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Abstract

As the leading cause of death in the United States, heart disease has become a principal con-
cern in modern society. Cardiac arrhythmias can be caused by a dysregulation of calcium dynam-
ics in cardiomyocytes. Calcium dysregulation, however, is not yet fully understood and is not
easily predicted; this provides motivation for the subsequent research. Excitation-contraction
coupling (ECC) is the process through which cardiomyocytes undergo contraction from an action
potential. Calcium induced calcium release (CICR) is the mechanism through which electrical
excitation is coupled with mechanical contraction through calcium signaling. The study of the
interplay between electrical excitation, calcium signaling, and mechanical contraction has the
potential to better our understanding of the regular functioning of the cardiomyocytes and help
us understand how any dysregulation can lead to potential cardiac arrhythmias. ECC, of which
CICR is an important part, can be modeled using a system of partial differential equations that
link the electrical excitation, calcium signaling, and mechanical contraction components of a
cardiomyocyte. We extend a previous model to implement a seven variable model that includes
for the first time the mechanical component of the ECC. We conduct a parameter study to
determine how the interaction of electrical and calcium systems can impact the cardiomyocyte’s
levels of contraction.

Key words. Heart disease, Heart cell, Cardiac arrhythmia, Excitation-contraction coupling,
Calcium Induced Calcium Release.

1 Introduction

The leading cause of death in the United States is currently heart disease [11]. However, in order to
continue searching for methods to combat heart disease, it is vital that the heart and its underlying
processes are understood with greater depth. The importance of having a greater understanding
of the heart provides the motivation for this research. The following research studies a single
cardiac cell and uses a mathematical model in order to represent the electrical excitation, calcium
signaling, and mechanical contraction of a cardiomyocyte. A seven variable partial differential
equation model is used in order to represent the excitation-contraction coupling (ECC) occurring
in the cardiomyocyte. This is concretely realized by calcium induced calcium release (CICR),
which is the mechanism through which electrical excitation is coupled with mechanical contraction
through calcium signaling.
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Figure 1.1: The three components of the model and their links labeled 1© to 4©.

The original model for CICR was introduced in [7, 9] with three variables and only included
calcium signaling and extended in [8]. This original model comprises the heart of the Calcium Sig-
naling component of the system indicated in Figure 1.1. The model was extended for the first time
to include the Electrical Excitation component in Figure 1.1 in [1,2], which implemented a one-way
interaction from electrical excitation to calcium signaling indicated by link 1© in Figure 1.1. Studies
with six variables in [3,4] extended the coupling to include a two-way cycle between electrical exci-
tation and calcium signaling by incorporating both links 1© and 2© in Figure 1.1. This work studies
seven variables through the introduction of the Mechanical Contraction component in Figure 1.1
by activating the links 3© and 4© in Figure 1.1. We note that [3, 4] introduced the formulation of
the complete eight variable model, but studies that incorporate the mechanical system were not
performed so far.

This report is organized as follows: Section 2 explains the physiological background behind
the system being studied. Section 3 specifies the exact model with all equations, formulas, and
parameter values of the seven variable model used in this work. Section 4 documents the approach
to developing the implementation. Section 5 summarizes the numerical method used. Section 6
presents the complete results of two studies with different coupling strengths of the voltage to the
cytosol calcium. Finally, Section 7 summarizes our conclusions.

2 Dynamics of a Cardiac Cell

In order to understand the electrical excitation, calcium signaling, and mechanical contraction
cycle of a cardiomyocyte, it is important to first understand the basic structure of a cardiac cell.
A cardiac cell takes the basic shape of a rectangle with T-tubules running along the sides of the
cell. The muscle fibers of the cell run parallel with the contractile proteins, which allows for the
contraction and relaxation of the cell, represented by links 3© and 4© in Figure 1.1. When observing
Figure 2.1 (a), one can see that a cardiomyocyte contains a sacroplasmic reticulum (SR), which
contains calcium ions and calsequestrin (CSQ). The SR contains calcium release units (CRUs),
which calcium is released through from the SR to the cytosol of the cell. Sparking, or the scattered
local simultaneous openings of CRUs, occurs when the concentration of calcium is high enough
in the cytosol that the CRUs begin to open. In order to see the calcium more easily during
experiments, a dye is mixed in the cell’s cytosol that will bind to the calcium.

At the top of Figure 2.1 (a), the sodium-calcium electrical exchanger is labeled as NCX. The job
of the NCX is to bring three sodium ions into the cell while also pushing out one calcium ion. Link 2
in Figure 1.1 represents this feedback of calcium leaving the cell. The calcium concentration inside
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Figure 2.1: (a) Calcium wave triggering. (b) Cellular space.

the cytosol influences the electrical excitation of this cycle happening inside the cardiomyocyte.
As the concentration of calcium in the cytosol begins to change, this causes depolarizations of
the cell plasma membrane, which in turn causes action potential that leads to the opening of the
L-type Calcium Channels (LCC). This process of action potential causes the LCC to open is the
feedforward mechanism represented as link 1© in Figure 1.1. This feedforward mechanism allows
for the electrical excitation to influence the calcium concentration in the cytosol. The previously
mentioned methods, represented by links 1© and 2©, lead to a two-way connection between the
electrical excitation and calcium signaling occuring in the cardiac cell.

During the process of calcium release from the CRUs into the cytosol, there exists a spike in
calcium concentration which can trigger local CRUs to open in addition to the possible cascading
effect as Figure 2.1 (b) resembles. While there is still calcium in the SR, this wave can propagate,
then calcium is replenished from an intracellular pump on the SR that acts as a source. Calcium
induced calcium release is a behavior described as the process where calcium pours into the cytosol
thus increasing the concentration and triggering another wave event within the cell. During calcium
diffusion within the cytosol, it reacts with the other chemical species (fluorescent dye, fluoro-4, and
tropomyosin contractile proteins).

The contractile proteins, tropomyosin, are responsible for the contraction and expansion of the
cell’s shape. These proteins are a composition of troponin, actin, myosin heads, and are attached to
a sacromere. This sacromere, parallel to the tropomyosin, contracts when the myosin heads come in
contact with the actin bridge; this happens when calcium binds to the troponin complex leaving the
myosin heads free to converge on the bridge. Myosin contraction can be described as the physical
process where the cell expands and contracts; when these contractions perform in unison with other
cardiac cells, the corresponding section of the heart pulses. The first coupling between the calcium
and the contractile nature of a heart cell is here; we can describe these chemical interactions as
a feedforward process and can be represented by link 3© in Figure 1.1. The bridge-like structure
deforms once calcium binds to the complex; this causes the bridge to hang onto the calcium longer.
The increase in concentration in the cytosol as a feedback process is a result of the calcium being
relinquished from the bridge; this process is represented by link 4© in Figure 1.1.
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3 Model

This section details the seven variable model used in this work. It is a special case of the eight
variable model fully established in [3]. The PDEs used in the implemented model are (3.1), (3.2)
with nsc = 3, (3.3), (3.4) with nss = 0, (3.12), and (3.13) yielding a total number of ns =
4+nsc+nss = 7 PDEs. The seven species of the model are: calcium in the cytosol c(x, t), a florescent

dye b
(c)
1 (x, t), a contractile protein (troponin) b

(c)
2 (x, t), a contractile force b

(c)
3 (x, t), calcium in

the SR s(x, t), voltage V (x, t), and the potassium gating function n(x, t). Section 3.1 describes
the calcium signaling portion of the model. Section 3.2 describes the electrical excitation that is
connected to the calcium signaling in both the feedforward and feedback directions represented by
link 1© and link 2© in Figure 1.1. Link 1© from electrical system to the calcium dynamics was first
established in [2], and link 2© was established in [3]. Finally, Section 3.3 presents the mechanical
contraction component that is also connected to the calcium signaling in both the feedback and
feedforward directions represented by links 3© and 4© in Figure 1.1 and was established in [3].

