
Development of Fast Reconstruction Techniques for
Prompt Gamma Imaging during Proton Radiotherapy

REU Site: Interdisciplinary Program in High Performance Computing

Johnlemuel Casilag1, James Della-Giustina2, Elizabeth Gregorio3, Aniebiet Jacob1,
Graduate assistant: Carlos Barajas4, Faculty mentor: Matthias K. Gobbert4,

Clients: Dennis S. Mackin5, and Jerimy Polf6

1Department of Computer Science and Electrical Engineering, UMBC,
2School of Information Technology & Computer Science,

Community College of Baltimore County,
3Department of Physics, Hamline University,

4Department of Mathematics and Statistics, UMBC,
5Department of Radiation Physics, The University of Texas MD Anderson Cancer Center,

6Department of Radiation Oncology, University of Maryland — School of Medicine

Technical Report HPCF–2017–16, hpcf.umbc.edu > Publications

Abstract

Proton beam radiation treatment was first proposed by Robert Wilson in 1946. The
advantage of proton beam radiation is that the lethal dose of radiation is delivered by
a sharp increase toward the end of the beam range. This sharp increase, known as
the Bragg peak, allows for the possibility of reducing the exposure of healthy tissue to
radiation when comparing to x-ray radiation treatment. As the proton beam interacts
with the molecules in the body, gamma rays are emitted. The origin of the gamma
rays gives the location of the proton beam in the body, therefore, gamma ray imaging
allows physicians to better take advantage of the benefits of proton beam radiation.
These gamma rays are detected using a Compton Camera (CC) while the SOE algo-
rithm is used to reconstruct images of these gamma rays as they are emitted from the
patient. This imaging occurs while the radiation dose is delivered, which would allow
the physician to make adjustments in real time in the treatment room, provided the
image reconstruction is computed fast enough. This project focuses on speeding up the
image reconstruction software with the use of of parallel computing techniques involv-
ing MPI. Additionally, we demonstrate the use of the VTune performance analyzer to
identify bottlenecks in a parallel code.

Key words. Proton beam therapy, Image reconstruction, SOE algorithm, Parallel com-
puting, High performance computing.

AMS subject classifications (2010). 90C15, 97M60, 97R60.

1 Introduction

In order for physicians to ensure accurate treatment, it is essential for them to have images
of the patients anatomy taken throughout the administration of radiation therapy. This is

1

hpcf.umbc.edu


necessary because, as a patient undergoes treatment, their anatomy changes as the tumor
shrinks and surrounding tissue swells. This means that each day during treatment the target
for the radiation may be slightly different. Therefore, if a physician were to have the ability
to see where inside of the body the proton beam is delivering its dose while in the treatment
room they would be able to more accurately treat patients. It is possible for physicians
to attain this information through prompt gamma imaging of the proton beam and image
reconstruction.

Prompt gamma imaging works by capturing the scattered gamma rays released when a
proton beam interacts patients cells and applying the Stochastic Origin Ensemble (SOE)
algorithm. These gamma rays are released while the proton beam is being administered to
the patient, therefore, this imaging must be done at the same time as treatment. Because
the gamma rays are released where the proton beam interacts with the patient, the origins of
these gamma rays are in the same position within the body as the proton beam. Therefore, if
the origins of the rays can be traced back and compiled to construct an image, then physicians
will have the ability to see exactly where the proton beam is delivering its dose of radiation.
In a clinical setting, this imaging offers doctors the possibility of making adjustments to
the treatment of patients in real time [3]. Being able to make these adjustments will allow
them to better take advantage of the potential for a proton beam to deliver smaller doses of
radiation to surrounding healthy tissue.

In order for the proton beam to hit the specified volume of tissue it is necessary for
the patient to lie entirely still on the treatment table. It is also necessary for them to lie
still during imaging as imaging occurs while the proton beam is being administrated. The
position a patient needs to hold can often be difficult or awkward be in for long periods of
time. Therefore, it is important that this imaging software runs as fast as possible [2,4]. This
project explores the possibility for implementation of parallelism to the image reconstruction
software through the development of an MPI algorithm to decrease this run time.

The remainder of this report is organized as follows: Section 2 describes proton beam
therapy in greater detail and motivates the need for fast image reconstruction. Section 3
describes the SOE algorithm used for the image reconstruction and several versions of its
implementation. Section 4 presents results of the reconstructions using the different versions
of the code and their performance results. Section 5 summarizes our conclusions.

2 Problem

2.1 Proton Beam Therapy versus X-Ray Therapy

The idea to use proton beams during radiotherapy stemmed from Robert Wilson in 1946.
He realized that while x-ray radiation delivers its lethal dose throughout the patient, proton
beams reach their highest dose just before they stop, at what is called the Bragg peak with
no radiation delivered to the tissue beyond. This gives physicians the ability to precisely
target a tumor with high radiation doses by choosing where the proton beam will stop within
the patient and can allow for the reduction of exposure of healthy tissue to radiation. The

2



X-ray Proton beam

Figure 2.1: X-ray radiation therapy vs. proton beam radiation therapy.

difference between radiation delivery depth can be seen in Figure 2.1.
Although there is a noticeable reduction to healthy tissue exposure to radiation with

modern proton radiotherapy, this potential cannot always be fully taken advantage of because
of small uncertainties in our ability to position the Bragg peak within the patient. Although
the placement of the beam is carefully determined before treatment, there are variations
within the atmosphere of treatment and the anatomy of the patient that can interfere with
the correct placement of the proton beam.

By providing the physician with a system to image the proton beam path within the
patient, it becomes possible for them to see precisely where the dose is delivered that day
and to make adjustments as necessary. This imaging tool will allow physicians to better
avoid delivering doses of radiation to healthy cells.

