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Abstract

Diabetes occurs when the body’s blood sugar levels are in a state of sustained
elevation. The pancreatic beta cells, organized in the islets of Langerhans, secrete a
hormone called insulin that is responsible for maintaining blood glucose at appropriate
levels. Oscillations in insulin levels, which are thought to require synchronization
in insulin secretion, are necessary for proper regulation of glucose. A loss of this
periodic behavior has been observed in type 2 diabetic patients. We used the Single
Slow Channel Model to compute the calcium and electrical dynamics during insulin
secretion of a single beta cell. To replicate an islet, we coupled the cell cluster according
to a hexagonal-close-packed lattice. The existence of small worldness in the islet and
its effect on islet performance was investigated by using methods from graph theory.
To quantify the performance, we sampled and chose a synchronization index from
previously used indexes that reflects to what degree the calcium oscillations are in
phase. The effect small worldness has on synchronization is indicative of the existence
of hub cells, which have a larger influence on the rhythm of the islet. By destroying
hub cells, we noticed that the synchronization of the islet decreased, which affects the
overall performance of the islet. Understanding the role of hub cells will give us further
insight on synchronization of insulin secretion between pancreatic beta cells.
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1 Introduction

In 2015, an estimated 30.3 million people (9.4% of the U.S. population) had diabetes and
79,535 death certificates declared diabetes to be the underlying cause of mortality, making it
the seventh leading cause of death in the United States [6]. Diabetes is caused by chronically
elevated glucose levels due to the improper secretion of the hormone insulin. The cells
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responsible for secreting insulin are beta cells, which are located inside cell clusters in the
pancreas called the Islets of Langerhans. These beta cells react to an elevated amount of
glucose in the blood plasma by secreting insulin which then spurs tissues to absorb glucose
from the bloodstream. Due to their key role in diabetes, beta cells have become a primary
focus in diabetes research.

Recent research suggests that some beta cells hold a more pertinent role on the islets
synchronization than other beta cells [7]. The existence of these hub cells is consistent
with islets acting as small world networks. This idea that hub cells strongly influence the
synchrony (and therefore the correct secretion of insulin) of the islet is what motivated us
to investigate more thoroughly the effect that silencing some of these hub cells would have
on the islets overall function.

2 Background Information

2.1 Biology

The pancreas, a major organ which influences glucose metabolism, contains clusters of beta
cells called islets of Langerhans. These islets secrete the hormone insulin which encourages
tissues to uptake glucose from the blood. As shown in Figure 2.1, signaling begins when
glucose enters the beta cells via active transport across the cellular membrane. Glycolysis
then converts glucose into pyruvate. The mitochondria further metabolize the pyruvate,
increasing the ATP/ADP ratio. ATP-gated potassium channels respond to the ratio change
by closing, which depolarizes the cell. This change in membrane potential allows the voltage
gated calcium channels to open, resulting in an influx of calcium. The endoplasmic reticulum
then releases its stored calcium, sufficiently increasing the concentration such that vesicles
exocytose insulin into the blood stream. The increased blood insulin levels decrease circulat-
ing glucose, which reopens the ATP-gated potassium channels allowing the cell to repolarize
and reset the cell. Normally, insulin is secreted in a pulsatile fashion, therefore oscillations in
blood insulin levels are observed. Loss of this oscillatory behavior has been seen in diabetic
patients [1]. The electrical synchronization among beta cells has been correlated with the
pulsatility of insulin.

2.2 Single Slow Channel Model

The Single Slow Channel Model gives the electrical and calcium dynamics of an individual
cell [8]. The change in time of the membrane potential is given by

− CM
dV

dt
= ICa(V ) + IKATP

(V ) + IK(V, n) + IS(V, s) (2.1)

where each term on the right is a current flowing through an ion channel and is balanced
by the capacitive current on the left. By Ohm’s Law, the current crossing a conductor is
I = gV , where g is conductance. The concentration gradient is the driver of ion movement
across the ion channels and is given by V − E, where V is the membrane potential and E
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Figure 2.1: Model of beta cell insulin secretion [3]

is the Nernst potential of a given ion. Therefore, we can write the ion channel currents as
Iion = g(V − E). The bilipid layer is modeled as a capacitor by the equation, Icap = Cm

dV
dt

,where Cm is the capacitance of the membrane. The circuit elements are arranged in parallel,
which allows us to sum the currents according to Kirchhoff’s law giving equation (2.1).