3.1 Calcium Signaling

We start with a system of time-dependent, coupled, non-linear reaction diffusion equations

∂c

∂t
=∇ · (Dc∇c) +

nsc∑
i=1

R
(c)
i +

(
JCRU +Jleak−Jpump

)
+ κJLCC +

(
Jmleak

−Jmpump

)
, (3.1)

∂b
(c)
i

∂t
=∇ · (D

b
(c)
i

∇b(c)i ) +R
(c)
i , i = 1, . . . , nsc, (3.2)

∂s

∂t
=∇ · (Ds∇s) +

nss∑
j=1

R
(s)
j − γ(JCRU + Jleak − Jpump), (3.3)

∂b
(s)
j

∂t
=∇ · (D

b
(s)
j

∇b(s)j ) +R
(s)
j , j = 1, . . . , nss, (3.4)

where c(x, t) and s(x, t) represent the concentrations of calcium in the cytosol and SR, respectively.

The species b
(c)
i (x, t), i = 1, . . . , nsc, and b

(s)
j (x, t), j = 1, . . . , nss, represent the concentration of

each buffer species in the cytosol and SR, respectively. Table 3.1 collects the variables of the model
with their units as well as their initial values. Table 3.2 contains the parameters in the PDEs of
the calcium system with their values (if fixed) and units. The coefficients Dc, Db

(c)
i

, Ds, and D
b
(s)
j

are the diffusivity matrices for Ca2+ in the cytosol, buffer species i in the cytosol, Ca2+ in the SR,
and buffer species j in the SR, respectively. While each buffer species programmatically possesses
a diffusivity matrix (following the template of (3.2) and (3.4)), not all species are mobile; hence
the diffusivity matrices for some species are zero matrices in Table 3.2.

The reaction terms R
(c)
i and R

(s)
j describe the reactions between calcium and the buffer species.

They are the connections between (3.1) and (3.2), and between (3.3) and (3.4). More precisely,

R
(c)
i = − k+

b
(c)
i

c b
(c)
i + k−

b
(c)
i

(
b
(c)
i,total − b

(c)
i

)
, i = 1, . . . , nsc, (3.5)

model the reactions between cytosolic Ca2+ and each cytosolic buffer species, and

R
(s)
j = − k+

b
(s)
j

s b
(s)
j + k−

b
(s)
j

(
b
(s)
j,total − b

(s)
j

)
, j = 1, . . . , nss, (3.6)
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Table 3.1: Variables of the model and their initial conditions. The concentration unit M is shorthand
for mol/L (moles per liter).

Variable Definition Values/Units

x spatial position variable (x, y, z) µm
t time variable ms

nsc number of cytosol buffer species 3
nss number of SR buffer species 0

c(x, t) calcium in the cytosol µM

b
(c)
1 (x, t) free flourescent dye in the cytosol µM

b
(c)
2 (x, t) free troponin in the cytosol µM

b
(c)
3 (x, t) inactive actin-myosin cross-bridges [X] in the cytosol µM
s(x, t) calcium in the SR µM
V (x, t) membrane potential (voltage) mV
n(x, t) fraction of open potassium channels 0 to 1

c0 basal cytosol calcium concentration 0.1 µM
s0 initial SR calcium concentration 10,000 µM

c(x, 0) initial concentration of c(x, t) c0 = 0.1 µM

b
(c)
1 (x, 0) initial concentration of b

(c)
1 (x, t) 45.918 µM

b
(c)
2 (x, 0) initial concentration of b

(c)
2 (x, t) 111.818 µM

b
(c)
3 (x, 0) initial concentration of b

(c)
3 (x, t) 145.20 µM

s(x, 0) initial concentration of s(x, t) s0 = 10,000 µM
V (x, 0) initial membrane potential (voltage) of V (x, t) −50 mV
n(x, 0) initial fraction of open potassium channels of n(x, t) 0.1

model the reactions between SR Ca2+ and each SR buffer species.

In the cytosol, this work considers three buffer species (nsc = 3): a fluorescent dye b
(c)
1 (x, t),

a contractile protein troponin b
(c)
2 (x, t), and inactive actin-myosin cross-bridges b

(c)
3 (x, t). The

reaction model for b
(c)
1 (x, t) is (3.5) with i = 1 above, but when involving the pseudo-mechanical

dynamics of the cell, the reactions for b
(c)
2 (x, t) and b

(c)
3 (x, t) are in fact given by the modified

reaction models (3.20) and (3.19), respectively. This is explained in detail in Section 3.3 below.
In the SR, this work does not consider a buffer species (nss = 0), so (3.6) will vanish eventually.
Note that in (3.5), bi

(c) is the amount of unbound buffer known as “free” buffer. The constant

b
(c)
i,total denotes the total bound and unbound calcium thus leaving the difference seen in (3.5) to be

the bound calcium. Since the model uses no-flux boundary conditions, no buffer species escapes or

enters the cell, thus we only need to track the “free” buffer species and use b
(c)
i,total − bi

(c) for the
bound species.

The flux terms JCRU , Jleak, and Jpump in (3.1) describe the calcium induced release of Ca2+

into the cytosol from the SR, the continuous leak of Ca2+ into the cytosol from the SR, and the
pumping of Ca2+ back into the SR from the cytosol. The terms JLCC , Jmleak

, and Jmpump describe
the fluxes of calcium into and out of the cell via the plasma membrane. The coupling between (3.1)
and (3.3) is achieved by the three flux terms shared by both.

More precisely, JLCC , Jmleak
, and Jmpump in (3.1) describe the fluxes of calcium into and out of

the cell via the plasma membrane. Jpump replenishes the calcium stores in the SR; it increases SR
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calcium concentration by decreasing cytosol calcium concentration. Jleak is a continuous leakage
of those SR calcium stores into the cytosol; it increases cytosol concentration by decreasing SR
calcium concentration. The pump term

Jpump(c) = Vpump

(
cnpump

K
npump
pump + cnpump

)
(3.7)

is thus a function of cytosol calcium c(x, t). The leak term Jleak is a constant defined by

Jleak = Jpump(c0), (3.8)

which balances Jpump(c) at basal level c0 = 0.1 µM of cytosol calcium. The pump term Jpump,
a function of cytosolic calcium c(x, t), consists of the maximum pump velocity Vpump multiplied
against the relationship between c(x, t) and the pump sensitivity Kpump; the exponent npump refers
to the Hill coefficient (quantifying the degree of cooperative binding) for the pump function. This
has the practical effect of multiplying the maximum possible pump velocity against a number
between 0 and 1, exclusive. Jleak, which continuously leaks calcium into the cytosol from the SR, is
simply Jpump evaluated at the basal cytosolic calcium concentration c0 = 0.1µM . As noted, Jpump

has two roles, namely to balance Jleak in the absence of sparking, but also to balance JCRU under
conditions of active calcium release.

The term JCRU in (3.1) is the Ca2+ flux into the cytosol from the SR via each individual point
source at which a CRU has been assigned. The effect of all CRUs is modeled as a superposition
such that

JCRU (c, s,x, t) =
∑
x̂∈Ωs

σ̂
s(x, t)

s0
O(c, s) δ(x− x̂) (3.9)

with

O(c, s) =

{
1 if urand ≤ Jprob,
0 if urand > Jprob,

(3.10)

where

Jprob(c, s) = Pmax

(
cnprobc

K
nprobc
probc

+ cnprobc

) (
snprobs

K
nprobs
probs

+ snprobs

)
. (3.11)

Here, the effect of each CRU is modeled as a product of three terms: (i) Similarly to how in Jpump the
maximum pump rate is scaled against the concentration of available cytosol calcium, the maximum
pump rate is scaled against the concentration of available cytosol calicum, the maximum rate of
Ca2+ release σ̂ is scaled here against the ratio of calcium concentration in the SR. (ii) Following
the same pattern a maximum value multiplied against some scaling proportion between 0 and 1
the gating function O has the practical effect of “budgeting” the calcium SR stores such that
when the stores are low, the given CRU becomes much less likely to open; each CRU is assigned
a uniformly distributed random value, which is compared to the single value returned by the CRU
opening probability Jprob to determine whether or not the given CRU will open. (iii) The Dirac
delta distribution δ(x− x̂) models each CRU as a point source for calcium release, which is defined
by requiring δ(x− x̂) = 0 for all x 6= x̂ and

∫
R3 ψ(x)δ(x− x̂) dx = ψ(x̂) for any continuous function

ψ(x).
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Table 3.2: Parameters for calcium signaling.