2.2 Prompt Gamma Emission

A proton beam can be imaged by studying the gamma rays emitted when the proton beam
interacts with tissue. These gamma rays can only be emitted from tissue that the proton
beam has come into contact with. Therefore, if the origins of the gamma rays can be
determined and constructed into an image, it will be possible to see where the proton beam
interacts within the patient.

In addition to imaging the full proton beam, it is also possible to reconstruct an image
of what tissue in the body was effected by the beam. The gamma rays emitted have a
characteristic energy based off the element that the proton beam interacted with in order
to emit the ray. Therefore, it is possible to know the composition of the tissue that the
proton beam has interacted with by measuring the number of gamma rays of a given energy
characteristic to each element within the tissue.

2.3 Current Clinical Prototype Prompt Gamma Imaging System

This imaging system for prompt gamma emission creates 3D images using the coordinates
taken by the Compton camera of the gamma rays emitted during the interaction. The

3



5
0

it
er

at
io

n
s

x cross-section y cross-section z cross-section

6
00

it
er

a
ti

on
s

x cross-section y cross-section z cross-section

Figure 2.2: 3D image cross-sections of reconstructed proton beam after 50 and 600 iterations
using the water input file.

algorithm takes the information of these gamma rays from a measured data file and uses an
iterative process to determine the origin of each ray. These origins are then plotted so that
the output images can be used to determine the area of the patient which the proton beam
interacted with. An example of the images used by a physician can be seen in Figure 2.2.

3 Algorithm and Implementation

3.1 SOE Algorithm

During data collection, gamma rays scatter into a specially designed camera known as a
“Compton Camera” (CC) which records the coordinates and energy deposited by each
gamma ray that interacts with the CC. Each gamma ray must interact with the camera
at least two times to be useful for imaging. The 3D coordinates and energies deposited by
the gamma rays are stored in a data file which is used to initialize the conic image recon-
struction software. A line is drawn between the two points of ray impact and an angle is
calculated and used to construct an initial cone as seen in Figure 3.1. The cone’s surface
encompasses all the possible origins for that ray. After these cones have been constructed,
a random point from the base of the cone is chosen as an initial guess for the likely origin
of the gamma ray. This initial point becomes the algorithm’s first guess for the likely origin
of that gamma ray. The 3D area containing the tissue phantom seen in Figure 3.1 is turned
into a 3D density histogram divided into bins. Lastly the density histogram is populated by
the counts of all likely origins contained in each 3D bin.

The conic reconstruction, based on the SOE algorithm [1], then improves the histogram

4



First stage reconstruction Second stage reconstruction

Figure 3.1: Gamma ray scatter and its image reconstruction.

iteratively by moving likely origins for each cone to more likely locations using the criterion
that an already higher density in the histogram. Thus, in each iteration, for each cone, the
algorithm chooses a new random point in the cone. If the random point has a higher density
than the density of the current likely origin of that cone, it chooses the random point as the
new likely origin of the cone. Correspondingly, the histogram is updated by decrementing
the count in the old likely origin’s bin and incrementing the count in the new likely origin’s
bin. These iterations are run until only a small fraction of likely origins are changed in one
iteration.

3.2 Description of Code Implementation

Two input files are required to run this code. A configuration file controls various param-
eters for the code. Important examples include the total number of cones used, histogram
coordinate boundaries in the x, y, and z directions, the total number of bins in the x, y, z
directions, and the total number of iterations; notice that the number of iterations is fixed
here by trial and error based on observing a small enough fraction of likely origin changes.
The configuration file also specifies the name of the second input file, which is obtained from
the gamma ray scattering into the CC. This is the measured data file containing a list of
the energy deposited and x, y, and z coordinates of each gamma ray interaction occurring
in the CC during the measurement. There can be two or three entries for a single gamma

5



ray because of the minimum set forth in the SOE algorithm.
The initial cones are created using the process described in Section 3.1 and their first

likely origins are stored in an initial 3D density histogram. It then begins the iterations
in which for each cone the algorithm picks a random coordinate point and checks if the
histogram bin has a greater density then the cone’s current bin. If so, the cones current bin
is decremented, the new found bin is incremented, and the cone’s likely origin is updated to
be that of the new coordinate. After a set amount of varying iterations, the code writes the
current iteration number, the time elapsed, the numbers of cone origins updated in the most
recent iteration, and the ratio of cones updated vs. total cones to the “stdout” file. After
the iterations have ceased, the code outputs the changes made into a file called events.dat.
Additionally a file called output.dat is generated that provides coordinates of the last likely
origin for each ray. Also the configuration file is saved for the run. All three output files
are used for post-processing using Python2.7 that plots numerous figures. For comparison
in Section 4, we use plots of likely origins of all cones.

3.3 OpenMP Algorithm

The code for this project was developed by Dr. Dennis Mackin. The number of cones used
is typically large, so that it makes sense to speed up their processing by distributing work
to several computational cores of a multi-core CPU. This was accomplished in the original
version of the code by using the shared-memory parallel library OpenMP. The program
first obtains the initial cones and initial density histogram via Section 3.1 in serial. At the
start of the iterations, the OpenMP threads are started up using an OpenMP parallel for

pragma applied to the loop over all cones. Then cones are then distributed to each thread,
which distributes the main work of the code for a potential speedup as large as the number
of threads used. The number of threads used is limited to the number of computational
cores of one multi-core CPU, since OpenMP works only on a code that shares memory
across all threads. This implies that the density histogram is shared between all threads
at all times. Each thread will try to find a new origin, as in Section 3.2, for each cone,
by comparing the density of the cone’s current bin location to the new bin location. If
the density of the new bin is greater, the code changes the likely origin of the cone and
updates the histogram immediately by decrementing the old bin and incrementing the new
bin. Since the histogram is in shared memory of all threads, OpenMP has to put a lock on
the histogram, via a critical pragma, during this update, which forces other threads to
idle during this time, thus decreasing parallel efficiency. But the latest histogram is always
immediately available to all threads after the end of the lock, giving best convergence of
the algorithm. After all cones have been processed the threads shut down and the output
to stdout is done as stated in Section 3.2. This is repeated until all iterations have been
completed and the output files are generated as they were in Section 3.2.

