
Maximum Likelihood Estimation of the
Random-Clumped Multinomial Model as Prototype

Problem for Large-Scale Statistical Computing
Andrew M. Raima∗, Matthias K. Gobberta, Nagaraj K. Neerchala & Jorge G. Morelb

aDepartment of Mathematics and Statistics, University of Maryland, Baltimore County,
Baltimore, MD, U.S.A.

bBiometrics and Statistical Sciences Department, Procter & Gamble Company,
Cincinnati, OH, U.S.A.

This is a preprint of an article submitted for consideration in the Journal of Statistical
Computation and Simulation c©2012 Taylor & Francis; Journal of Statistical Computation

and Simulation is available online at: www.tandfonline.com.

Abstract

We present our application of parallel computing to the maximum likelihood esti-
mation (MLE) of a model with large number of parameters. For many problems, MLEs
must be obtained by numerical methods utilizing a computer. In some situations long
computation times can become an issue as well. We consider one such problem, com-
puting MLEs for the Random-Clumped Multinomial distribution. We compute MLEs
for this model in parallel using the Toolkit for Advanced Optimization (TAO) software
library. The computations are performed on a distributed-memory cluster with low
latency interconnect. We study how the resource requirements change as problem sizes
vary, and demonstrate that scaling the number of processes improves wall clock time
significantly for larger problems. An illustrative example is also included, showing how
parallel MLE computation could be useful in practice. Our experience with a direct
numerical approach indicates that more substantial gains may be obtained by making
use of the specific structure of the Random-Clumped model.

Key Words: parallel computing, maximum likelihood estimation, mixture distribution,
multinomial

AMS Subject Classification: 65C60, 65Y05

1 Introduction

Consider a random sample of n observations X = (X1, . . . , Xn) drawn from a probability
distribution f(x | θ). The vector of parameters θ = (θ1, . . . , θq) will be considered unknown,
and belongs to the space Θ ⊆ Rq. For a given dataset x = (x1, . . . , xn), the likelihood is
given by

L(θ | x) =
n∏
i=1

f(xi | θ),

∗Corresponding author. Email: araim1@umbc.edu

1

www.tandfonline.com

and the maximum likelihood estimate (MLE) is obtained by

θ̂MLE = arg max
θ

L(θ | x),

or equivalently by maximizing the log-likelihood logL(θ | x). In some situations maxima can
be calculated analytically. Often however, numerical methods are required to carry out the
optimization. Some commonly used numerical methods include expectation maximization
(EM), Newton-Raphson, and Fisher Scoring. See [1] for a general overview.

We investigate the computation of MLEs for the Random-Clumped Multinomial distri-
bution using a parallel architecture, as originally outlined in the technical report [2]. In
particular, we make use of a publicly available software library TAO (Toolkit for Advanced
Optimization) [3], which implements a number of commonly used numerical optimization
methods. TAO is a special optimization library, designed for use in parallel computing en-
vironments. The objective of this work is to study the effectiveness of applying parallel
optimization to the MLE problem, in terms of computing time. We make use of the limited-
memory, variable-metric (LMVM) unconstrained optimization method in TAO. Malouf [4]
has demonstrated the effectiveness of LMVM in the setting of natural language processing.
Using TAO to conduct maximum entropy estimation, he shows that LMVM outperforms
several other methods such as conjugate gradient. In the present work, LMVM is used to
compute maximum likelihood estimates for the Random-Clumped distribution introduced
by Morel and Nagaraj in [5], for which numerical optimization is necessary.

In a 2003 report describing the now-popular R package SNOW (Simple Network of Work-
stations), Rossini, Tierney, and Li [6] noted that parallel computing had not yet been widely
adopted by statisticians. Since then, packages like SNOW and its successors have helped
make parallel computing more accessible to R programmers. Many of these packages are
geared toward embarrassingly parallel problems — those which can be easily decomposed
into smaller problems that have little dependence on each other. For example SNOW pro-
vides a function called parApply, which evaluates a given function on each row (or column,
or element) of a given matrix. Each row can be operated on independently, and the package
determines how to allocate the work among available parallel processes. This is adequate for
many problems in statistical computing, which involve repeating the same calculation many
times using randomly generated inputs. Resampling methods such as the Bootstrap and
Monte Carlo (MC) simulation fall into this class of applications. The methods presented in
this paper probe deeper into the structure of the computations, and seek to improve perfor-
mance within the algorithm itself. Therefore, they are best evaluated on a single complex
problem rather than on problems involving repeated computations.

Our objective is to apply parallel computing to the MLE optimization problem, which
does not fit the mold of embarrassingly parallel. The numerical optimization we utilize is an
iterative process where each step must occur sequentially. We would like to distribute the
work across many parallel processes so that the computing time can be reduced. To effectively
use many processes we split the workload at each iteration, then distribute the results back to
all processes to prepare for the next iteration. Therefore efficient communication is important
for getting good performance, and high performance computing (HPC) is especially suitable
for this application. An HPC cluster provides an array of fast processors connected by
a low-latency high-throughput interconnect, and optimized communication software such
as the Message Passing Interface (MPI). This environment will ensure that processes can

2

communicate efficiently, and that we can benefit from scaling the procedure to run on a large
number of processes.

In Section 2 the Random-Clumped model is described, including an algorithm for draw-
ing samples from the distribution. In Section 3 the approach for computing MLEs in parallel
is discussed. In Section 4 simulation studies are presented. We conduct experiments to study
how run times and solution quality are affected as experiment variables are changed, and
verify that the correct behavior is occurring. We also study how the parallel performance is
affected by changing some of the variables of the experiment. We find that changing some
of the problem dimensions increases the difficulty of estimation very quickly but that the
parallel performance is very good overall for a fixed problem size. In Section 5 we present a
simulated scenario which is well-suited to modeling by the Random Clumped Multinomial,
but inference is computationally expensive. The parallel MLE method is applied to signif-
icantly improve the performance of a likelihood ratio test. Finally, concluding remarks are
given in Section 6.

2 The RCM model

First, let us consider the standard multinomial distribution, which arises in a natural way
when a group of m people are asked a survey question with k possible responses. The sample
space is the discrete set

T =

{
t = (t1, . . . , tk) : tj ∈ {0, 1, . . . ,m},

k∑
j=1

tj = m

}
,

where ti denotes the number of people who gave the ith response. Let T = (T1, . . . , Tk)
denote a random vector of counts from T . If we assume that the participants respond to
the question independently of each other, with probabilities π = (π1, . . . , πk) corresponding
to the possible responses, T will be distributed according to the multinomial distribution,
whose density function is

f(t | π,m) =
m!

t1! t2! · · · tk!
πt11 π

t2
2 · · · π

tk
k , t ∈ T . (1)

The parameter space is then

Θ =

{
π ∈ Rk : 0 ≤ πj ≤ 1,

k∑
j=1

πj = 1,

}
,

with only k − 1 distinct parameters since πk = 1 −
∑k−1

j=1 πj. If a random vector T follows
this distribution, we write T ∼ Mult(π,m), and denote observed data as t = (t1, . . . , tk). If
we repeat this survey n times, each time with a group of m people, we will obtain a sample
X = (T1, . . . ,Tn), which can be thought of as a k × n matrix.