Variable Definition Values/Units

Dc diffusivity matrix for c(x, t) diag(0.15,0.15,0.3) µm2/ms

D
b
(c)
1

diffusivity matrix for b
(c)
1 diag(0.01,0.01,0.02) µm2/ms

D
b
(c)
2

diffusivity matrix for b
(c)
2 diag(0.00,0.00,0.00) µm2/ms

D
b
(c)
3

diffusivity matrix for b
(c)
3 diag(0.00,0.00,0.00) µm2/ms

Ds diffusivity matrix for s(x, t) diag(0.78,0.78,0.78) µm2/ms
Dv diffusivity matrix for V (x, t) diag(0.00,0.00,0.00) µm2/ms
Dn diffusivity matrix for n(x, t) diag(0.00,0.00,0.00) µm2/ms

R
(c)
i reactions of cytosol Ca2+ with buffers µM/ms

R
(s)
j reactions of SR Ca2+ with buffers µM/ms

k+

b
(c)
1

forward reaction coefficient for b
(c)
1 0.080 (µM ms)−1

k+

b
(c)
2

forward reaction coefficient for b
(c)
2 0.100 (µM ms)−1

k+

b
(c)
3

forward reaction coefficient for b
(c)
3 0.040 ms−1

k−
b
(c)
1

reverse reaction coefficient for b
(c)
1 0.090 ms−1

k−
b
(c)
2

reverse reaction coefficient for b
(c)
2 0.100 ms−1

k−
b
(c)
3

reverse reaction coefficient for b
(c)
3 0.010 ms−1

b
(c)
1,total total amount of b

(c)
1 in the cytosol 50 µM

b
(c)
2,total total amount of b

(c)
2 in the cytosol 123 µM

b
(c)
3,total total amount of b

(c)
3 in the cytosol 150 µM

γ ratio of volume of cytosol to SR 14

Jleak calcium leak from SR 0.3209684 µM/ms
Jpump calcium transfer from cytosol to SR µM/ms
Vpump maximum pump rate 4 µM/ms
Kpump pump sensitivity to Ca2+ 0.184 µM
npump Hill coefficient for pump function 4.0

JCRU calcium flux from SR to cytosol via CRUs µM/ms
O gating function for JCRU 0 or 1
Jprob probability of CRU opening 0 to 1
xs three-dimensional vector for CRU location µm
∆xs, ∆ys, ∆zs CRU spacings in x-, y-, z-directions 0.8, 0.8, 2.0 µm
σ̂ maximum rate of release 200 µMµm3/ms
δ(x− x̂) Dirac delta distribution 1/µm3

urand uniformly distributed random variable 0 to 1
Pmax maximum probability for release 0.3
Kprobc sensitivity of CRU to cytosol calcium 2 µM
nprobc Hill coefficient for probability function 4
Kprobs sensitivity of CRU to SR calcium 550 µM
nprobs Hill coefficient for probability function 4
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3.2 Electrical Excitation

The membrane potential of the cell depends on both the cytosol calcium ion concentration and
also on the cytosol potassium ion (K+) concentration [5, 10]. While a complete description of the
relationship between electrolytes and membrane potential is beyond the scope of this paper, note
the ω term in (3.12) quantifies a dependence of V on c to complete the coupling from the chemical to
the the electrical systems in link 2© in Figure 1.1, after c in (3.1) already contains several terms that
depend on V to implement link 1© in Figure 1.1. Table 3.3 contains the variables and parameters
for electrical excitation.

The Ca2+ conductance is much faster than the K+ conductance, so the calcium conductance can
be approximated as m∞ or instantaneously steady-state at all times; the potassium conductance
requires a separate description in (3.13)

∂V

∂t
= τv

1

C

(
Iapp − gL(V − VL)− gCam∞(V ) (V − VCa)− gK n (V − VK)

− ω (Jmleak
− Jmpump)

)
, (3.12)

∂n

∂t
= τv λn cosh

(
V − V3

2V4

) (
n∞(V )− n

)
(3.13)

with

m∞(V ) =
1

2

(
1 + tanh

(
V − V1

V2

))
, (3.14)

n∞(V ) =
1

2

(
1 + tanh

(
V − V3

V4

))
. (3.15)

The connection between (3.1) and (3.12), link 1© in Figure 1.1, the link from the electrical system
to the calcium system, comes through

JLCC =
τflux
2F

S gCam∞(V ) (V − VCa), (3.16)

the only calcium flux term to involve voltage. Note the parameter κ in (3.1), which is an external
scaling factor for JLCC rather than an intrinsic physiological component; if the value of κ is set to
0, the connection, link 1© in Figure 1.1, is effectively switched off and the calcium dynamics are
then modeled as though voltage were not involved. The surface area, S, of the cell is included in
light of the fact that JLCC describes the influx of calcium through L-type calcium channels (LCCs),
which are present in the enclosing plasma membrane of the cell: the surface area of the cell is the
surface area of the membrane.

We model the effect of cytosol calcium concentration on voltage by treating the calcium efflux
term (Jmpump − Jmleak

) as equivalent to the sodium-calcium exchanger current: we are thus able
to describe the current generated by the sodium-calcium exchange as a function of simple calcium
loss.

The individual components of the calcium efflux term are near-duplicates in form of the earlier
Jpump and Jleak functions in (3.7) and (3.8), respectively. As Jpump described the removal of calcium
from the cytosol and its transfer into SR stores,

Jmpump(c) = Vmpump

(
cnmpump

K
nmpump
mpump + cnmpump

)
(3.17)
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describes the removal of calcium from the cytosol and its transfer to outside the cell across the
membrane. The leak term Jleak described a gradual leak of calcium into the cytosol from the SR,
while JCRU described an abrupt, high-concentration (high relative to the leak) release of calcium
into the cytosol from the SR. Similarly,

Jmleak
= Jmpump(c0) (3.18)

describes a gradual leak of calcium into the cytosol from outside the cell via the plasma membrane,
while JLCC describes a sudden spike of calcium release into the cytosol via the LCCs.

The model connects the chemical system to the electrical system, link 2© in Figure 1.1, via
the inclusion of the current generated by calcium leaving the cell via Jmpump and Jmleak

, which
directly affects the voltage. We collect and incorporate these as a single term, the calcium efflux
(Jmpump−Jmleak

), and use ω in (3.12) as a parameter for feedback strength in link 2© in Figure 1.1,
which is a scaling factor with the same essential function as κ in link 1© in Figure 1.1 from (3.1):
if it is set to 0, the only terms of (3.12) which depend on the cytosolic calcium concentration drop
out, and the connection from calcium signaling to electrical excitation is severed.

3.3 Pseudo-Mechanical Contraction

The links 3© and 4© in Figure 1.1 provide feedback and feedforward terms for the contractile
dynamics. We describe this as “pseudo-mechanical” because the domain itself is unchanged; in our
model, the physical dimensions of the cell and the locations of the CRUs do not alter. We instead
model the contraction via the proportion of contractile proteins which have bound to calcium and
changed shape as a result, which generates the force required for cell contraction. Table 3.3 contains
the variables and parameters for pseudo-mechanical contraction.

The contractile proteins in question, though considered as a single species, are the combination
of actin and myosin when linked via cross-bridges. This linkage is made possible by Ca2+ binding

to troponin, the cytosol buffer species b
(c)
2 (x, t): it is this binding that allows the actin-myosin

cross-bridges to form. The cytosol species, b
(c)
3 (x, t), describes these actin-myosin cross-bridges and

constructs a third cytosol reaction term

R
(c)
b3

= − k+

b
(c)
3

b(c)2,total − b
(c)
2

b
(c)
2,total

2

b
(c)
3 + k−

b
(c)
3

(b
(c)
3,total − b

(c)
3 ). (3.19)

Notice that this is not the same as the generic pattern for buffer species reaction terms from the
initial model. There is no immediately clear dependence on cytosolic calcium c(x, t). However,

while c(x, t) is not explicitly included, it is present in the proportion involving troponin, b
(c)
3 (x, t),

which itself depends explicitly on cytosol calcium levels; R
(c)
b3

, like the other two reaction equations,
does in fact depend on cytosol calcium concentration.