6



3.4 MPI Algorithm

The algorithm explained in Section 3.3 was changed based on the observation that the density
of a likely origin of a cone is defined as its bin number’s count, thus we work directly with
the histogram from now on. We replaced the use of OpenMP by MPI (Message Passing
Interface), so that the parallel code is not limited by the number of cores of one CPU any
more, but can use several CPUs with distributed memory. The parallelism is achieved just
like with OpenMP by distributing the large number of cones to the MPI processes. Each
MPI process holds the cone database including the likely origin of each cone for its own
cones only, hence this does not increase the overall memory usage of the code. Since the
histogram is not too large in memory, it is possible to give each process a local copy of the
density histogram. Doing so cuts out extra communication amongst processes that would
come with each one having sections of the histogram and it avoids the need for a lock as
required by the shared memory structure of OpenMP.

In each iteration, the MPI process picks a random bin for its cone and checks its density
using the local histogram against the old bin number in the local histogram. However each
process does not change their local density histogram; the changes are instead tracked by a
local count vector and the local histogram remains unchanged. This means that all density
checks are happening against the local histogram from the previous iteration rather than the
latest histogram used in the OpenMP version. The local count vectors are then combined
into a global count vector and scattered back to all processes using MPI_Allreduce every
1 iteration whereby they are merged into their local histograms. Similar to Section 3.3 the
stdout is performed, but only by process 0. At present, our MPI code does not combine
the cone data from all processes back into a serial data structure used for the output files
events.dat and output.dat used for Python post-processing. Instead, the histogram data
itself is output every 100 iterations to file, and Matlab post-processing was created that
plots the histogram data, i.e., the counts of the bins, instead of the coordinates of the likely
origins.

3.5 Modified MPI Algorithm

The only parallel cost of the MPI algorithm described in Section 3.4 is the use of the
MPI_Allreduce command after every iteration. We created a modified MPI algorithm that
instead of updating the histograms after 1 iteration only updates it every 10 iterations. This
has the potential for speeding up the execution time of the code significantly, i.e., in principle
by a factor 10. The potential downside is that the convergence might be slower, that is, that
more iterations might be needed to reach a histogram of the same quality as measured by
the number of changes of likely origins needed in an iteration.

3.6 Hardware Utilized

To measure performance of the software, we ran studies on the newest nodes of the Maya
cluster in the UMBC High Performance Computing Facility (hpcf.umbc.edu). These nodes

7

hpcf.umbc.edu


contain two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) CPUs and 64 GB of memory
each and are connected by a low latency quad data rate (QDR) Infiniband interconnect.

3.7 Intel VTune

To fully understand the time inefficiency of the code, we profiled the code using Intel’s
VTune software [5]. This performance profiler analyzes software in respect to many different
areas of potential improvement. For our uses, we chose the HPC Performance Characteri-
zation analysis, as well as Hotspots analysis. These tests were run on the Texas Advanced
Computing Center’s (TACC) Stampede cluster, even though this report does not contain
performance results from that cluster. These tests provide us data about how effectively
our computationally intensive functions utilize memory, CPU, and hardware resources. This
also provides information about the OpenMP and MPI parallelized performance efficiency
within the code.

4 Results

The following are the results were obtained from the different algorithms that were for-
mulated. Each algorithm utilized a deterministic configuration file utilizing 100,000 cones
imaged by a histogram with 102 × 102 × 126 bins.

4.1 OpenMP Algorithm

The OpenMP algorithm used to obtain the following results was described in Section 3.3
and written by Dr. Dennis Mackin in conjunction with Dr. Jerimy Polf.

4.1.1 OpenMP Algorithm Serial Run

The SOE algorithm uses iterations to progressively compute the most likely origins of the
100,000 cones that were measured by the CC during application of the proton beam. As
more iterations are performed the results, or images, become more clearly defined. This
convergence can be seen in Figure 4.1. Although at 100 iterations the image has some
shape, it is clear that as the number of iterations increases this shape becomes more accurate.
Additionally as the number of iterations increases the granularity of the results improve until
the stopping point of 600 iterations whereby there is a distinct beam that can be seen.

The convergence in the algorithm happens, because with each iteration, the number of
cones whose likely origin changes decreases. This means that as as the number of iterations
increases, the amount of changes done to the overall histogram decreases. This behavior
is quantified by the ratio of the number of changes to the total number of cones. The
convergence of this ratio can be seen in Figure 4.2 which shows log output of sample iterations
output to stdout. From this, we can infer that the points that the program is estimating to
be the points of origin for the prompt gamma emission are becoming more accurate. This

8



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

Figure 4.1: Reconstructed images computed by the OpenMP algorithm with 1 thread using
Python post-processing up to 600 iterations.

would also mean that fewer changes are being made to the density matrix as more iterations
are performed.

At the end of the log output in Figure 4.2, the code records the observed wall clock time
in the line denoted by “Time Elapsed”. This is the time that we use later in the timing
studies of the code.

It is worth noting that the images in Figure 4.1 do not actually come from the same run of
the code. This stems from the fact that the original code only outputs data for visualization
at the final time. Hence, each plot in the figure is the final result of a run up to the specified
number of iterations. It would be logical to say that if the 600 iteration run could have been
post-processed at 500 iterations it should be the same as a 500 iteration run with the same
parameters. This, however, is not the case because of the random number generator being
used.