The conductance for several of the ion channels is dynamic, and responds such that gK =
ḡKn, where n follows

dn

dt
=
n∞(V )− n

τn
(2.2)

where n is a fraction of total voltage gated potassium channels that are open at time t.
The quantity s is a gating variable related the slow inhibitory potassium current Is and is
modeled by the equation

ds

dt
=
s∞(V )− s

τs
(2.3)

Since the calcium and ATP/ADP dependent potassium channels V gating dynamics occur so
quickly, their gating variables are set to their equilibrium values m∞ and OKATP

respectively.
The calcium concentration is modeled by

d[Ca2+]i
dt

= f [−αICa(V )− kCa[Ca2+]i] (2.4)

The first term is converts calcium current to concentration by the Faraday related constant α
and the second is the rate at which calcium is pumped out of the cell. The factor f accounts
for the significant slow down in calcium dynamics in the presence of buffering.

2.3 Electrical Coupling

We say two cells are coupled when there exists a gap junction such that molecules can pass
between the two cells. This exchange allows the electrical state of one cell to affect that of the
other. Coupling is represented mathematically by the addition of the terms Iij = gij(Vi−Vj)
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to the voltage equations, where Iij is the current passing from cell j to cell i, gij is the
conductance of the gap junction connecting the two cells, and Vi and Vj are the membrane
potentials of cells i and j respectively. To couple all the cells in the islet, we defined the
matrix M such that

~Ic =



∑
j

I1j∑
j

I2j

...∑
j

INj

 = M~V =



∑
j 6=1

g1j −g12 . . . −g1j

−g21
∑
j 6=2

g2j . . . −g2j
...

...
. . .

...
−gN1 −gN2 . . .

∑
j 6=i

gNj



V1
V2
...
VN

 (2.5)

where the ith element of ~Ic is the total current entering the ith cell through its gap junctions,
N is the number of cells in the islet, and the ith element of ~V is the membrane potential of
cell i.

3 Numerical Methods

3.1 Islet Model

The islet was modeled as a three-dimensional hexagonal-closed-packed lattice with a center
maximum edge length of n and a corresponding system size given by

N(n) =


7
2
n3 − 21

4
n2 + 7

2
n− 1, n is even

7
2
n3 − 21

4
n2 + 7

2
n− 3

4
, n is odd [1].

The lattice was assembled by stacking two-dimensional hexagonal layers that alternated be-
tween regular and irregular configurations, which can be seen in Figure 3.1. An irregular
hexagon with edge length m is a regular hexagon with an edge length of m − 1 and an
extra half ring of edge length m. The locations of cells in the lattice were indexed using a
Cartesian coordinate system centered on the lattice and the diameter of a cell was considered
to be a single unit of distance. Two cells were considered coupled if the distance between
their centers, denoted by |~xj − ~xi|, is equal to one, where ~xi and ~xj are the position vectors
of the ith and jth cells respectively. A cell internal to the lattice can have a maximum of
twelve connections, six on the same layer, three above, three below. The square matrix,
M , was used to store the coupling information such that the (i, j) entry stored the negative
conductance of the gap junction connecting the ith and jth cells in the islet. If the entry
was zero, cells i and j were not coupled. The diagonal element of the ith row was given by
di =

∑
j 6=i

gij, where gij is the (i, j) gap junction conductance.

As not all cells are identical, heterogeneity was introduced in our simulations by selecting the
conductance values for all ion channels from truncated normal distributions (i.e. absolute
values are taken for randomly obtained negative values) with standard deviations of 5-20%
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(a) (b)

Figure 3.1: (a) Side view and (b) top view of hexagonal lattice with n = 5

of the mean values as given in Table 3.1. Gap junction conductance values were selected
from a normal distribution with a standard deviation of 50%. If a negative gap junction
conductance was selected, that conductance was set to zero. In addition, 33% of the gap
junction conductance values were randomly set to zero according to a binomial trial to sim-
ulate missing connections in the islet.

To simulate variations in islet coupling strength due to pharmacological or genetic modi-
fications of gap junctions, we defined a parameter, k, selected from a normal distribution
with mean µ ∈ [0,1] and standard deviation of 0.2. The islet coupling strength was specified
by selecting the appropriate µ, which was varied for our simulations. If kij < 0 was selected,
then we set kij = 0. Similarly, if kij > 1 was selected, then we set kij = 1. The (i, j) gap
junction conductance was multiplied by kij, such that the coupling matrix was transformed
to

M =



∑
j 6=1

k1jg1j −k12g12 . . . −k1jg1j

−k21g21
∑
j 6=2

k2jg2j . . . −k2jg2j
...

...
. . .

...
−kN1gN1 −kN2gN2 . . .