When troponin binds to Ca2+, the protein as a whole, as noted, changes shape: not only does
this allow actin-myosin cross-bridges to form, but it also traps the calcium in its connection to the
troponin so that the disassociation rate decreases dramatically. To account for this, the shortening
factor ε describes how the separation of troponin and calcium has been physically, not chemically,

impaired. Note, again, that R
(c)
b2

remains a function of cytosol calcium concentration c(x, t) by its
equation

R
(c)
b2

= − k+

b
(c)
2

c b
(c)
2 + k−

b
(c)
2

(
b
(c)
2,total − b

(c)
2

) 1

ε
(3.20)
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Table 3.3: Variables and parameters for electrical excitation and mechanical contraction with base
units of mho = (s3A2)/(kgm2) and F = (s4A2)/(kgm2).

Variable Definition Values/Units

τv scaling factor to fit action potential duration in voltage equation 0.1 µM µm3/ms
τflux scaling factor to fit action potential duration in JLCC equation 0.1
V1 potential at which m∞ = 0.5 −1.0 mV
V2 reciprocal of slope of voltage dependence of m∞ 15.0 mV
V3 potential at which n∞ = 0.5 10.0 mV
V4 reciprocal of slope of voltage dependence of n∞ 14.5 mV
VL equilibrium potential for leak conductance −50 mV
VCa equilibrium potential for Ca2+ conductance 100 mV
VK equilibrium potential for K+ conductance −70 mV
C membrane capacitance 20 µF/cm2

Iapp applied current 50 µA/cm2

gL maximum/instantaneous conductance for leak 2 mmho/cm2

gCa maximum/instantaneous conductance for Ca2+ 4 mmho/cm2

gK maximum/instantaneous conductance for K+ 8 mmho/cm2

m∞ fraction of open calcium channels at steady state 0 to 1
n∞ fraction of open potassium channels at steady state 1
λn maximum rate constant for opening of K+ channels 0.1 ms−1

JLCC influx of calcium into cell via L-type calcium channels µM/ms
S surface area of the cell 3604.48 µm
F Faraday constant 95484.56 C/mol
κ scaling factor of JLCC 0.01 or 0.1
ω feedback strength (scaling factor) for Ca2+ efflux µA ms/µM cm2

Jmleak
leak of calcium out from cell via L-type calcium channels 0.1739493 µM/ms

Jmpump pump of calcium out from cell via L-type calcium channels µM/ms
Vmpump maximum pump rate 2 µM/ms
nmpump membrane pump Hill coefficient 4
Kmpump membrane pump Ca2+ sensitivity 0.18

[XB]0 initial concentration of active cross-bridges 142.6805 µM
ε shortening factor 0 to 1
Fmax maximum force generated by actin-myosin crossbridges 10 µN
ks stiffness of actin filament 0.025 N/m

with

ε = exp

Fmax ks

b(c)3,total − b
(c)
3 − [XB]0

b
(c)
3,total − [XB]0

 (3.21)

and

[XB]0 = b
(c)
3,total − b

(c)
3 (x, 0). (3.22)

This shortening factor ε links 3© and 4© in Figure 1.1. It refers back to the concentration of

b
(c)
3 (x, t), the actin-myosin cross-bridges, and to the force that their linkage generates. It is scaled

10



by the maximum possible contractile force Fmax, the actin stiffness ks, and the proportion of active
to inactive actin-myosin cross-bridges.

The force in the cell is generated by the bound cross-bridge. While assuming a linear relationship
between the force that the bound cross bridge produces and the concentration of the bound cross-
bridge, this force can be represented by the following equation:

F = Fmax

(b
(c)
3,total − b

(c)
3 )− (b

(c)
3,total − b

(c)
3 (x, 0))

b
(c)
3,total − (b

(c)
3,total − b

(c)
3 (x, 0))

. (3.23)

Like ω and κ, the factor ε is our point of control over the linkage between systems: if the argument

of the exponential function is 0, the overall value simply turns to 1, and R
(c)
b2

in (3.20) reverts to
its earlier form (3.5) with i = 2.

These two reaction terms (3.19) and (3.20) connects the three components of our model. The
calcium signaling is linked to the pseudo-mechanical contraction through the cross-bridge term,
and the pseudo-mechanical contraction is in turn connected to the calcium signaling through the
inclusion of the cytosol calcium concentration in the modified reaction equation for troponin. Thus
all links 1©, 2©, 3©, and 4© in Figure 1.1 are established, and thus the three systems of the model
are fully linked.

3.4 Initial and Boundary Conditions

The concentration of cytosol calcium c(x, 0) is initialized to its basal level c0 = 0.1 µM throughout
the cell.

The initial values of all three cytosol buffer species b
(c)
i (x, 0), i = 1, 2, 3, in the model are chosen

throughout the cell such that their reaction rates R
(c)
i = 0 when cytosol calcium is at basal level.

Thus, it is not reactions that will prompt changes in the simulations after the initial time.

Specifically, b
(c)
1 (x, 0) is calculated by setting R

(c)
i with i = 1 in (3.5) to 0, which gives with

c = c0

b
(c)
1 (x, 0) =

k−
b
(c)
1

b
(c)
1,total

k+

b
(c)
1

c0 + k−
b
(c)
1

. (3.24)

Before setting R
(c)
2 to 0, note first that the shortening factor ε in (3.21) has value 1.0 initially.

This results from the numerator in the exp(·) being 0, since by definition b
(c)
3 (x, 0)+[XB]0 = b

(c)
3,total,

that is, the sum of b
(c)
3 at the initial time plus [XB]0 equals their combined maximum. Thus, the

modified R
(c)
2 in (3.20) collapses to (3.5) with i = 2, and solving R

(c)
2 = 0 yields

b
(c)
2 (x, 0) =

k−
b
(c)
2

b
(c)
2,total

k+

b
(c)
2

c0 + k−
b
(c)
2

. (3.25)

This equation involves again the basal level c0, but does not involve b
(c)
3 , hence it can be computed

first.
In order to find the initial value of b

(c)
3 (x, 0), we set R

(c)
b3

from (3.19) to 0. With b
(c)
2 (x, 0)

computed first from (3.25) above, it can be used here and solving R
(c)
b3

= 0 leads then to the

11



computable formula

b
(c)
3 (x, 0) =

k−
b
(c)
3

b
(c)
3,total

k+

b
(c)
3

(
b
(c)
2,total−b

(c)
2 (x,0)

b
(c)
2,total

)2

+ k−
b
(c)
3

. (3.26)

The definition b
(c)
3 (x, 0) + [XB]0 = b

(c)
3,total is then used to compute the value [XB]0 = b

(c)
3,total −

b
(c)
3 (x, 0) for use in (3.21) throughout the simulation.

The value s0 = 10,000 µM is chosen as the initial concentration for the store s(x, 0) of calcium
in the SR throughout the cell. This choice represents a rather higher value for the store of calcium
in the SR, so that this is not a limiting factor to CRU activation initially.

For the variables in the electrical part of the model, we use V (x, 0) = −50 mV for the membrane
potential and n(x, 0) = 0.1 for the fraction of open potassium channels.

The model uses no-flow boundary conditions for all diffusive variable, thus containing the total
number of molecules of each species inside the cell.

4 Implementation Details

This section explains the approach to developing the implementation in the code and documents
choices.

