 00:00:27 00:00:16 00:00:09 00:00:06 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
2048 00:04:15 00:02:17 00:01:26 00:00:53 00:00:24 00:00:13 00:00:05 00:00:02 00:00:01 00:00:01
4096 00:30:37 00:14:52 00:10:31 00:06:30 00:03:17 00:01:48 00:01:04 00:00:28 00:00:10 00:00:05
8192 03:47:52 02:01:22 01:22:52 00:54:21 00:26:33 00:14:33 00:09:04 00:05:34 00:02:40 00:00:50

16384 35:50:59 21:06:42 12:22:37 08:11:19 03:36:55 01:55:42 00:58:25 00:35:20 00:17:47 00:11:23
32768 N/A N/A N/A N/A N/A N/A N/A N/A N/A 01:38:21

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 1.6536 2.9456 4.5368 13.3367 28.8478 46.5614 78.0588 69.8421 120.6364
2048 1.0000 1.8659 2.9698 4.8465 10.7201 19.2509 55.0560 116.6484 189.2296 323.3671
4096 1.0000 2.0602 2.9108 4.7152 9.3279 17.0887 28.7397 64.9820 179.9256 391.6930
8192 1.0000 1.8776 2.7499 4.1931 8.5812 15.6678 25.1285 40.9322 85.2752 273.0613

16384 1.0000 1.6981 2.8965 4.3781 9.9165 18.5906 36.8164 60.8708 120.9866 188.9394
32768 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

1024 1.0000 0.8268 0.7364 0.5671 0.8335 0.9015 0.7275 0.6098 0.2728 0.2356
2048 1.0000 0.9329 0.7424 0.6058 0.6700 0.6016 0.8603 0.9113 0.7392 0.6316
4096 1.0000 1.0301 0.7277 0.5894 0.5830 0.5340 0.4491 0.5077 0.7028 0.7650
8192 1.0000 0.9388 0.6875 0.5241 0.5363 0.4896 0.3926 0.3198 0.3331 0.5333

16384 1.0000 0.8490 0.7241 0.5473 0.6198 0.5810 0.5753 0.4756 0.4726 0.3690
32768 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5.5: OpenMPI performance on tara by number of processes used with 8 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

20

	Introduction
	The Elliptic Test Problem
	Convergence Study for the Model Problem
	Performance Studies on tara with MVAPICH2
	Performance Studies on tara with OpenMPI