A mixture of ν multinomials constructed with mixing proportions w = (w1, . . . , wν) is
given by

f(t | w,π,m) =
ν∑
j=1

wj f(t | πj,m), (2)

3

where
∑ν

j=1wj = 1, 0 < wj < 1 for j = 1, . . . , ν, and πj = (πj1, . . . , πjk) is the vector
of probabilities corresponding to the jth component of the mixture. One motivation for
considering a mixture distribution may be drawn from the point of view of classification.
Suppose the participants in our multinomial response survey are drawn from one of ν different
populations, and we are unable to record the population label for each subject. Of course,
if the population label were available, we will end up with ν independently distributed
multinomial count vectors. Since the labels are not available, the likelihood will be based on
the mixture density given above in (2). This distribution has been widely used in a number of
applications including text mining, linguistics, and clustering. See [7] for a detailed review.
These mixture likelihoods generally cannot be maximized in closed form, as opposed to
the standard multinomial, and so numerical methods are suitable for the MLE problem.
Mixtures in general may not be identifiable without additional assumptions.

As the test problem for our exploration, we consider a special multinomial mixture pro-
posed by Morel and Nagaraj [5]. Following [8], we will refer to this model as the Random-
Clumped Multinomial (RCM) model. The model is also described in detail in [9]. It has
more recently been referred to as the Neerchal-Morel distribution by Zhou & Lange [10],
who use it to help demonstrate the minorization-maximization principle. The motivation for
the RCM model can be seen in the survey scenario mentioned earlier. If the m participants
interact among themselves before providing their responses, then the key “independence”
assumption is violated, and the multinomial distribution does not adequately model the re-
sponses. In fact, it can be shown that such data, due to lack of independence, exhibits larger
variability than the multinomial distribution. This phenomenon is commonly referred to as
overdispersion. Morel and Nagaraj [5] provide a model for a specific type of dependence,
which turns out to be a special case of the multinomial mixture distribution in (2). In sub-
sequent work [9, 11], they show that this model has many desirable theoretical and practical
properties.

The RCM model can be obtained by correlating responses within a group by a simple
logic. Imagine that the group of m respondents consists of a leader who would make his/her
response public. Then the remaining members may either follow the leader or make up their
own mind independently of each other and the leader. Thus, the distribution of the count
vector T would conform to the representation T = Y N + (X | N), where

N ∼ Binomial(ρ,m),

Y ∼ Mult(π, 1),

(X | N) ∼ Mult(π,m−N),

such that N and Y are independent, 0 < ρ < 1, and π = (π1, . . . , πk) is a vector of category
probabilities as described for the standard multinomial. It can be shown that the density
for T is

f(t | π, ρ,m) =
k∑
j=1

πj g(t |ηj,m),

where

g(t |ηj,m) is the density of a standard multinomial,

ηj =

{
(1− ρ)π + ρ ej if j = 1, 2, . . . , k − 1,

(1− ρ)π if j = k,

4

and where ej is the jth column of the identity matrix, with 1 in the jth position and 0 in
all other positions. We will use the notation T ∼ RCM(π, ρ,m) to describe the distribution
of T . We have noted that RCM is a special case of the mixture distribution of (2). In this
mixture however, there are only k distinct parameters θ = (π1, . . . , πk−1, ρ). Our objective
will be to compute the MLE for θ under this model. Although we will not make use of them
in this paper, theoretical results are available in [11] and [7] which help to simplify MLE
computations using a Fisher Scoring approach.

Neerchal and Morel [11] describe a method for generating random samples from the RCM
distribution. We include this information as a convenience to the reader. We first consider
generation of samples from the standard multinomial distribution. Begin with a vector
t = (t1, . . . , tk) of k zeroes, and known parameters (π1, . . . , πk). Generate m observations

from the uniform distribution U1, . . . , Um
iid∼ U(0, 1). For observation Uj, determine the

category c such that

π1 + · · ·+ πc−1 < Uj ≤ π1 + · · ·+ πc

and add 1 to the count tc. Repeat this process for j = 1, . . . ,m to obtain t.
To generate samples from the RCM distribution, begin with known parameters (π1, . . . , πk, ρ).

Generate m + 1 observations from the standard multinomial distribution S,S0
1 , . . . ,S

0
m

iid∼
Mult(π1, . . . , πk, 1), and m observations from the uniform distribution U1, . . . , Um

iid∼ U(0, 1).
The entries of the new RCM observation are given by

tj = S I(Uj ≤ ρ) + S0
j I(Uj > ρ), j = 1, . . .m,

where I(·) represents the indicator function.
Availability of this simple and intuitive algorithm of generating data is one of the many

reasons for the choice of the RCM model as our test problem. It is identifiable for all values of
(π1, . . . , πk, ρ) without requiring any additional assumptions. Furthermore, the dimension of
the parameter space is proportional to the number of categories k. In a more general mixture
of multinomial densities there are q = ν(k− 1) + (ν− 1) distinct parameters, including k− 1
category probabilities for each of the ν components, and ν − 1 mixing proportions. This
parameter space can blow up quickly if the number of categories or components is increased.
Thus, the RCM model encompasses many numerical issues one may face in computing the
MLE of a mixture model (e.g. multiple local maxima), without having to take on the
full mixture. A further desirable property of RCM is that direct numerical optimization
is effective for computing its MLEs. This is not the case for all mixture models, where a
specialized approach like EM may be needed.

3 Computational Method

The High Performance Computing Facility (HPCF, http://www.umbc.edu/hpcf) at the
University of Maryland, Baltimore County (UMBC) is an interdisciplinary, shared campus re-
source for scientific computing and research on parallel algorithms. The distributed-memory
cluster hpc has 33 compute nodes, each with two dual-core AMD Opteron processors (four
cores total, 1 MB of cache per core) operating at 2.6 GHz and 13 GB memory. The nodes
are connected by a high performance InfiniBand network, and run 64-bit Red Hat Enterprise

5

http://www.umbc.edu/hpcf

Linux 5 as their operating system. We make use of the Portland Group C/C++ compiler
with AMD Core Math Library (ACML), and the Open MPI 1.2.8 implementation of the
Message Passing Interface (MPI) standard.