4.1.2 OpenMP Algorithm Multi-Threaded Runs

This code is designed to use OpenMP, which is an application programming interface that can
be used on shared-memory multi-processor computers to allow for multi-threaded parallel
processing. To maximize the speedup of the OpenMP algorithm it is necessary to use
multiple threads. With OpenMP, memory cannot be pooled between nodes. Therefore, this
algorithm only has the capability of using a single node at a time.

9



Iteration: 10, time 35, Number of Position Changes: 8799, ratio: 0.088

Iteration: 20, time 68, Number of Position Changes: 7485, ratio: 0.075

Iteration: 30, time 100, Number of Position Changes: 6498, ratio: 0.065

Iteration: 40, time 133, Number of Position Changes: 5784, ratio: 0.058

Iteration: 50, time 165, Number of Position Changes: 5339, ratio: 0.053

Iteration: 60, time 197, Number of Position Changes: 4971, ratio: 0.050

Iteration: 70, time 229, Number of Position Changes: 4469, ratio: 0.045

Iteration: 80, time 261, Number of Position Changes: 4336, ratio: 0.043

Iteration: 90, time 292, Number of Position Changes: 4119, ratio: 0.041

Iteration: 100, time 324, Number of Position Changes: 3944, ratio: 0.039

Iteration: 200, time 638, Number of Position Changes: 2990, ratio: 0.030

Iteration: 300, time 949, Number of Position Changes: 2684, ratio: 0.027

Iteration: 400, time 1257, Number of Position Changes: 2413, ratio: 0.024

Iteration: 500, time 1564, Number of Position Changes: 2195, ratio: 0.022

Iteration: 600, time 1870, Number of Position Changes: 2103, ratio: 0.021

--- Total Iterations: 600, time 1870,

Number of Position Changes: 2103, 100000, ratio: 0.021

Time Elapsed: 1884.54s

Figure 4.2: Iteration log output from the OpenMP algorithm with 1 thread.

Figure 4.3 shows the results of iterations of a 2 thread run. The reconstructed images
have shapes similar to those seen in Figure 4.1. As was stated previously, it should be
noted that the results in Figure 4.3 are not identical but the shapes of the beam are nearly
indistinguishable and therefore acceptable results.

Similarly, the convergence behavior of the ratio for 2 threads in Figure 4.4 follows the
same pattern as Figure 4.2. That is, as the number of iterations increases the ratio decreases
and the image become more refined and suitable in shape. However, small variations of
results between Figures 4.2 and 4.4 point to both the effect of differences in the random
number sequences between runs and the slight differences possible between runs with different
numbers of threads.

For our performance study, the code was run at 600 iterations on multiple threads ranging
from 1 thread to 16 threads. It is important to note that even as the algorithm is run on
more threads, the output image continues to be consistent with those obtained with serial
runs. These results can be seen in Figure 4.5 in which the image holds steady for results
using 4, 8, and 16 threads, also compared to the plot for 600 iterations in Figure 4.1 for
1 thread and in Figure 4.4 for 2 threads. This is an important comparison to make because
although changes can be made to improve performance, to be acceptable these changes must
have no effect on the quality of the results.

4.1.3 OpenMP Algorithm VTune Results

To initially understand the time inefficiency of the code, we used Intel’s VTune profiling
software to identify time intensive functions. The VTune Performance Characterization
analysis identifies areas of OpenMP and/or MPI communication times as well as CPU and
memory utilization. The Hotspots analysis was also used, which exhibits time intensive

10



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

Figure 4.3: Reconstructed images computed by the OpenMP algorithm with 2 threads using
Python post-processing up to 600 iterations.

Iteration: 10, time 14, Number of Position Changes: 8756, ratio: 0.088

Iteration: 20, time 27, Number of Position Changes: 7487, ratio: 0.075

Iteration: 30, time 39, Number of Position Changes: 6468, ratio: 0.065

Iteration: 40, time 51, Number of Position Changes: 5791, ratio: 0.058

Iteration: 50, time 63, Number of Position Changes: 5441, ratio: 0.054

Iteration: 60, time 74, Number of Position Changes: 5032, ratio: 0.050

Iteration: 70, time 86, Number of Position Changes: 4628, ratio: 0.046

Iteration: 80, time 97, Number of Position Changes: 4343, ratio: 0.043

Iteration: 90, time 109, Number of Position Changes: 4160, ratio: 0.042

Iteration: 100, time 120, Number of Position Changes: 3975, ratio: 0.040

Iteration: 200, time 231, Number of Position Changes: 3000, ratio: 0.030

Iteration: 300, time 338, Number of Position Changes: 2605, ratio: 0.026

Iteration: 400, time 444, Number of Position Changes: 2436, ratio: 0.024

Iteration: 500, time 548, Number of Position Changes: 2254, ratio: 0.023

Iteration: 600, time 652, Number of Position Changes: 2134, ratio: 0.021

--- Total Iterations: 600, time 652,

Number of Position Changes: 2134, 100000, ratio: 0.021

Time Elapsed: 661.26s

Figure 4.4: Iteration log output from the OpenMP algorithm using 2 threads up to 600
iterations.

11



4 threads 8 threads 16 threads

Figure 4.5: Comparison between reconstructed images after 600 iterations computed by the
OpenMP algorithm with different numbers of threads.

functions regardless of parallelism.
Figure 4.6 shows VTune Performance Characterization for the OpenMP algorithm with

68 threads per node. Two functions are reported to have massive spin, or communication
times, kmp_wait_yield and kmp_barrier, being 1838 seconds and 1521 seconds respectively.
kmp_barrier and kmp_wait_yield are OpenMP library calls for communication between
threads. These show us that while OpenMP may have optimized certain sections of the
code, it ultimately led to longer run times due to communication times between threads.
This spurred on the possibility of implementing MPI into the code to potentially cut these
communication times down.