4.1 Implementation of Reaction Terms

We begin by re-stating the ns = 4 + nsc + nss = 7 PDEs of the model, (3.1), (3.2) with nsc = 3,
(3.3), (3.4) with nss = 0, (3.12), and (3.13), as explained at the beginning of Section 3, in one
group, while also still listing nsc and nss without using their values of nsc = 3 and nss = 0, as

∂c

∂t
=∇ · (Dc∇c) +

nsc∑
i=1

R
(c)
i +

(
JCRU +Jleak−Jpump

)
+ κJLCC +

(
Jmleak

−Jmpump

)
, (4.1)

∂b
(c)
i

∂t
=∇ · (D

b
(c)
i

∇b(c)i ) +R
(c)
i , i = 1, . . . , nsc, (4.2)

∂s

∂t
=∇ · (Ds∇s) +

nss∑
j=1

R
(s)
j − γ(JCRU + Jleak − Jpump), (4.3)

∂b
(s)
j

∂t
=∇ · (D

b
(s)
j

∇b(s)j ) +R
(s)
j , j = 1, . . . , nss, (4.4)

∂V

∂t
= τv

1

C

(
Iapp − gL(V − VL)− gCam∞(V ) (V − VCa)− gK n (V − VK)

− ω (Jmleak
− Jmpump)

)
, (4.5)

∂n

∂t
= τv λn cosh

(
V − V3

2V4

) (
n∞(V )− n

)
. (4.6)
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Now, we list the equations explicitly as seven PDEs, using concretely nsc = 3 and nss = 0, which
leads to (4.2) repeated three times for i = 1, 2, 3 and (4.4) to being dropped in

∂c

∂t
= ∇ · (Dc∇c) +

nsc∑
i=1

R
(c)
i +

(
JCRU + Jleak − Jpump

)
+ κJLCC +

(
Jmleak

− Jmpump

)
,

(4.7)

∂b
(c)
1

∂t
= ∇ · (D

b
(c)
1

∇b(c)1 ) +R
(c)
1 , (4.8)

∂b
(c)
2

∂t
= ∇ · (D

b
(c)
2

∇b(c)2 ) +R
(c)
2 , (4.9)

∂b
(c)
3

∂t
= ∇ · (D

b
(c)
3

∇b(c)3 ) +R
(c)
3 , (4.10)

∂s

∂t
= ∇ · (Ds∇s) +

nss∑
j=1

R
(s)
j − γ(JCRU + Jleak − Jpump), (4.11)

∂V

∂t
= τv

1

C

(
Iapp − gL(V − VL)− gCam∞(V ) (V − VCa)− gK n (V − VK)

− ω (Jmleak
− Jmpump)

)
, (4.12)

∂n

∂t
= τv λn cosh

(
V − V3

2V4

) (
n∞(V )− n

)
. (4.13)

Here, we introduce u(i) for i = 0, . . . , 6 — using 0-based numbering as in the programming

language C — in the equation instead of the native variable names c, b
(c)
1 , . . ., n to get

∂u(0)

∂t
= ∇ · (D(0)∇u(0)) + r(0)(u(j),x, t) + JCRU , (4.14)

∂u(1)

∂t
= ∇ · (D(1)∇u(1)) + r(1)(u(j),x, t), (4.15)

∂u(2)

∂t
= ∇ · (D(2)∇u(2)) + r(2)(u(j),x, t), (4.16)

∂u(3)

∂t
= ∇ · (D(3)∇u(3)) + r(3)(u(j),x, t), (4.17)

∂u(4)

∂t
= ∇ · (D(4)∇u(4)) + r(4)(u(j),x, t)− γ JCRU , (4.18)

∂u(5)

∂t
= r(5)(u(j),x, t) (4.19)

∂u(6)

∂t
= r(6)(u(j),x, t). (4.20)
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with

r(0)(u(j),x, t) =

nsc∑
i=1

R
(c)
i +

(
Jleak − Jpump

)
+ κJLCC +

(
Jmleak

− Jmpump

)
, (4.21)

r(1)(u(j),x, t) =R
(c)
1 , (4.22)

r(2)(u(j),x, t) =R
(c)
2 , (4.23)

r(3)(u(j),x, t) =R
(c)
3 , (4.24)

r(4)(u(j),x, t) =

nss∑
j=1

R
(s)
j − γ (Jleak − Jpump), (4.25)

r(5)(u(j),x, t) = τv
1

C

(
Iapp − gL(V − VL)− gCam∞(V ) (V − VCa)− gK n (V − VK)

− ω (Jmleak
− Jmpump)

)
, (4.26)

r(6)(u(j),x, t) = τv λn cosh

(
V − V3

2V4

) (
n∞(V )− n

)
. (4.27)

or explicitly

r(0) = R
(c)
1 (u(0), u(1)) +R

(c)
2 (u(0), u(2), u(3)) +R

(c)
3 (u(2), u(3))

+ (Jleak − Jpump(u
(0))) + κJLCC(u(5)) +

(
Jmleak

− Jmpump(u(0))
)
, (4.28)

r(1) = R
(c)
1 (u(0), u(1)) = −k+

b
(c)
1

u(0) u(1) + k−
b
(c)
1

(
b
(c)
1,total − u

(1)
)
, (4.29)

r(2) = R
(c)
2 (u(0), u(2), u(3)) = −k+

b
(c)
2

u(0) u(2) + k−
b
(c)
2

(
b
(c)
2,total − u

(2)
) 1

ε(u(3))
, (4.30)

r(3) = R
(c)
3 (u(2), u(3)) = −k+

b
(c)
3

b(c)2,total − u
(2)

b
(c)
2,total

2

u(3) + k−
b
(c)
3

(b
(c)
3,total − u

(3)), (4.31)

r(4) = − γ (Jleak − Jpump(u
(0))), (4.32)

r(5) = τv
1

C

(
Iapp − gL(u(5) − VL)− gCam∞(u(5)) (u(5) − VCa)− gK u(6) (u(5) − VK)

− ω (Jmleak
− Jmpump(u(0)))

)
, (4.33)

r(6) = τv λn cosh

(
u(5) − V3

2V4

) (
n∞(u(5))− u(6)

)
. (4.34)

These equations are implemented in the code using the above formulations as basis. To docu-
ment and help develop the code, the following Tables 4.1, 4.2, and 4.3 document the translation of
the mathematical variables and quantities to variables in the code.
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Table 4.1: Variables of the model and their variable names in the code.

Variable Definition Variable Names in Code

x spatial position variable (x, y, z) x, y, z

t time variable t

nsc number of cytosol buffer species nsc

nss number of SR buffer species nss

c(x, t) calcium in the cytosol u[0]

b1
(c)(x, t) free flourescent dye in the cytosol u[1]

b2
(c)(x, t) free troponin in the cytosol u[2]

b3
(c)(x, t) inactive actin-myosin cross-bridges [X] in the cytosol u[3]

s(x, t) calcium in the SR u[4]

V (x, t) membrane potential (voltage) u[5]

n(x, t) fraction of open potassium channels u[6]

c0 basal cytosol calcium concentration uini[0]

s0 initial SR calcium concentration uini[4]

c(x, 0) initial concentration of c(x, t) uini[0]

b
(c)
1 (x, 0) initial concentration of b

(c)
1 (x, t) uini[1]

b
(c)
2 (x, 0) initial concentration of b

(c)
2 (x, t) uini[2]

b
(c)
3 (x, 0) initial concentration of b

(c)
3 (x, t) uini[3]

s(x, 0) initial concentration of s(x, t) uini[4]

V (x, 0) initial membrane potential (voltage) of V (x, t) uini[5]

n(x, 0) initial fraction of open potassium channels of n(x, t) uini[6]
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Table 4.2: Variables and parameters for calcium signaling and their variable names in the code.