The Toolkit for Advanced Optimization (TAO, http://www.mcs.anl.gov/research/

projects/tao) is an optimization library for both single-processor and massively-parallel
architectures. It is built on top of the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc, http://www.mcs.anl.gov/petsc), a suite of data structures and routines
for the scalable (parallel) solution of scientific applications modeled by partial differential
equations. Both libraries are open source and were developed at Argonne National Labora-
tory. Both use MPI for handling interprocess communications. We make use of a private
installation of TAO 1.9 and PETSc 2.3.3 on the HPCF cluster.

TAO and PETSc help to remove the burden of writing distributed code from the program-
mer. Management of distributed data structures can be left up to the libraries, allowing the
programmer to focus on solving the problem at hand. Using the libraries this way however
results in a loss of control, which may be detrimental to code performance. TAO provides a
suite of optimization algorithms and a framework to use them; these are described in detail
in the User Manual [3]. The programmer provides several key ingredients such as the objec-
tive function h(θ) to optimize, code to evaluate its gradient vector ∇h(θ) = ∂h(θ)/∂θ, and
code to evaluate its Hessian matrix H(θ) = ∂2h(θ)/∂θ∂θT .

These three ingredients are used by the TAO algorithms to conduct a search for the
optimal solution. Several algorithm choices are available for unconstrained optimization.
The Nelder-Mead (NM) method is typically the worst performer, but requires only the
objective function. The nonlinear conjugate gradient (CG) method and limited-memory,
variable-metric (LMVM) method require both an objective and gradient function to be
implemented. The Newton Line Search (NLS) method uses the objective, the gradient, and
also the Hessian. For this work we have considered only LMVM because it performed well,
yet does not require explicit formation of the Hessian.

We briefly describe the LMVM method. Given a current solution θ(i) ∈ Rq, LMVM
consists of two main steps to find the next solution θ(i+1). First the direction d of the next
step is found by solving the linear system

H(i)d = −∇h(θ(i)),

where H(i) is an approximation to the Hessian, which is computed within the method.
Computation of the approximation utilizes a limited amount of information coming from
previous steps. After the direction is obtained, a line search is performed to compute the
size of the next step τ , so that

h(θ(i) + τd)

is minimized. There are several tuning parameters available for TAO’s LMVM method, but
we leave them at their default settings, except that the iteration limit was set to a very large
number to ensure convergence.

Our implementation is carried out in the C++ programming language. The objective

6

http://www.mcs.anl.gov/research/projects/tao
http://www.mcs.anl.gov/research/projects/tao
http://www.mcs.anl.gov/petsc

function is based on the log-likelihood function from the RCM model described in Section 2,

h(θ) := − logL(θ |X) = − log

{
n∏
i=1

f(ti | π, ρ,m)

}

= −
n∑
i=1

log

{
k∑
j=1

πj

[
m!

ti1! · · · tik!
ηti1j1 · · · η

tik
jk

]}
, (3)

where ηj`’s are functions of π and ρ. We choose to work with the log-likelihood, which
involves a summation rather than a product, because products of many probabilities may
involve floating point numbers of very small magnitude. A negative sign is applied because
TAO works to minimize objective functions by default.

To use an unconstrained optimization method in our problem, we must address the
natural constraints in our parameter space. That is, θ = (π1, . . . , πk, ρ) are all probabilities
which must lie between 0 and 1, and πi’s must sum to 1. To enforce the range constraint,
we make use of the logistic cdf function ex/(1 + ex), which maps x ∈ R to the interval
(0, 1). To enforce the summation constraint, we normalize the πi’s by scaling all components
by
∑k

i=1 πi. These two transformations are performed as the first step in evaluating the
objective function.

To compute the gradient vector needed for LMVM, we use a finite difference approxima-
tion

∂h(θ)

∂θj
= lim

d→0

(
h(θ + dej)− h(θ)

d

)
≈ h(θ + δej)− h(θ)

δ
, j = 1, . . . , q

with δ = 10−8. Notice that two objective function evaluations are needed to compute each
component of the gradient.

There are several possible ways to achieve parallelization within the framework we have
discussed. Observe that the log-likelihood function in (3) can be quite expensive to evaluate,
because it requires iterating over every component of the mixture for each observation in the
sample. Each step of LMVM requires evaluation of the gradient, and each evaluation of the
gradient requires 2q evaluations of the objective function. Notice that the log-likelihood in
(3) is a sum over n terms. One idea is to evaluate this sum over multiple parallel processes,
and for large sample sizes we would expect good performance. We have chosen a different
approach however, which is to compute the q components ∂h(θ)/∂θj of the gradient in
parallel. Notice that these components can be computed independently. This approach limits
the number of parallel processes to the dimension of the problem, but has the advantage that
it generalizes to any objective function. In this scheme, all sample data must be available on
all processes in order to evaluate the log-likelihood. This could also be seen as a drawback if
the sample data is very large, and perhaps may not fit in the memory of a single process. This
will not be an issue for the computations described in this paper, but may be a consideration
in other problems.

We are now prepared to write down the parallel MLE algorithm

1. Split the indices {1, . . . , q} as evenly as possible among the p available processes. De-
note Ind(s) as the set of indices assigned to process s

Note that because of the normalization step, we don’t use the fact that πk = 1−
∑k−1

i=1 πi to infer πk. We
include all of the πi parameters explicitly in the optimization, and therefore have q = k+ 1 total parameters
under consideration.

7

2. Start with an initial guess θ(0) = (θ
(0)
1 , . . . , θ

(0)
q)

3. Run an LMVM iteration, which will subsequently invoke our gradient function

4. In our gradient function, each process s computes

∂h(θ(0))

∂θj
, ∀j ∈ Ind(s);

at this point the p processes work in parallel.
(Now each process has a fragment of the gradient vector in its local memory. To
continue with the algorithm, we must make the entire vector available on all processes)

5. Make the entire vector available on all processes. This is accomplished in MPI with a
single command MPI_Allgather

6. LMVM continues simultaneously on all processes, and a new guess θ(1) is obtained

7. This process repeats, giving θ(0),θ(1), . . . ,θ(g), until stopping criteria are met. Finally
θ(g) is returned as the MLE

For all experiments presented below, we select the total number of parameters to be evenly
divisible by p. This is done for convenience and to demonstrate the ideal case of parallel
performance with equal load balancing, but is not a limitation of the method itself. Some of
the internals of LMVM potentially work in parallel as well (e.g., linear solves) which would
further improve performance, but it is not immediately apparent if they are implemented
this way. Stopping criteria are left to the TAO defaults, except that we have raised the limit
on number of iterations as mentioned earlier. A few details of our implementation were not
mentioned here, such as efficient computation of factorials in the likelihood. For a more
thorough discussion of such details, the reader may check [2].