Figure 4.7 shows the VTune Hotspots Analysis with 68 threads per node. This type of
analysis maps out the functions that are the most time intensive within the code without
regards to communication times. We can see that the getDensity function called from
DensityMatrix is solely responsible for the majority of time use when the executable is run.
When investigating the underlying code for getDensity, we quickly realized that the other
three most time intensive functions were directly related and/or called from getDensity.
For example, getBinNumber, and the ASHDensity::getDensity, the second and fourth most
time intensive function, are directly called from the getDensity function. This is a logical
process because the DensityMatrix object’s getDensity function calls ASHDensity object’s
getDensity which also calls their getBinNumber method. So this cascading spin time is a
direct result of all the threads chasing down several sets of nested pointers in C++. The
fourth time intensive function is the updateMatrix function. This function’s impact is the
result of a critical pragma that wraps around it.

Both analysis types showed time critical areas to focus our attention on. The Performance
Characterization results clearly showed that OpenMP library calls were costing massive wait
times in order for threads to synchronize, while the Hotspots Analysis showed functions that
could potentially benefit from parallelization. With these results in hand, a clear course of
action could be mapped out.

12



Figure 4.6: VTune Performance Characterization for the OpenMP algorithm with 68 threads
per node.

Figure 4.7: VTune Hotspots Analysis for the OpenMP algorithm with 68 threads per node.

13



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

700 iterations 800 iterations 900 iterations

1000 iterations 1100 iterations 1200 iterations

Figure 4.8: Reconstructed images computed by the MPI algorithm with 1 process using
Matlab post-processing up to 1200 iterations.

4.2 MPI Algorithm

The MPI algorithm used to obtain the following results was described in Section 3.4.

4.2.1 MPI Algorithm Serial Run

Figure 4.8 represents the serial run, meaning 1 process per 1 node up to 1200 iterations. In
the first few iterations, the first image shows a rather wide cloud of points. As iterations

14



Iteration: 10, time 18, Number of Position Changes: 18815, ratio: 0.188

Iteration: 20, time 34, Number of Position Changes: 19761, ratio: 0.198

Iteration: 30, time 50, Number of Position Changes: 16207, ratio: 0.162

Iteration: 40, time 66, Number of Position Changes: 13412, ratio: 0.134

Iteration: 50, time 82, Number of Position Changes: 11338, ratio: 0.113

Iteration: 60, time 98, Number of Position Changes: 9841, ratio: 0.098

Iteration: 70, time 114, Number of Position Changes: 8835, ratio: 0.088

Iteration: 80, time 129, Number of Position Changes: 7675, ratio: 0.077

Iteration: 90, time 145, Number of Position Changes: 7198, ratio: 0.072

Iteration: 100, time 161, Number of Position Changes: 6655, ratio: 0.067

Iteration: 200, time 315, Number of Position Changes: 4479, ratio: 0.045

Iteration: 300, time 466, Number of Position Changes: 3821, ratio: 0.038

Iteration: 400, time 644, Number of Position Changes: 3390, ratio: 0.034

Iteration: 500, time 893, Number of Position Changes: 3146, ratio: 0.031

Iteration: 600, time 1139, Number of Position Changes: 3018, ratio: 0.030

Iteration: 700, time 1384, Number of Position Changes: 2889, ratio: 0.029

Iteration: 800, time 1629, Number of Position Changes: 2837, ratio: 0.028

Iteration: 900, time 1873, Number of Position Changes: 2769, ratio: 0.028

Iteration: 1000, time 2116, Number of Position Changes: 2688, ratio: 0.027

--- Total Iterations: 1200, time 2598,

Number of Position Changes: 2688, 100000, ratio: 0.027

Time Elapsed: 1918s

Figure 4.9: Iteration log output from original MPI algorithm with 1 process up to 1200
iterations.

start to hit the midpoint, the beam shape is much narrower and better defined. The last
three images of the figure look very similar in both shape and coloring. Visually these images
show that the algorithm has converged because the differences between the images are hardly
noticeable.

As detailed in Section 3.4, the MPI algorithm is different than the OpenMP algorithm
in that the histogram is updated at the end of each iteration, not after updating each cone.
This has the potential for causing slower convergence, and we therefore report studies with
twice as many iterations than used for the OpenMP studies. The images in Figure 4.8
confirm a slightly slower convergence, in particular at the beginning, but certainly the final
three images are very stable. We might recommend using 700 iterations instead of 600 in
production runs.

We note that the images in Figure 4.8 are produced by Matlab instead of Python post-
processing. It reflects the difficulty to interface the C code associated with the MPI functions
with the C++ data structure that undergird the file output for Python post-processing. But
we also gain the advantage that one run of the code now outputs in steps of 100 iterations,
thus all images in Figure 4.8 come from the same run.

Figure 4.9 shows the log file of the run. The log confirms the slightly slower convergence
in the beginning, and it eventually converges to 0.027.

15



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

700 iterations 800 iterations 900 iterations

1000 iterations 1100 iterations 1200 iterations

Figure 4.10: Reconstructed images computed by the MPI algorithm with 2 processes using
Matlab post-processing up to 1200 iterations.