Variable Definition Variable Names in Code

Dc diffusivity matrix for c(x, t) diag(Dx[0],Dy[0],Dz[0])

D
b
(c)
1

diffusivity matrix for b
(c)
1 diag(Dx[1],Dy[1],Dz[1])

D
b
(c)
2

diffusivity matrix for b
(c)
2 diag(Dx[2],Dy[2],Dz[2])

D
b
(c)
3

diffusivity matrix for b
(c)
3 diag(Dx[3],Dy[3],Dz[3])

Ds diffusivity matrix for s(x, t) diag(Dx[4],Dy[4],Dz[4])
Dv diffusivity matrix for V (x, t) diag(Dx[5],Dy[5],Dz[5])
Dn diffusivity matrix for n(x, t) diag(Dx[6],Dy[6],Dz[6])

R
(c)
i reactions of cytosol Ca2+ with buffers —

R
(s)
j reactions of SR Ca2+ with buffers —

k+

b
(c)
1

forward reaction coefficient for b
(c)
1 kf[1]

k+

b
(c)
2

forward reaction coefficient for b
(c)
2 kf[2]

k+

b
(c)
3

forward reaction coefficient for b
(c)
2 kf[3]

k−
b
(c)
1

reverse reaction coefficient for b
(c)
1 kb[1]

k−
b
(c)
2

reverse reaction coefficient for b
(c)
2 kb[2]

k−
b
(c)
3

reverse reaction coefficient for b
(c)
3 kb[3]

b
(c)
1,total total amount of b

(c)
1 (x, t) in the cytosol usbar[1]

b
(c)
2,total total amount of b

(c)
2 (x, t) in the cytosol usbar[2]

b
(c)
3,total total amount of b

(c)
3 (x, t) in the cytosol usbar[3]

γ ratio of volume of cytosol to SR srgamma

Jleak calcium leak from SR jleak

Jpump calcium transfer from cytosol to SR —
Vpump maximum pump rate vpump

Kpump pump sensitivity to Ca2+ kpump

npump Hill coefficient for pump function npump

JCRU calcium flux from SR to cytosol via CRUs —
O gating function for JCRU —
Jprob probability of CRU opening —
xs three-dimensional vector for CRU location xs,ys,zs

∆xs, ∆ys, ∆zs CRU spacings in x-, y-, z-directions dxs, dys, dzs
σ̂ maximum rate of release sigmahat

δ(x− x̂) Dirac delta distribution —
urand uniformly distributed random variable urand

Pmax maximum probability for release pmax

Kprobc sensitivity of CRU to cytosol calcium kprob

nprobc Hill coefficient for probability function nprob

Kprobs sensitivity of CRU to SR calcium kprobs

nprobs Hill coefficient for probability function nprobs

16



Table 4.3: Variables and parameters for electrical excitation and mechanical contraction and their
variable names in the code.

Variable Definition Variable Names in Code
τv scaling factor to fit action potential duration in voltage equations vol_tau

τflux scaling factor to fit action potential duration in JLCC equation flux_tau

V1 potential at which m∞ = 0.5 vol_1

V2 reciprocal of slope of voltage dependence of m∞ vol_2

V3 potential at which n∞ = 0.5 vol_3

V4 reciprocal of slope of voltage dependence of n∞ vol_4

VL equilibrium potential for leak conductance vol_l

VCa equilibrium potential for Ca2+ conductance vol_ca

VK equilibrium potential for K+ conductance vol_k

C membrane capacitance mcap

Iapp applied current Iapp_max

gL maximum/instantaneous conductance for leak gl

gCa maximum/instantaneous conductance for Ca2+ gca

gK maximum/instantaneous conductance for K+ gk

m∞ fraction of open calcium channels at steady state Minf

n∞ fraction of open potassium channels at steady state Ninf

λn maximum rate constant for opening of K+ channels vol_lambda

JLCC influx of calcium into cell via L-type calcium channels —
S surface area of the cell cell_SA

F Faraday constant FaradayC

κ scaling factor of JLCC not implemented
ω feedback strength (scaling factor) for Ca2+ efflux feedbackStrength

Jmleak
leak of calcium out from cell via L-type calcium channels pmleak

Jmpump
pump of calcium out from cell via L-type calcium channels —

Vmpump
maximum pump rate pmvpump

nppump membrane pump Hill coefficient pmnpump

Kmpump membrane pump Ca2+ sensitivity pmkpump

[XB]0 initial concentration of active cross-bridges XB_0

ε shortening factor shorteningFactor

Fmax maximum force generated by actin-myosin crossbridges F_max

ks stiffness of actin filament actinStiffness
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4.2 Jacobian Matrix of the Non-Linear Terms

Since the spatial discretization of a parabolic partial differential equation results in a system of
stiff ODEs, an implicit time-stepping method is needed. Thus, at every time step, a system of
non-linear equations needs to be solved by the Newton method. This method requires the Jacobian
matrix consisting of the components ∂r(i)/∂u(j) of derivatives of the vector of non-linear terms r(i),
i = 0, . . . , 6, in (4.28)–(4.34), differentiated with respect to their arguments u(j), j = 0, . . . , 6.

We compute all ∂r(i)/∂u(j), 0 ≤ i, j < 7, concretely here as follows.
Derivatives of r(0)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(0)

∂u(0)
= − k+

b
(c)
1

u(1) − k+

b
(c)
2

u(2) − dJpump(u
(0))

du(0)
−
dJmpump(u(0))

du(0)
, (4.35)

∂r(0)

∂u(1)
= − k+

b
(c)
1

u(0) − k−
b
(c)
1

, (4.36)

∂r(0)

∂u(2)
= − k+

b
(c)
2

u(0) − k−
b
(c)
2

1

ε(u(3))
+

2k+

b
(c)
3

b
(c)
2,total

b(c)2,total − u
(2)

b
(c)
2,total

 , (4.37)

∂r(0)

∂u(3)
= k−

b
(c)
2

(
b
(c)
2,total − u

(2)
) Fmax ks

b
(c)
3,total − [XB]0

1

ε(u(3))
− k+

b
(c)
3

b(c)2,total − u
(2)

b
(c)
2,total

2

− k−
b
(c)
3

,

(4.38)

∂r(0)

∂u(4)
= 0, (4.39)

∂r(0)

∂u(5)
= κ

dJLCC(u(5))

du(5)
, (4.40)

∂r(0)

∂u(6)
= 0, (4.41)

Derivatives of r(1)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(1)

∂u(0)
= − k+

b
(c)
1

u(1), (4.42)

∂r(1)

∂u(1)
= − k+

b
(c)
1

u(0) − k−
b
(c)
1

, (4.43)

∂r(1)

∂u(2)
= 0, (4.44)

∂r(1)

∂u(3)
= 0, (4.45)

∂r(1)

∂u(4)
= 0, (4.46)

∂r(1)

∂u(5)
= 0, (4.47)

∂r(1)

∂u(6)
= 0, (4.48)
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Derivatives of r(2)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(2)

∂u(0)
= − k+

b
(c)
2

u(2), (4.49)

∂r(2)

∂u(1)
= 0, (4.50)

∂r(2)

∂u(2)
= − k+

b
(c)
2

u(0) − k−
b
(c)
2

1

ε(u(3))
, (4.51)

∂r(2)

∂u(3)
= k−

b
(c)
2

(
b
(c)
2,total − u

(2)
) Fmax ks

b
(c)
3,total − [XB]0

1

ε(u(3))
, (4.52)

∂r(2)

∂u(4)
= 0, (4.53)

∂r(2)

∂u(5)
= 0, (4.54)

∂r(2)

∂u(6)
= 0, (4.55)

Derivatives of r(3)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(3)

∂u(0)
= 0, (4.56)

∂r(3)

∂u(1)
= 0, (4.57)

∂r(3)

∂u(2)
=

2k+

b
(c)
3

b
(c)
2,total

b(c)2,total − u
(2)

b
(c)
2,total

 (4.58)

∂r(3)

∂u(3)
= − k+

b
(c)
3

b(c)2,total − u
(2)

b
(c)
2,total

2

− k−
b
(c)
3

, (4.59)

∂r(3)

∂u(4)
= 0, (4.60)

∂r(3)

∂u(5)
= 0, (4.61)

∂r(3)

∂u(6)
= 0, (4.62)
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Derivatives of r(4)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(4)

∂u(0)
= γ

dJpump(u
(0))

du(0)
, (4.63)

∂r(4)

∂u(1)
= 0, (4.64)

∂r(4)

∂u(2)
= 0, (4.65)

∂r(4)

∂u(3)
= 0, (4.66)

∂r(4)

∂u(4)
= 0, (4.67)

∂r(4)

∂u(5)
= 0, (4.68)