To summarize, we have posed the RCM MLE problem as a TAO optimization problem.
TAO was not strictly necessary to implement the idea, but was attractive because it features
a variety of optimization routines and other utilities that we might otherwise have had to
program ourselves. Our method of choice is LMVM; although this is an iterative method, we
have identified pieces (components of the gradient vector) which can be computed in parallel
within an iteration. We elected to use a finite difference approximation to the gradient,
but the parallelization could also use a closed-form expression if available. Our approach is
appropriate for the case of RCM because the MLEs cannot be obtained in closed form, yet
direct numerical optimization is effective for this model. The chosen approach did not take
into consideration very large datasets, instead focusing on reduced computing time as the
main goal.

It is worth making an important distinction here. Suppose our task was not just to
compute the MLE on a single dataset, but to approximate (say) its sampling variance using
a Bootstrap of 1000 repetitions. As mentioned earlier, the Bootstrap is an embarrassingly
parallel method and each repetition can be handled independently. For this problem, rather
than using our algorithm above it would be most efficient to split the 1000 repetitions evenly
among the p processes and combine results at the end. This would eliminate almost all
communication overhead. However, sometimes in the case of computing estimates for a
single dataset the computing time may be prohibitively expensive, and that is the case we
address with the algorithm above. Therefore, it is important to step back and evaluate the
overall computing task before deciding how parallelization should be handled.

8

4 Computational Experiments and Results

We design a series of experiments to verify that the optimization is working correctly (“con-
sistency experiments”), and to study parallel performance as we vary problem sizes and
parallelism (“scalability experiments”). Our experiments consist of the variables

• sample size n,
• cluster size m,
• number of multinomial categories k (total parameters: q = k + 1),
• number of repetitions r,
• number of MPI processes p.

To determine the true values for RCM parameters in an experiment, we generate a symmet-
ric vector v = (1, 2, 3, . . . , 3, 2, 1) containing k ∈ {1, 2, 3, . . .} elements. We let π = v/

∑
i vi,

and let ρ = 1/4 so that the true parameters of the experiment are θ = (π, ρ). This pro-
vides a quick but deterministic construction of θ for any valid choice of k. We generate a
random sample of n observations X = (t1, . . . , tn) from the RCM distribution with these
parameters, as described in Section 2. The objective function h(θ) given in (3) is con-
structed with this sample data. The TAO framework is then invoked with an initial solution
θ(0) = (π1 = 1/k, π2 = 1/k, . . . , πk = 1/k, ρ = 1/2). The selected optimization routine
(LMVM) runs until stopping criteria are reached. If the optimization is successful, a max-

imum likelihood estimate θ̂MLE is obtained. Using the parameters θ, the data generation
and estimation phases are repeated r times yielding the independent and identically dis-
tributed RCM samples X1, . . . ,Xr, and the estimates θ̂

(1)
MLE(X1), . . . , θ̂

(r)
MLE(Xr) which are

also independent and identically distributed.
Morel and Nagaraj verify in [5] that the MLE is consistent and asymptotically normal

for RCM. Therefore, as a measurement of solution quality we consider

SSE(θ, θ̄MLE) := ||θ − θ̄MLE||2 =

q∑
j=1

(
θj − θ̄MLE,j

)2
, (4)

where θ̄MLE := 1
r

∑r
i=1 θ̂

(i)
MLE is the empirical mean of the estimates from the r realizations.

SSE is then the squared distance between θ̄MLE and θ, and so we expect it to become small
as more information about θ through the data becomes available. We will be able to observe
this distance as the experimental variables are adjusted, and see the associated costs in terms
of computing time and memory. While SSE approaching zero does not guarantee that we
are computing the global maxima of the likelihood function, it does provide some evidence
that the algorithm is converging to a consistent solution of the MLE problem.

Technically, the sample generation process was conducted outside of the experiments.
A sample was generated for each distinct setting of (n, k,m), for the maximum number
of repetitions which were needed at that setting, and stored in a file. During the “sample
generation” phase in an experiment, the appropriate sample file is identified and loaded. This
process ensures that any two experiments using the same variables (n, k,m, r) will use exactly
the same data, and thus their results should be comparable. We record the total walltime as
the number of seconds to compute the r estimates. This time includes optimization, as well
as a reset of the TAO framework to its initial state between iterations. Walltime does not
include calculation of sum square error, initialization of the TAO framework at the beginning

9

of the program, loading of sample data, or deinitialization at the end of the program. We
also record the amount of global memory in kB used among all processes, starting after the
time TAO is initialized until the r estimates are computed. Memory usage is computed
by taking the difference between starting and ending measurements. We record the total
memory usage including swap space (denoted as VIRT in the Linux top program). The
memory usage we report shows our application’s usage, but does not reflect the overhead of
starting TAO or MPI, or the overall memory requirement of the program. We have opted
to show the global memory usage (rather than per node for example) to give an impression
of the magnitude of the problem across all processes.

All experiments are distributed in the same way across the HPCF cluster. For p ≤ 4,
a single compute node is used (each process will then run on its own dedicated core). For
p > 4, we only consider p as a multiple of 4, and choose the number of nodes as p/4 so that
all four cores are utilized on each machine. Gobbert [12] demonstrates that use of multiple
cores per node is an effective strategy for distributing workloads on the HPCF cluster. We
ensure that all nodes used for any experiment are reserved exclusively for us by the scheduler.

4.1 Consistency Check for MLE

Table 1 displays a summary of results, altering each of the experiment variables separately.
The column “memory” shows the global memory (in kB) used across all processes, as de-
scribed earlier. The column “sse” shows the quantity defined in (4). The column “iterations”
represents the total number of LMVM iterations over the entire experiment (the same num-
ber will be reported on each process).

As we might suspect, increasing the sample size n causes a linear increase in run time but
also causes θ̄MLE to approach θ. Increasing the cluster size m also appears to have the effect
of increasing run times. Evaluation of the objective function does not depend on the size
of m, except for the factorial calculations in the log-likelihood. We have implemented these
calculations using the optimized lgamma_r function in C rather than the naive recursive
formula. However, it still appears that the performance of this function depends on the
magnitude of m. The number of LMVM iterations appears to be increasing for larger m,
with some variation depending on randomly selected dataset. Increasing m also causes θ̄MLE

to approach θ. This makes sense intuitively if we consider the survey example from Section
2; more participants will provide more information about the population’s opinion.