4.2.2 MPI Algorithm Multi-Process Runs

Figure 4.10 shows the iterations of the parallel MPI algorithm with 2 processes. The blue
color in the first images is an artifact of the colormap used in Matlab, however, it flags that
some numbers being plotted are negative. This is not a sensible value for the population of
a bin in a histogram. Inspection of the initialization eventually clarified that the underlying
cause are histograms on each process that are not necessarily identical to histograms on other
processes. This in turn is actually caused by random number sequences that are independent

16



Iteration: 10, time 11, Number of Position Changes: 15648, ratio: 0.156

Iteration: 20, time 21, Number of Position Changes: 11890, ratio: 0.119

Iteration: 30, time 30, Number of Position Changes: 9857, ratio: 0.099

Iteration: 40, time 40, Number of Position Changes: 8425, ratio: 0.084

Iteration: 50, time 49, Number of Position Changes: 7682, ratio: 0.077

Iteration: 60, time 58, Number of Position Changes: 6984, ratio: 0.070

Iteration: 70, time 68, Number of Position Changes: 6414, ratio: 0.064

Iteration: 80, time 77, Number of Position Changes: 6039, ratio: 0.060

Iteration: 90, time 86, Number of Position Changes: 5682, ratio: 0.057

Iteration: 100, time 96, Number of Position Changes: 5574, ratio: 0.056

Iteration: 200, time 187, Number of Position Changes: 4076, ratio: 0.041

Iteration: 300, time 277, Number of Position Changes: 3607, ratio: 0.036

Iteration: 400, time 366, Number of Position Changes: 3195, ratio: 0.032

Iteration: 500, time 455, Number of Position Changes: 3022, ratio: 0.030

Iteration: 600, time 543, Number of Position Changes: 2875, ratio: 0.029

Iteration: 700, time 631, Number of Position Changes: 2740, ratio: 0.027

Iteration: 800, time 720, Number of Position Changes: 2766, ratio: 0.028

Iteration: 900, time 808, Number of Position Changes: 2637, ratio: 0.026

Iteration: 1000, time 896, Number of Position Changes: 2641, ratio: 0.026

--- Total Iterations: 1200, time 1072,

Number of Position Changes: 2572, 100000, ratio: 0.026

Time Elapsed: 1085s

Figure 4.11: Iteration log output from original MPI algorithm with 2 processes up to 1200
iterations.

and potentially different on each process. We do not report the results from the fixed code
here, but include this fix in the results in the following Section 4.3. But the images in
Figure 4.10 actually demonstrate the robustness of the SOE algorithm, in that it overcomes
the erroneous negative histogram entries in the beginning and in fact converges to the correct
result in the final three images.

This exact point can be seen in Figure 4.11 where the final ratio is very close to the 0.026.

4.3 Modified MPI Algorithm

The modified MPI algorithm used to obtain the following results was described in Section 3.5.
This reflects the observation that the major cost of parallelism with MPI is the cost of com-
munication. For the original MPI algorithm, this cost amounts to a call to MPI_Allreduce

after every iteration. The modified MPI algorithm decreases this cost by communicating
only every 10 iterations.

4.3.1 Modified MPI Algorithm Serial Run

The major concern with this algorithm is possible degradation of image quality. With the
processes only having access to a histogram that was developed, at most, 10 iterations prior
to their current iteration there was a possibility that the lack of updates cause the images
to degrade to an unusable state. Also the error that was causing the negative values in

17



the histogram for the original MPI algorithm was corrected in this modified MPI algorithm.
Running the algorithm in serial should show some minor signs of this degradation if it was
present. Figure 4.12 starts out with a rough cloud of points which form into a wider beam
around the 400 iteration mark. The beam starts to narrow and become more defined at
around 800 iterations. After that, the image seems to remain similar to previous images.
Visually the convergence can be seen from this image set, starting out with a very rough
image and going to something much more refined and recognizable. The modified MPI
algorithm in serial shows the same behavior as the original MPI algorithm in serial as seen
in Figure 4.8.

Furthermore, the log output in Figure 4.13 for the modified serial run shows that the
ratio is a little higher than original MPI serial run in Figure 4.9. Despite this, the general
behavior of convergence remains similar and the time taken was about the same.

4.3.2 Modified MPI Algorithm Multi-Process Runs

Figure 4.14 shows some image degradation again in the first images, compared to the original
OpenMP algorithm. The cloud starts out similar to before but persists for a couple hundred
iterations beyond the first image. However by 700 or 800 iterations the beam is well formed
albeit slightly wider. The images visually converge at around 900 iterations which coincides
with the output in Figure 4.15. We might recommend to use again a slightly larger number
of iterations in production runs, such as 700 or 800 iterations instead of the originally used
600 for the OpenMP algorithm. We note that all images in Figure 4.14 demonstrate the
success of the fix to the MPI code, since no more negative numbers in the histogram appear.

4.3.3 MPI VTune

To gauge the efficiency of the new MPI implemented algorithm, the code was profiled once
more with Intel’s VTune software. We used the same analysis specifications to determine if
communication times were indeed faster than the OpenMP algorithm, as well as watching
our previous time intensive functions.

Figure 4.16 shows the VTune Performance Characterization of the modified MPI algo-
rithm with 4 processes per node. Implementing MPI did indeed improve the communica-
tion times, or ‘spin’ far greater than expected. The first analysis showed that OpenMP
communication took a staggering 1838 seconds, while our MPI algorithm had a maximum
communication time of only 0.130 seconds. This affirmed our decision to introduce MPI into
the algorithm.

Figure 4.17 shows the VTune Hotspots Analysis for the same modified MPI algorithm
with 4 processes per node. This Hotspots Analysis produced similar results to the previous
run. While getDensity and its related function calls were still responsible for being the
most time critical calls, the parallelism imposed onto these helped to reduce the footprint.
The introduction of MPI eliminated the waiting associated with updateMatrix but did
not smoothly allow the elimination of the nested object calls associated with getDensity.
Converting more C++ object code into C code would allow getDensity to be made much
for efficient or removed alltogether.