∂r(4)

∂u(6)
= 0, (4.69)

Derivatives of r(5)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(5)

∂u(0)
=
τv
C
ω
dJmpump(u(0))

du(0)
, (4.70)

∂r(5)

∂u(1)
= 0, (4.71)

∂r(5)

∂u(2)
= 0, (4.72)

∂r(5)

∂u(3)
= 0, (4.73)

∂r(5)

∂u(4)
= 0, (4.74)

∂r(5)

∂u(5)
= − τv

C

(
gL + gCa

(dm∞(u(5))

du(5)
(u(5) − VCa) +m∞(u(5))

)
+ gKu

(6)

)
, (4.75)

∂r(5)

∂u(6)
= − τv

C
gK (u(5) − VK), (4.76)
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Derivatives of r(6)(u(j),x, t) with respect to u(j), 0 ≤ j < 7:

∂r(6)

∂u(0)
= 0, (4.77)

∂r(6)

∂u(1)
= 0, (4.78)

∂r(6)

∂u(2)
= 0, (4.79)

∂r(6)

∂u(3)
= 0, (4.80)

∂r(6)

∂u(4)
= 0, (4.81)

∂r(6)

∂u(5)
= τv λn

(
1

2V4
sinh

(
u(5) − V3

2V4

) (
n∞(u(5))− u(6)

)
+ cosh

(
u(5) − V3

2V4

)
dn∞(u(5))

du(5)

)
,

(4.82)

∂r(6)

∂u(6)
= − τv λn cosh

(
u(5) − V3

2V4

)
(4.83)

with derivatives of auxiliary functions

dJpump(u
(0))

du(0)
= Vpump

npumpK
npump
pump (u(0))npump−1

(K
npump
pump + (u(0))npump)2

, (4.84)

dJmpump(u(0))

du(0)
= Vmpump

nmpumpK
nmpump
mpump (u(0))nmpump−1

(K
nmpump
mpump + (u(0))nmpump )2

, (4.85)

dε(u(3))

du(3)
= − Fmax ks

b
(c)
3,total − [XB]0

ε(u(3)), (4.86)

dJLCC(u(5))

du(5)
=
τflux
2F

S gCa

((
u(5) − VCa

) dm∞(u(5))

du(5)
+m∞(u(5))

)
, (4.87)

dm∞(u(5))

du(5)
=

1

2

1

V2

(
cosh2

(u(5) − V1

V2

))−1

, (4.88)

dn∞(u(5))

du(5)
=

1

2

1

V4

(
cosh2

(u(5) − V3

V4

))−1

. (4.89)
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5 Numerical Method

In order to do calculations for the CICR model, we need to solve the system of time-dependent
parabolic partial differential equations (PDEs) specified in Section 3. The PDEs are coupled by
several non-linear reaction, source, and other terms on the right-hand side of the PDEs. For the
simulations in Section 6, we have the seven variables specified in Table 3.1, thus we have ns = 7
coupled PDEs. The domain in our model is a hexahedron Ω = (−6.4, 6.4)×(−6.4, 6.4)×(−32.0, 32.0)
in units of µm with isotropic CRU distribution that captures the key feature of the elongated shape
of a heart cell.

We take a method of lines (MOL) approach to spatially discretize this model, with the finite
volume method (FVM) as the spatial discretization with (Nx+1), (Ny+1), (Nz+1) control volumes
in the x-, y-, z-coordinate directions, thus there are a total of N = (Nx+1) (Ny +1) (Nz +1) control
volumes. The simulations in Section 6 use Nx = Ny = 32 and Nz = 128. Applying this to the
case of the ns = 7 PDEs results in a large system of ordinary differential equations (ODEs) with
neq = nsN = 983,367 degrees of freedom (DOF) as size of the system that needs to be solved at
every time step.

A MOL discretization of a diffusion-reaction equations with second-order spatial derivatives
results in a stiff ODE system. The time step size restrictions, due to the CFL condition, are
considered too severe to allow for explicit time-stepping methods. This necessitates the use of a
sophisticated ODE solver such as the family of numerical differentiation formulas (NDFk). Stiff
ODEs need an implicit ODE method, thus requiring the solution of a non-linear system at every
time step. We use the Newton method as non-linear solver, and the linear system in each Newton
step is solved by BiCGSTAB as the linear solver. Complete details of the numerical method can
be found in [6, 12]. BiCGSTAB is a Krylov subspace method, which only require matrix-vector
products with the system matrix, not the matrix itself. Thus, we can dramatically reduce memory
usage by using a matrix-free implementation of the linear solver that does not store the system
matrix, but provides the results of the matrix-vector product. The code with the NDFk method of
orders 1 ≤ k ≤ 5 requires then, including all auxiliary method vectors, the storage of only 17 arrays
of significant size neq. Simulation times depend heavily on the number of time steps taken.

The implementation of this model is done in C using MPI to parallelize computations. Par-
allelization is accomplished through block-distribution all large arrays to all MPI processes with
split along the z-direction. MPI commands such as MPI_Isend and MPI_Irecv are non-blocking
point-to-point communication commands used to communicate the interface data between blocks
between neighboring processes. The collective command MPI_Allreduce is used for the computa-
tion of scalar products and norms.

Runs were done on “maya” which is operated by the UMBC High Performance Computing
Facility (HPCF). The current machine in HPCF is the distributed-memory cluster maya with over
300 nodes. The components used from the cluster are the 72 nodes with two eight-core 2.6 GHz
Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes The nodes are
connected by a high-speed quad-data rate (QDR) InfiniBand network typically used for research
on parallel algorithms. All nodes are connected via InfiniBand to a central storage of more than
750 TB. On this machine the runs typically took between ten minutes and thirty minutes per run
with the times being largely dependent on the parameters being used.
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6 Results

This section shows the results of simulations for the seven variable model outlined in Section 3.
Table 3.1 lists the variables used in the model, and Tables 3.2 and 3.3 list the parameter values
used. Specifically, Subsections 6.1 and 6.2 consider different strengths of the linkage of the voltage
system to the cytosol calcium by parameter κ in Equation (3.1): Subsection 6.1 considers a higher
coupling strength of κ = 0.1, and Subsection 6.2 a lower coupling strength of 0.01.

6.1 Higher Coupling Strength κ = 0.1

This subsection contains Figures 6.1 through 6.9, based on simulations using the values in Tables 3.1,
3.2 and 3.3, and with coupling strength κ = 0.1.

Figure 6.1 (a) plots the voltage in mV measured at the center point of the cell against time in
ms in order to show how the voltage changes over the 1,000 ms time period. The voltage is the
driving force for all other events happening in the cell. Voltage is represented by Equation (3.12)
and is responsible the electrical excitation component of the model in Figure 1.1. This excitation
is communicated through the JLCC term, whose strength is controlled by κ, in Equation (3.1).

The plots in Figure 6.2 display the locations of open calcium release units by a dot. The more
blue dots that are visible, the more CRUs that are open at that specific time. At some times
and for short periods of time, CRUs form patterns and initiate diffusion waves, but no sustained
waves form that would move through the entire cell. When many blue dots are appearing in
an unorganized uniformly distributed fashion across the cell domain, this represents spontaneous
sparking within the cell. The opening of CRUs is controlled by the model in Equations (3.9)–(3.11).
This model embodies the effect of Calcium Induced Calcium Release (CICR) into the cytosol in
that a higher concentration of cytosol calcium increases the probability for a CRU to open in (3.11),
and an open CRU in turn increases the cytosol calcium concentration through the term JCRU in
Equation (3.1). Notice that the original trigger for increasing cytosol calcium comes from the JLCC

term in Equation (3.1) controlled by the voltage.
Figure 6.3 shows a collection of isosurface plots for calcium concentration in the cytosol. An

isosurface plot displays the surface in the three-dimensional cell, where the species concentration
is equal to a critical value, stated in the caption of the figure, here 65 µM for the concentration
of cytosol calcium c(x, t). Due to the connection with open CRUs through the effect of Calcium
Induced Calcium Release, calcium concentration in the cytosol in Figure 6.3 is high in the same areas
of the cell where the CRUs are open in Figure 6.2 at that time. The line scan in Figure 6.1 (c)
shows the calcium concentration in the cytosol of the cell over time on a two-dimensional slice
through the center of the cell. The small sparks of color amidst the blue demonstrate how calcium
increases in that specific location at that specific time.