Increasing the number of categories k results in a greater-than-linear increase in run
time. It seems intuitive that the optimization will become more difficult as the objective
function’s domain increases in dimension. This can also be seen in the number of iterations,
which tends to increase with k, but with some variation depending on the dataset. There
appears to be no definite trend in SSE as k varies.

Increasing the number of repetitions r causes an unsurprising linear increase in run time.
Also as we might guess, more repetitions of the estimation process results in θ̄MLE approach-
ing θ. The effect on run time of scaling the number of processes p is encouraging. The
run times approximately halve as the number of processes double. There does not appear
to be a significant impact on the solution quality or the number of iterations as p varies,
which is expected because the computations should be similar, perhaps with small numerical
differences.

10

Table 1: Results for the consistency experiments; in each of the five sections of the table,
one of the experiment variables is changed while the others are held fixed.

(a) Experiments varying n
m k n r p walltime memory sse iterations

32 7 32 16 1 3.98 264 7.656e-05 362
32 7 64 16 1 7.76 264 3.509e-05 343
32 7 128 16 1 15.90 264 1.266e-05 354
32 7 256 16 1 33.36 300 1.091e-05 369
32 7 512 16 1 67.88 456 8.930e-06 376
32 7 1024 16 1 133.64 636 5.142e-06 371
32 7 2048 16 1 269.74 1216 9.101e-07 379
32 7 4096 16 1 638.07 1820 9.616e-07 446

(b) Experiments varying m
m k n r p walltime memory sse iterations

1 31 128 16 1 313.03 276 1.393e-01 175
2 31 128 16 1 247.78 276 6.273e-02 138
4 31 128 16 1 228.69 276 6.265e-02 124
8 31 128 16 1 240.43 276 6.258e-02 130

16 31 128 16 1 273.88 276 6.255e-02 143
32 31 128 16 1 354.66 276 2.364e-02 177
64 31 128 16 1 446.87 276 1.313e-05 201

128 31 128 16 1 493.54 276 4.988e-06 204
256 31 128 16 1 657.73 276 3.044e-06 262
512 31 128 16 1 647.89 276 1.184e-06 253

(c) Experiments varying k
m k n r p walltime memory sse iterations

256 3 64 16 1 0.44 264 1.139e-06 124
256 7 64 16 1 3.77 264 4.469e-06 165
256 15 64 16 1 36.89 276 4.806e-06 215
256 31 64 16 1 313.98 284 3.416e-06 250
256 63 64 16 1 2261.36 264 3.246e-06 244

(d) Experiments varying r
m k n r p walltime memory sse iterations

32 7 128 1 1 1.01 264 5.183e-04 23
32 7 128 2 1 1.97 264 4.083e-04 46
32 7 128 4 1 3.98 264 1.262e-04 90
32 7 128 8 1 7.99 264 7.135e-05 179
32 7 128 16 1 15.63 264 1.266e-05 354
32 7 128 32 1 31.53 264 1.169e-05 711
32 7 128 64 1 63.71 264 1.349e-05 1428
32 7 128 128 1 129.83 268 6.337e-06 2881

(e) Experiments varying p
m k n r p walltime memory sse iterations

256 31 256 16 1 1338.90 516 8.649e-07 267
256 31 256 16 2 681.90 524 8.649e-07 267
256 31 256 16 4 351.40 468 8.649e-07 267
256 31 256 16 8 188.40 1036 8.650e-07 267
256 31 256 16 16 107.00 1244 8.648e-07 267
256 31 256 16 32 68.02 4296 8.648e-07 267

11

4.2 Performance Experiments

We consider the parallel performance of the RCM estimation problem when varying sample
size n, cluster size m, and number of categories k. These variables are altered along with the
number of processes p. The number of repetitions r will not be considered here, because we
expect a single repetition to be representative of performance. We examine walltime as well
as the metrics speedup and efficiency, which are conventionally given in parallel performance
studies. Let c ∈ {n,m, k} be the experiment parameter under observation. Define Tp(c) as
the walltime in seconds to compute a problem of size c using p processes. The speedup is
defined as Sp(c) = T1(c)/Tp(c), where Sp(c) close to p suggests ideal parallel performance.
The efficiency is defined as Ep(c) = Sp(c)/p, where Ep(c) close to 1 suggests ideal parallel
performance. When c is held constant and the number of processes p varies, the same exact
input data is used. This helps to simplify comparisons between different settings of p.

Table 2 and Figure 1 show the results of the experiments varying n. We can see that for
a fixed n, doubling the number of processes p shows a strong halving effect of the walltime.
The effect begins to weaken when p = 64, and this weakening happens a bit earlier for the
smallest experiment n = 16. The speedup and efficiency plots emphasize that the scaling
of n = 16 is worse than the larger values of n, which can be explained by the diminishing
amount of computational work to be performed. For the cases when n > 16, the scaling is
almost identical. Table 3 and Figure 2 show the results of the experiments varying m. Again
we see the definite halving effect in walltime as p is doubled, which starts to weaken around
p = 64. In the speedup and efficiency plots, we can see that the selected settings of m show
almost exactly the same scaling pattern.

Table 4 and Figure 3 show the results of the experiments varying k. Recall in our
parallelization scheme that the p processes divide the work of computing the k + 1 entries
of the gradient vector. When p ≥ k some processes will be left with no useful work, so these
results have been omitted. We notice that for small k, the run time is too quick to justify
parallelization. As k increases, run time drastically increases. For a fixed large k such as
k = 127, doubling the number of processes p shows a strong halving effect of the walltime,
which weakens as p approaches k + 1. This is also reflected in the speedup and efficiency
plots. The most notable observation is the decrease in run time for k = 127, from about
41.9 minutes serially, to about 30 seconds when using all 128 processes. Similar results are
obtained in the varying n and varying m experiments, where k is fixed at 127. Thus for
large enough problem sizes, scaling the number of processes drastically reduces the walltime
needed to compute the MLE.

The results of multiple process runs were compared to corresponding serial runs to ensure
that the parallel results were correct. These results are not presented here, in the interest of
brevity.