18



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

700 iterations 800 iterations 900 iterations

1000 iterations 1100 iterations 1200 iterations

Figure 4.12: Reconstructed images computed by the modified MPI algorithm with 1 process
up to 1200 iterations using Matlab post-processing.

19



Iteration: 10, time 18, Number of Position Changes: 18815, ratio: 0.188

Iteration: 20, time 34, Number of Position Changes: 19761, ratio: 0.198

Iteration: 30, time 50, Number of Position Changes: 16207, ratio: 0.162

Iteration: 40, time 66, Number of Position Changes: 13412, ratio: 0.134

Iteration: 50, time 82, Number of Position Changes: 11338, ratio: 0.113

Iteration: 60, time 98, Number of Position Changes: 9841, ratio: 0.098

Iteration: 70, time 114, Number of Position Changes: 8835, ratio: 0.088

Iteration: 80, time 129, Number of Position Changes: 7675, ratio: 0.077

Iteration: 90, time 145, Number of Position Changes: 7198, ratio: 0.072

Iteration: 100, time 161, Number of Position Changes: 6655, ratio: 0.067

Iteration: 200, time 315, Number of Position Changes: 4479, ratio: 0.045

Iteration: 300, time 466, Number of Position Changes: 3821, ratio: 0.038

Iteration: 400, time 644, Number of Position Changes: 3390, ratio: 0.034

Iteration: 500, time 893, Number of Position Changes: 3146, ratio: 0.031

Iteration: 600, time 1139, Number of Position Changes: 3018, ratio: 0.030

Iteration: 700, time 1384, Number of Position Changes: 2889, ratio: 0.029

Iteration: 800, time 1629, Number of Position Changes: 2837, ratio: 0.028

Iteration: 900, time 1873, Number of Position Changes: 2769, ratio: 0.028

Iteration: 1000, time 2116, Number of Position Changes: 2688, ratio: 0.027

--- Total Iterations: 1200, time 2598,

Number of Position Changes: 2688, 100000, ratio: 0.027

Time Elapsed: 2610s

Figure 4.13: Iteration log output from the modified MPI algorithm using 1 processes up to
1200 iterations.

20



100 iterations 200 iterations 300 iterations

400 iterations 500 iterations 600 iterations

700 iterations 800 iterations 900 iterations

1000 iterations 1100 iterations 1200 iterations

Figure 4.14: Reconstructed images computed by the modified MPI algorithm with 2 pro-
cesses up to 1200 iterations using Matlab post-processing.

21



Iteration: 10, time 11, Number of Position Changes: 18727, ratio: 0.187

Iteration: 20, time 19, Number of Position Changes: 19703, ratio: 0.197

Iteration: 30, time 27, Number of Position Changes: 16209, ratio: 0.162

Iteration: 40, time 35, Number of Position Changes: 13374, ratio: 0.134

Iteration: 50, time 43, Number of Position Changes: 11165, ratio: 0.112

Iteration: 60, time 52, Number of Position Changes: 9851, ratio: 0.099

Iteration: 70, time 60, Number of Position Changes: 8658, ratio: 0.087

Iteration: 80, time 67, Number of Position Changes: 7696, ratio: 0.077

Iteration: 90, time 75, Number of Position Changes: 7139, ratio: 0.071

Iteration: 100, time 84, Number of Position Changes: 6783, ratio: 0.068

Iteration: 200, time 162, Number of Position Changes: 4493, ratio: 0.045

Iteration: 300, time 240, Number of Position Changes: 3858, ratio: 0.039

Iteration: 400, time 316, Number of Position Changes: 3493, ratio: 0.035

Iteration: 500, time 392, Number of Position Changes: 3081, ratio: 0.031

Iteration: 600, time 468, Number of Position Changes: 2936, ratio: 0.029

Iteration: 700, time 543, Number of Position Changes: 2874, ratio: 0.029

Iteration: 800, time 618, Number of Position Changes: 2748, ratio: 0.027

Iteration: 900, time 692, Number of Position Changes: 2677, ratio: 0.027

Iteration: 1000, time 767, Number of Position Changes: 2651, ratio: 0.027

--- Total Iterations: 1200, time 915,

Number of Position Changes: 2651, 100000, ratio: 0.027

Time Elapsed: 928s

Figure 4.15: Iteration log output from the modified MPI algorithm using 2 processes up to
1200 iterations.

22



Figure 4.16: VTune Performance Characterization for the Modified MPI algorithm with
4 processes per node.

Figure 4.17: VTune Hotspots Analysis for the Modified MPI algorithm with 4 processes per
node.

23



4.4 Performance Studies

To understand the impact of the changes we implemented on the run time, a study was
created to compare the performance of the original OpenMP algorithm, our (original) MPI
algorithm, and the modified MPI algorithm. Table 4.1 shows the timing results of our study.
Note that the performance studies used 600 iterations for all algorithms to provide a direct
comparison of the times.

The first studies ran were to determine the performance of the OpenMP algorithm. The
code was tested when run on one core using 1, 2, 4, 8, and 16 threads to get an idea of the
speedup. With 1 thread, the code ran a staggering 1885 seconds, or roughly 30 minutes.
As the number of threads increased, the run times gained significant speedup as had been
expected. For example, at 2, 4, and 8 threads, the run times had been reduced by more
than fifty percent each time. While still improving at 16 threads, times decreasing from
188 seconds to 105 seconds, is not the same rate of improvement as can be observed in the
first 4 increments. This speed of 105 seconds is the best possible run time observed for this
algorithm, since OpenMP is limited to one node.