Figure 6.4 shows the concentration of the free fluorescent dye in the cytosol modeled by Equa-
tion (3.2) with i = 1. As evident by the plots, the amount of free dye in the cytosol increases as
the total time increases.

Figure 6.5 displays the concentration of the free troponin in the cytosol modeled by Equa-
tion (3.20). The plots display higher concentrations of troponin with yellow.

Figure 6.6 represents the concentration of the inactive actin-myosin cross-bridges throughout
the cell, modeled by Equation (3.19). The plots indicates that at locations and times of increased
cytosol calcium concentrations in Figure 6.3, the concentration of the inactive bridges decreases in
Figure 6.6, implying an increase in the active bridges. These values enter into the Equation (3.21)
for the shortening factor ε, whose values decrease from the neutral value 1.0 in these conditions.
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The plot of ε at the center of the cell in Figure 6.1 (b) shows this behavior and indicates the
connection to mechanical contraction component in Figure 1.1.

The plots displaying the calcium concentration s(x, t) of the store in the SR are located in
Figure 6.7. The store in the SR has an initial value of 10,000 µM. When comparing these plots
to the plots of calcium in the cytosol in Figure 6.3, we can see that there is a relationship. As
the calcium concentration in the cytosol increases, more CRUs open as seen in Figure 6.2, which
releases more calcium from the SR into the cytosol, resulting in a decreased concentration of the
store in the SR. This is the effect of the JCRU term with a negative sign in Equation (3.3) for
s(x, t) A decreased value of s(x, t) at a certain location is of interest, since this limits eventually
the ability of the CRU at that location to open in (3.11) as well as limits the amount of calcium
released through the CRU in (3.9). We notice that due to more spontaneous openings of CRUs in
the right end of the cell, the store concentration shows a larger decrease there.

The voltage V (x, t) modeled by (3.12) is represented by isosurface plots in Figure 6.8. This
provides a broader view of the entire cell, as opposed to the two-dimensional plot of voltage at the
center of the cell in Figure 6.1 (a). We see that the behavior is analogous across the cell.

Figure 6.9 represents the gating function n(x, t) of the potassium channels in the cell modeled
by (3.13). The gating function clearly shows a behavior that is aligned in time with the voltage.

Finally, Figure 6.1 (b) plots the shortening factor ε in (3.21) against time to show how the
shortening factor is changing over time. After comparing Figure 6.1 (b) to Figure 6.1 (a), we can
see that the shortening factor mirrors the voltage plot such that as voltage increases, the shortening
factor decreases. Likewise, as the voltage decreases, the shortening factor increases. This shows
that the voltage is the driving force between the contraction and relaxation of a heart cell.

6.2 Lower Coupling Strength κ = 0.01

This subsection contains Figures 6.10 through 6.18, based on simulations using the values in Ta-
bles 3.1, 3.2 and 3.3, and with coupling strength κ = 0.01.

After comparing Figures 6.1 (a) and 6.10 (a), there is no evident change between the voltage
when κ = 0.1 versus when κ = 0.01.

When comparing Figures 6.3 and 6.12, as well as Figures 6.1 (c) and 6.10 (c), we can see that
the calcium concentration in the cytosol is slightly more active when κ = 0.01 than when κ = 0.1.

It is also evident that there is a change in the mechanical component of the model with a change
in the value of κ when looking at Figures 6.6 and 6.15. For example, when κ = 0.01, there are less
inactive actin-myosin cross-bridges during a significant portion of the 1,000 milliseconds shown in
Figure 6.15 than in Figure 6.6 for κ = 0.1. This is evident by an increase of blue sections in the
plots in Figure 6.15 compared to Figure 6.6. This shows that more actin-myosin cross-bridges are
becoming activated in the κ = 0.01 case.

We can also see differences between the calcium concentration in the store in the SR when
κ = 0.1 versus when κ = 0.01, as evident by comparing Figures 6.7 and 6.16. For example, the
SR displays a larger depletion of calcium at time t = 500 ms for κ = 0.1 in Figure 6.7 compared
to t = 500 ms for κ = 0.01 in Figure 6.16. Differences continue to appear for various time steps
between these two cases.

Finally, while the plots of the shortening factor over time look very similar for cases κ = 0.1
and κ = 0.01 in Figures 6.1 (b) and 6.10 (b), it is vital to note that these plots are not exactly
the same. For example, when κ = 0.1, the shortening factor has a minimum of approximately
0.99657 as seen in Figure 6.1 (b), while when κ = 0.01, the shortening factor has a minimum of
approximately 0.99973 as seen in Figure 6.10 (b).
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(a) Voltage over time. (b) Shortening factor over time.

(c) Line scan.

Figure 6.1: Voltage, shortening factor, and line scan for κ = 0.1.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.2: Open calcium release units throughout the cell for κ = 0.1.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.3: Concentration of c(x, t) throughout the cell for κ = 0.1, with a critical value of 65 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.4: Concentration of b1
(c)(x, t) throughout the cell for κ = 0.1, with a critical value of

46 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.5: Concentration of b2
(c)(x, t) throughout the cell for κ = 0.1, with a critical value of

112 µM .
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.6: Concentration of b3
(c)(x, t) throughout the cell for κ = 0.1, with a critical value of

120 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.7: Concentration of s(x, t) throughout the cell for κ = 0.1, with a critical value of 5,000 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.8: Concentration of V (x, t) throughout the cell for κ = 0.1, with a critical value of 0 mV.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.9: Concentration of n(x, t) throughout the cell for κ = 0.1, with a critical value of 0.3.
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(a) Voltage over time. (b) Shortening factor over time.

(c) Line scan.

Figure 6.10: Voltage, shortening factor, and line scan for κ = 0.01.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.11: Open calcium release units throughout the cell for κ = 0.01.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.12: Concentration of c(x, t) throughout the cell for κ = 0.01, with a critical value of 65 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.13: Concentration of b1
(c)(x, t) throughout the cell for κ = 0.01, with a critical value of

46 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.14: Concentration of b2
(c)(x, t) throughout the cell for κ = 0.01, with a critical value of

112 µM .
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.15: Concentration of b3
(c)(x, t) throughout the cell for κ = 0.01, with a critical value of

120 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.16: Concentration of s(x, t) throughout the cell for κ = 0.01, with a critical value of
5,000 µM.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.17: Concentration of V (x, t) throughout the cell for κ = 0.01, with a critical value of
0 mV.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6.18: Concentration of n(x, t) throughout the cell for κ = 0.01, with a critical value of 0.3.
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7 Conclusions

We now have a working seven variable model which includes for the first time the mechanical
component of the excitation-contraction coupling (ECC) cycle in a heart cell. Our research included
the successful implementation of the third cytosol buffer species, the inactive actin-myosin cross-
bridges, and the links 3© and 4© in Figure 1.1. We simulated specific cases of coupling strength κ
from the electrical to the calcium system to get a better understanding of the behavior of the model.
From the results we notice that while modifying the κ value does not affect voltage significantly,
it impacts many of the other species in the model including the cell’s contraction. This is clear as
we see differences in the plots of the shortening factor for the different sets of model parameters.
The plots show that the contraction behavior mirrors that of the voltage and shows a realistic
representation of what is physiologically happening. This report includes a documentation of the
code design and specifically our differentiation of Jacobian matrix of the non-linear terms to show
the careful development of the code. The Jacobian matrix is necessary for the non-linear Newton
method, which in turn is required in the time-stepping method because of the stiffness of the ODE
system that is created when the finite volume method is applied to the system of parabolic PDEs.

Because the plots of the shortening factor are not ideal to our understanding, future research
done on this topic should include further parameter studies in order to get more reasonable behavior
of the cell contraction. Once this is established, the model can be extended to include the eighth
variable already proposed in [1, 2].
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