12

Table 2: Walltime, speedup, and efficiency varying n, for k = 127, m = 64, r = 1. Tests
were performed with 4 processes per node, except for p = 1 which uses 1 process per node,
and p = 2 which uses 2 processes per node

(a) Wall clock time in seconds
n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128

16 265.37 133.73 68.47 34.84 18.01 12.71 8.57 6.58
32 447.10 225.88 113.71 57.91 29.96 16.07 9.09 5.77
64 1067.33 541.35 272.61 138.33 71.51 38.19 21.40 13.12

128 1752.26 900.03 454.20 230.46 119.25 63.49 35.72 21.53
(b) Observed speedup Sp

n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128
16 1.00 1.98 3.88 7.62 14.74 20.88 30.96 40.35
32 1.00 1.98 3.93 7.72 14.92 27.83 49.16 77.49
64 1.00 1.97 3.92 7.72 14.93 27.95 49.86 81.38

128 1.00 1.95 3.86 7.60 14.69 27.60 49.06 81.39
(c) Observed efficiency Ep

n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128
16 1.00 0.99 0.97 0.95 0.92 0.65 0.48 0.32
32 1.00 0.99 0.98 0.97 0.93 0.87 0.77 0.61
64 1.00 0.99 0.98 0.96 0.93 0.87 0.78 0.64

128 1.00 0.97 0.96 0.95 0.92 0.86 0.77 0.64

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Speedup varying sample size
 for k = 127, m = 64, r = 1

Processes p

S
pe

ed
up

●●●
●

●
●

●

●

●

Number of samples n

16
32

64
128

(a) Observed speedup Sp

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

Efficiency varying sample size
 for k = 127, m = 64, r = 1

Processes p

E
ffi

ci
en

cy

●●●● ●

●

●

●

●

Number of samples n

16
32

64
128

(b) Observed efficiency Ep

Figure 1: Scalability experiments — Plots showing scalability as n varies.

13

Table 3: Walltime, speedup, and efficiency varying m, for n = 128, k = 127, r = 1. Tests
were performed with 4 processes per node, except for p = 1 which uses 1 process per node,
and p = 2 which uses 2 processes per node

(a) Wall clock time in seconds
m p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128
16 1441.94 746.13 378.99 192.51 100.74 55.78 29.84 18.06
32 1732.93 869.53 441.57 224.29 115.81 61.48 34.60 21.00
64 1758.97 902.74 453.99 230.94 119.31 63.28 35.48 21.60

128 2018.49 1014.06 513.70 261.32 135.08 71.57 40.00 24.30
256 2486.03 1257.50 637.50 306.99 167.60 89.08 52.63 30.28
512 3208.32 1625.91 815.45 414.88 214.05 113.73 63.46 38.40

(b) Observed speedup Sp
m p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128
16 1.00 1.93 3.80 7.49 14.31 25.85 48.32 79.82
32 1.00 1.99 3.92 7.73 14.96 28.19 50.09 82.51
64 1.00 1.95 3.87 7.62 14.74 27.80 49.58 81.42

128 1.00 1.99 3.93 7.72 14.94 28.20 50.46 83.06
256 1.00 1.98 3.90 8.10 14.83 27.91 47.24 82.11
512 1.00 1.97 3.93 7.73 14.99 28.21 50.56 83.55

(c) Observed efficiency Ep
m p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64p = 128
16 1.00 0.97 0.95 0.94 0.89 0.81 0.75 0.62
32 1.00 1.00 0.98 0.97 0.94 0.88 0.78 0.64
64 1.00 0.97 0.97 0.95 0.92 0.87 0.77 0.64

128 1.00 1.00 0.98 0.97 0.93 0.88 0.79 0.65
256 1.00 0.99 0.97 1.01 0.93 0.87 0.74 0.64
512 1.00 0.99 0.98 0.97 0.94 0.88 0.79 0.65

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Speedup varying cluster size
 for n = 128, k = 127, r = 1

Processes p

S
pe

ed
up

●●●
●

●

●

●

●

●

Cluster size m

16
32
64

128
256
512

(a) Observed speedup Sp

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

Efficiency varying cluster size
 for n = 128, k = 127, r = 1

Processes p

E
ffi

ci
en

cy

●●●●
●

●
●

●

●

Cluster size m

16
32
64

128
256
512

(b) Observed efficiency Ep

Figure 2: Scalability experiments — Plots showing scalability as m varies.

14

Table 4: Walltime, speedup, and efficiency varying k, for n = 128, m = 256, r = 1. Tests
were performed with 4 processes per node, except for p = 1 which uses 1 process per node,
and p = 2 which uses 2 processes per node

(a) Wall clock time in seconds
k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 0.004 0.005 — — — — — —
3 0.058 0.036 0.025 — — — — —
7 0.471 0.255 0.148 0.151 — — — —

15 4.913 2.507 1.375 0.824 0.599 — — —
31 41.724 21.414 11.010 5.912 3.394 5.165 — —
63 390.403 197.000 99.962 51.808 27.544 14.721 9.063 —

127 2513.446 1259.716 635.585 306.806 167.395 92.008 49.710 30.367
(b) Observed speedup Sp

k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 1.00 0.87 — — — — — —
3 1.00 1.59 2.28 — — — — —
7 1.00 1.85 3.18 3.11 — — — —

15 1.00 1.96 3.57 5.96 8.20 — — —
31 1.00 1.95 3.79 7.06 12.29 8.08 — —
63 1.00 1.98 3.91 7.54 14.17 26.52 43.08 —

127 1.00 2.00 3.95 8.19 15.02 27.32 50.56 82.77
(c) Observed efficiency Ep

k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
1 1.00 0.44 — — — — — —
3 1.00 0.80 0.57 — — — — —
7 1.00 0.92 0.79 0.39 — — — —

15 1.00 0.98 0.89 0.74 0.51 — — —
31 1.00 0.97 0.95 0.88 0.77 0.25 — —
63 1.00 0.99 0.98 0.94 0.89 0.83 0.67 —

127 1.00 1.00 0.99 1.02 0.94 0.85 0.79 0.65

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Speedup varying number of categories
 for n = 128, m = 256, r = 1

Processes p

S
pe

ed
up

●●

●

Number of categories k

1
3
7
15

31
63
127

(a) Observed speedup Sp

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

Efficiency varying number of categories
 for n = 128, m = 256, r = 1

Processes p

E
ffi

ci
en

cy ●

●

●

Number of categories k

1
3
7
15

31
63
127

(b) Observed efficiency Ep

Figure 3: Scalability experiments — Plots showing scalability as k varies.

15

5 An LRT application

Our performance studies have demonstrated the effectiveness of parallel computing for the
RCM MLE problem when many parameters need to be estimated. But where might we
encounter such problems in a data analysis? To answer this question, we will next consider
hypothesis testing in a fixed effects model embedded into RCM. Even a fairly simple problem
in this framework can be computationally expensive, if there are a large number of multi-
nomial categories and/or covariates. To create an effective demonstration, we will consider
a scenario which is ideally suited to RCM. It will feature both a large number of categories
and a simple fixed effects model. We will generate data for this scenario, and show that
computation of the likelihood ratio test (LRT) is one instance where practical use can be
made of our parallel MLE idea.