The first changes to the code allowed for the implementation of MPI and disabled all
OpenMP pragmas. These adjustments allowed for both the use of distributed memory and
the multiple processes across nodes for each job. In order to assess the benefits of MPI,
tests were run using numbers of processes that mirror the number of threads in the previous
study. That is, both studies use two different software libraries, but access the same hardware
cores in the CPUs on one node; beyond 16 processes, MPI uses more nodes and thus more
hardware. The performance of our MPI code immediately saw improvement, bringing the
run time to 1592 seconds for one process due to other improvements of the code. At 2
processes, the time dropped by roughly a third down to 546 seconds, similar to the speedup
seen with OpenMP. For the rest of the runs, from 8 to 64 processes, the code did not speedup
as much as had been expected, reaching its fastest time at 354 seconds for 8 processes and
rising to 430 seconds at 64 processes. This exhibits that parallel communications eventually
overwhelm the increased efficiency of splitting up the computational work between processes.

The code was then adjusted so that the histogram would be updated after every ten
iterations. This change allowed for a significant speedup. At one process, the algorithm fully
ran in 985 seconds, almost half of that for the OpenMP with one thread, due to additional
improvements in the code. The increases in processes showed reduction in run times, ending
on 64 processes with 83 seconds.

Table 4.1: Observed wall clock time in seconds for reconstruction with 600 iterations.

Computational cores 1 2 4 8 16 32 64
OpenMP multi-threading 1885 661 344 188 105 N/A N/A
Original MPI algorithm 1569 546 372 354 511 477 430
Modified MPI algorithm 985 480 277 194 147 113 83

24



5 Conclusions

The original code provided by Dr. Polf and Dr. Mackin implements an algorithm using the
shared-memory parallel library OpenMP, which is constrained to all cores of 1 node which
limits performance. In order to see a significant speedup, this code needed to given the
ability to run on multiple nodes. In order to have this capability, the algorithm was modified
so that it could be run using the distributed-memory parallel communication library MPI.
Modifications to the algorithm included distributing the work associated with the large
number of cones in each iteration to the parallel processes. Each process works on a section
of the total number of cones, thus the work is distributed. The first version of the MPI
algorithm updates the global histogram updated after every iteration. This was changed in
the modified MPI algorithm to allow for further speedup by only updating the histogram
every 10 iterations. Various code improvements helped already improve the serial time from
1885 seconds to 985 seconds. In parallel, OpenMP provided a run time of 105 seconds on
1 node. By implementing an algorithm designed to use MPI, we were able to move beyond
1 node and obtain the best run time of 85 seconds.

By implementing MPI in this algorithm this study has given the algorithm potential for
further speedup. MPI’s distributed memory and multiple-processing power has been shown
to be capable to scale down run times. For these reasons, the algorithm developed here has
great potential to be sped up as necessary to be used in a clinical setting with more code
improvements and with the use of hybrid MPI+OpenMP, which we did not explore yet.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High Per-
formance Computing (hpcreu.umbc.edu) in the Department of Mathematics and Statistics
at the University of Maryland, Baltimore County (UMBC) in Summer 2017. This program
is funded by the National Science Foundation (NSF), the National Security Agency (NSA),
and the Department of Defense (DOD), with additional support from UMBC, the Depart-
ment of Mathematics and Statistics, the Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing Facility (HPCF). HPCF is supported
by the U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258
and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional
substantial support from UMBC. Co-author James Della-Giustina was supported in part, by
the Math Computer Inspired Scholars program, through funding from the National Science
Foundation and also the Constellation STEM Scholars Program, funded by Constellation
Energy. Co-authors Johnlemuel Casilag and Aniebiet Jacob were supported, in part, by the
UMBC National Security Agency (NSA) Scholars Program through a contract with the NSA.
Graduate assistant Carlos Barajas was supported by UMBC. We acknowledge the Texas Ad-
vanced Computing Center (TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported within this paper.

25

hpcreu.umbc.edu


References

[1] Andriy Andreyev, Arkadiusz Sitek, and Anna Celleri. Fast image reconstruction for
Compton camera using stochastic origin ensemble approach. Med. Phys., 38:429–35,
2011.

[2] Fernando X. Avila-Soto, Alec N. Beri, Eric Valenzuela, Abenezer Wudenhe, Ari Rapkin
Blenkhorn, Jonathan S. Graf, Samuel Khuvis, Matthias K. Gobbert, and Jerimy Polf.
Parallelization for fast image reconstruction using the stochastic origin ensemble method
for proton beam therapy. Technical Report HPCF–2015–27, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2015.

[3] Dennis Mackin, Steve Peterson, Sam Beddar, and Jerimy Polf. Evaluation of a stochastic
reconstruction algorithm for use in Compton camera imaging and beam range verification
from secondary gamma emission during proton therapy. Phys. Med. Biol., 57:3537–3553,
2012.

[4] Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer treatment. Physics
Today, 68(10):28–33, 2015.

[5] Intel Developer Zone. Intel VTune Amplifier, 2017. Documentation at the URL:
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/

documentation.

26

https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation

	Introduction
	Problem
	Proton Beam Therapy versus X-Ray Therapy
	Prompt Gamma Emission
	Current Clinical Prototype Prompt Gamma Imaging System

	Algorithm and Implementation
	SOE Algorithm
	Description of Code Implementation
	OpenMP Algorithm
	MPI Algorithm
	Modified MPI Algorithm
	Hardware Utilized
	Intel VTune

	Results
	OpenMP Algorithm
	OpenMP Algorithm Serial Run
	OpenMP Algorithm Multi-Threaded Runs
	OpenMP Algorithm VTune Results

	MPI Algorithm
	MPI Algorithm Serial Run
	MPI Algorithm Multi-Process Runs

	Modified MPI Algorithm
	Modified MPI Algorithm Serial Run
	Modified MPI Algorithm Multi-Process Runs
	MPI VTune

	Performance Studies

	Conclusions