Suppose there are n guidance counselors who advise high school students in selecting a
college from k possibilities. For simplicity, suppose m students are assigned to each counselor,
and no student is assigned to more than one counselor. A student visits their counselor zero
or more times for advice until they have chosen a college, and may or may not be influenced
by their counselor. Let x = (x1, . . . , xn), where xi is the total number of visits to counselor
i by their students. Intuitively, we might expect that a more heavily utilized counselor will
have a greater influence on their students. One can imagine each student choosing between
the counselor’s recommendation and his/her own personal choice, as in the generation of
RCM described in Section 2. This scenario is ideally modeled by RCM with parameter ρ
capturing the degree of influence of the counselor.

Let Ti = (Ti1, . . . , Tik) denote the vector of counts for counselor i, for each of the k
possible colleges. We can also suppose that the first k − 1 categories represent specific
college choices, and the kth category represents a catch-all for all other possibilities, such
as attending an unlisted college or not attending any college at all. We will suppose that
T1, . . . ,Tn are independent, and

Ti ∼ RCM(π, ρi,m), log

(
ρi

1− ρi

)
= α + βxi. (5)

Recall that ρi is the probability of “following the leader” from Section 2. In this scenario,
following the leader means choosing the preferred college of the counselor. In 5 we have
expressed the log-odds of ρi by a linear function, where α is the common baseline effect of a
counselor’s influence on students, and β is a common slope which incorporates how heavily
students have utilized their counselor. Here π is constant across all counselors, and so aside
from counselor influence, the probability distribution of choosing among the k colleges is the
same for all students. For this problem, the unknown parameter θ is contained in the space

Θ =

{
(π1, . . . , πk, α, β) ∈ Rq : 0 ≤ πj ≤ 1,

k∑
j=1

πj = 1

}
, q = k + 2.

We will consider a testing problem for the significance of the slope,

H0 : β = 0 vs. H1 : β 6= 0.

Two MLE computations are needed for the LRT: the unrestricted MLE θ̂, and the MLE θ̂0

16

under the restriction H0. The LRT statistic can then be computed as

− 2 log Λ = −2 log
L(θ̂0)

L(θ̂)
= −2

{
logL(θ̂0)− logL(θ̂)

}
, (6)

where the likelihood function L is given by

L(θ) =
n∏
i=1

f(ti | π, ρi(α, β),m) (7)

and f is the density of RCM.
As before, solving the likelihood equation in closed form is not practical, so we turn

to numerical computation of the MLE. This can be accomplished in parallel by simply
applying the method from Section 3 and embedding the new likelihood (7) into (3). For
this application we use the initial guess θ(0) = (π(0), α(0), β(0)), where π(0) = (1/k, . . . , 1/k),
α(0) = 0, and β(0) = 0.

To generate data from this scenario, we first select a number of categories k and sample
size n, and let m = 100 students per counselor. The category probabilities are generated
by drawing a random sample U1, . . . , Uk from U(0, 1) and then letting πj = Uj/

∑
i Ui. To

generate the covariate x, we suppose xi1, . . . , xim
iid∼ Geometric(φ), where xij represents the

number of visits of the jth student of counselor i until a college decision is made. We choose
φ = 0.9 so that the expected number of visits per student E(xij) = (1−φ)/φ = 1/9 is small.
The total number of visits xi to counselor i can then be drawn from NegBin(m,φ). We let
α = −5 and β = 0.3, so that

log

(
ρi

1− ρi

)
= −5 + 0.3xi ⇐⇒ ρi

1− ρi
= e−5(e0.3)xi ,

and so the odds of “following the leader” will be multiplied by e0.3 ≈ 1.35 for each visit to
the counselor. In this scenario, utilization of the counselor has a fairly strong effect on their
influence over college choices, but students do not tend to make much use of their counselor.
Now all of the parameters and covariates have realized values, so the RCM responses are
generated according to (5) using the algorithm given in Section 2.

Table 5 shows the results of our computations on two problem sizes: (k = 50, n = 500) and
(k = 98, n = 1000). For each problem size, two cases are shown which correspond to the two
likelihood maximizations that need to be computed. In each case results from three runs are
shown: one for our TAO code in serial, one for our TAO code in parallel, and one for a simple
implementation in R using the optim function with the built-in BFGS optimization method.
The maximized log-likelihood, walltime in hours:minutes:seconds format, and number of
iterations are shown for each run. The number of iterations for serial R was limited to 100,
which is the default setting.

For each parallel TAO run, we choose a moderately sized p which evenly divides the
number of parameters, and used the smallest number of computing nodes possible to run
each job. All parallel TAO jobs shown in the Table 5 were run on either two or three nodes,
and 11 to 20 processes overall. As in Section 4, the number of parameters for both problem
sizes here were chosen deliberately for convenience, so that the work could be split evenly
across a moderate number of processes.

17

Table 5: Results for LRT computations of generated application problems. For problem size
(a), the parallel full space run used 13 processes across 2 nodes, and the parallel restricted
run used 17 processes across 2 nodes. For problem size (b), the parallel full space run used
20 processes across 3 nodes, and the parallel restricted run used 11 processes across 2 nodes.

(a) Results for k = 50, n = 500
case #params run log-lik walltime #iters

Under H0 51 serial R -40791.06 02:53:43 57
serial TAO -40791.06 00:03:14 14
parallel TAO -40791.06 00:00:16 14

Full space 52 serial R -37284.64 03:21:25 60
serial TAO -37284.63 00:05:53 25
parallel TAO -37284.63 00:00:35 25

(b) Results for k = 98, n = 1000
case #params run log-lik walltime #iters

Under H0 99 serial R -111241.20 48:54:17 100
serial TAO -111241.23 01:12:15 24
parallel TAO -111241.23 00:07:43 24

Full space 100 serial R -104468.55 49:10:42 100
serial TAO -104467.38 02:02:48 40
parallel TAO -104467.38 00:07:20 40

Notice first that for each case, the log-likelihoods attained across all three runs are nearly
the same. This gives some assurance that the TAO and R codes have implemented the
problem correctly. The iteration counts match between serial and parallel TAO runs, but
R required significantly more iterations. In fact, in the larger problem the iteration limit of
100 has been reached, so more improvement may have been possible. Also, notice that in
the restricted case of the larger problem, R has managed to find a slightly better solution
than TAO. These issues are not necessarily cause for alarm, since there may be differences
between the two optimization methods and their implementations.

Next we see that the R code is dramatically slower than the serial TAO code. For
instance, the larger problem required over two days in R to solve either case, whereas the
serial TAO code required only about 1 to 2 hours. The R code was not carefully tuned for
performance however, so there is likely room for improvement. It would be possible, for
example, to create a hybrid R program with the objective function h(θ) written in C. We
should also note that our TAO code was not carefully tuned for performance either, so this
improvement may not be atypical for what one might see when porting an MLE problem
from R to C/C++. Next, moving from serial TAO to parallel TAO, we see that either case
of the larger problem can now be solved in about 7 to 8 minutes using at most 20 processes
on 3 nodes. Therefore computing the entire LRT for the larger problem has taken about
4 days in serial R, compared to about 3:15 hours in serial TAO, and about 15 minutes in
parallel TAO. From Section 4, we would expect performance to scale well with additional
parallel processes.

Finally, computing the LRTs using (6) and the TAO results from Table 5 yields

−2 log Λ = 7012.87, −2 log Λ = 13547.70,

18

respectively for the smaller and larger problems. If we believe the approximation −2 log Λ '
χ2
1 holds, then we may correctly reject H0 in both cases and conclude that the number of

visits xi to a counselor has a significant effect on the log-odds of “following the leader”.
In this problem we considered a linear model linked to ρi, and performed an inference

on the model. For demonstration purposes, we constructed a simple model on a single
covariate, but let the number of categories in the response be large. Considering a model
with many covariates and perhaps a smaller number of categories also leads to a many-
parameter situation, where parallel computing would be useful for computing the MLE.

Notice that covariates can easily be added for the counselor, or perhaps at a less granular
level such as the high school which employs the counselor, or their geographical region.
Covariates at the student level are more granular however, and would complicate the model
significantly. Adding covariates at the student level would require the Ti’s to be split into
smaller observations sharing common counselors, and hence the observations would no longer
be independent.

6 Conclusions

We have demonstrated the effectiveness of computing MLEs in parallel using the Random-
Clumped model as a test problem. TAO provided an environment to conduct numerical
optimizations in parallel, requiring only an objective function, gradient vector, and Hessian
matrix. The MLE procedure is just one example of an application that can benefit from this
kind of parallel optimization.

We set up an experimental process consisting of random data generation, estimation, and
a comparison of the estimate to the true parameters. The effects of adjusting the variables
of this experiment were studied. We verified that increasing the number of repetitions or
samples increases run time linearly, but increases the quality of the estimates. Increasing the
number of multinomial categories causes optimization to become more difficult. Increasing
the cluster size increases run time sub-linearly, and improves the quality of our estimates.

We have also studied the parallel performance, varying the number of processes along
with sample size, number of multinomial categories, and cluster size. We observed excellent
parallel performance when varying sample size and cluster size. The best parallel perfor-
mance is possible when the number of categories is large. However, increasing the number
of categories causes run time to increase faster than linearly. Therefore problems with a
very large number of categories will be infeasible to solve even on a large cluster, using the
basic method presented here. Smaller experiments with large numbers of repetitions can
be solved without the use of a high performance computing cluster. Multiple repetitions
are computationally independent, so little communication is needed between processes to
compute them in parallel. This kind of parallelism can be accomplished with less elaborate
programming, using tools like the SNOW package for R.

Finally, in our application we saw how the parallel MLE method could be used in a more
realistic RCM analysis. We used this method to compute the numerator and denominator
of several LRTs, to conduct a test for the slope in an embedded linear model. This yielded
a significant improvement in performance using only a few computing nodes.

There are many opportunities for future work. The approach used here can be applied
to statistical computations in general; particularly we have exploited it to compute MLEs
for the Random-Clumped model. For this model, useful theoretical results are available to

19

vastly improve the performance of MLE computation. For example, Neerchal and Morel [9]
suggest a block diagonal approximation for the Fisher Information matrix, which can be used
to effectively carry out Fisher Scoring iterations. Further improvements are proposed in [7],
in the context of EM. Incorporating these results could yield vastly improved performance,
and perhaps new opportunities for applications of the RCM model.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance
Computing Facility (HPCF). The facility is supported by the U.S. National Science Foun-
dation through the MRI program (grant no. CNS–0821258) and the SCREMS program
(grant no. DMS–0821311), with additional substantial support from the University of Mary-
land, Baltimore County (UMBC). See http://www.umbc.edu/hpcf for more information
on HPCF and the projects using its resources. The first author additionally acknowledges
financial support as HPCF RA.

References

[1] G.H. Givens and J.A. Hoeting, Computational Statistics, Wiley-Interscience, 2005.

[2] A.M. Raim and M.K. Gobbert, Parallel Performance Studies for a Maximum Likelihood
Estimation Problem Using TAO, HPCF–2009–8, UMBC High Performance Computing
Facility, University of Maryland, Baltimore County, 2009.

[3] S. Benson, L.C. McInnes, J. Moré, T. Munson, and J. Sarich, TAO User Manual (Revi-
sion 1.9), ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne
National Laboratory, 2007 http://www.mcs.anl.gov/tao.

[4] R. Malouf, A comparison of algorithms for maximum entropy parameter estimation, in
COLING-02: Proceedings of the 6th Conference on Natural Language Learning, Asso-
ciation for Computational Linguistics, 2002, pp. 1–7.

[5] J.G. Morel and N.K. Nagaraj, A finite mixture distribution for modelling multinomial
extra variation, Biometrika 80 (1993), pp. 363–371.

[6] A. Rossini, L. Tierney, and N. Li, Simple Parallel Statistical Computing
in R, Working Paper 193, UW Biostatistics Working Paper Series, 2003
http://www.bepress.com/uwbiostat/paper193.

[7] M. Liu, Estimation for Finite Mixture Multinomial Models, PhD Thesis, University of
Maryland, Baltimore County, Department of Mathematics and Statistics, 2005.

[8] T. Banerjee and S. Paul, Miscellanea. An extension of Morel-Nagaraj’s finite mixture
distribution for modelling multinomial clustered data, Biometrika 86 (1999), pp. 723–
727.

20

http://www.umbc.edu/hpcf

[9] N.K. Neerchal and J.G. Morel, Large Cluster Results for Two Parametric Multinomial
Extra Variation Models, Journal of the American Statistical Association 93 (1998), pp.
1078–1087.

[10] H. Zhou and K. Lange, MM Algorithms for Some Discrete Multivariate Distributions,
Journal of Computational and Graphical Statistics 19 (2010), pp. 645–665.

[11] N.K. Neerchal and J.G. Morel, An improved method for the computation of maximum
likelihood estimates for multinomial overdispersion models, Computational Statistics &
Data Analysis 49 (2005), pp. 33–43.

[12] M.K. Gobbert, Parallel Performance Studies for an Elliptic Test Problem, HPCF–2008–
1, UMBC High Performance Computing Facility, University of Maryland, Baltimore
County, 2008.

21

	Introduction
	The RCM model
	Computational Method
	Computational Experiments and Results
	Consistency Check for MLE
	Performance Experiments

	An LRT application
	Conclusions