∑
j 6=i

kNjgNj


In order to observe how the cells establish burst synchronization and to simulate realistic
islet conditions, the initial states of each cell were varied randomly by selecting values from
truncated normal distributions with standard deviations equal to 20% of the mean values.
Solutions to the system were computed recursively over a 500 second time-span using the
ode45 MATLAB function. This algorithm is based on an explicit Runge-Kutta(4,5) formula
called the Dormand-Prince pair.
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Parameter/Initial Condition Symbol Mean value Heterogeneity
KATP channel conductance gK(ATP ) 100 pS 20%
Ca2+ channel conductance gCa 1000 pS 5%
Voltage gated K+ channel conductance gK 2700 pS 5%
Slow inhibitory K+ channel conductance gs 200 pS 5%
Gap junction conductance gc 7.5 pS 50%
Membrane potential V 65 mV 20%
Voltage gated K+ channel gating variable n 0.5 20%
Slow inhibitory K+ channel gating variable s 1.01 20%
Calcium concentration [Ca2+]i 0.05 µM 20%

Table 3.1: Cell Heterogeneity

3.2 Small Worldness

A small world network is a mathematical graph with a high degree of local coupling and short
path lengths between most nodes in the graph. Recent work has shown that small world-
ness may characterize the connections between cells in pancreatic islets [4]. To quantify the
small worldness, we calculated the parameter S = Cavg

Crand
/ Erand

Eglob
of a functionally coupled

beta cell network [4]. Cavg and Eglob represent the average clustering coefficient and global
efficiency of the functional network respectively, while Crand and Erand are those values of a
random network with the same number of cells and connections as the functional network.
The clustering coefficient of a node measures the amount of local coupling and is defined
as the number of connections between the neighbors of that node divided by the number of
possible connections those neighbors can have. The global efficiency is related to the rate
at which information can traverse the network. It is calculated by finding the shortest path
length between each pair of nodes, and then averaging the inverse of this length. For a small
world network, Cavg >> Crand and Eglob ∼ Erand. Hence, all graphs for which S > 1 are
considered to be small world networks. Functional connections were created between all cells
for which P > 0.95, where P (ci, cj) = 1

N−1
∑
t

( ci(t)−〈cj〉
σi

)( cj(t)−〈cj〉
σj

)
is the Pearson correlation

coefficient computed for the calcium traces of a cell pair with 〈·〉 specifying the mean of that
trace [4]. The average clustering coefficients and global efficiencies of the functional and
random networks were calculated using the Brain Connectivity Toolbox in MATLAB.

In biological networks, the distribution of cell connections tends to be disproportionate lead-
ing to a degree distribution that follows a power law function [7]. After the construction of
the functional graph, the degree of each cell was computed and the resulting degree distribu-
tion was fit to a power law function. The cells that possessed the majority of the connections
(i.e. the cells occupying the 60-100% connectivity range) were defined as network hubs.

3.3 Synchronization Index

Four indexes were used to quantify the degree of synchronization among the cells. For the
first index taken from Pedersen’s work, the Pearson correlation coefficient was calculated
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for the calcium trace averaged over the cells and that of each individual cell [4]. A cell was
considered synchronized to the islet if P > 0.85. The synchronization index was given by
I = L

N
, where L is the number of synchronized cells and N is the cell number.

The second synchronization index, taken from work done by a previous REU group, calcu-
lated the Pearson correlation coefficient for each pair of cells using the interpolated calcium
traces of the cells [2]. Each coefficient was stored in a matrix such that the (i, j) entry was the
correlation coefficient for the ith and jth cell. The average value of each row in the matrix was
then calculated, and the synchronization index was defined as the minimum of these averages.

Two indexes came from Nittala’s work [1]. Both utilized phase synchronization analysis
which is less sensitive to variation in oscillation amplitudes than techniques that use correla-
tion coefficients. To calculate the indexes, the instantaneous phase of the jth cell was defined
as ϕj(t) and computed from the Hilbert transformation of that cell’s calcium trace. Then, the
mean field phase value was calculated as Φ(tk) = arg

∑
exp(iϕj(tk)). The synchronization

strength of a single beta cell with the rest of the cluster was given by ρj = |〈exp
(
i(ϕj(tk))−

Φ(tk)
)
〉| and the total islet synchronization was defined as 〈ρj〉 = 1

nB

∑
j

ρj. The second in-

dex from Nittala assumed that all the cells were bursting. Therefore, the synchronization
strength of each pair of cells could be calculated from λj,k = |〈exp[i(ϕj(t) − ϕk(t))]〉|. The

index was determined by λ = 〈λj,k〉 = 2
(nB)(nB−1)

nB∑
j,k>j

λj,k.

3.4 Chloride Modified Single Slow Channel Model

−CM
dV

dt
=
∑

Iion + Ic − ICl

Using a method called optogenetics by genetically adding a light sensitive halorhodpsin
molecule to beta cells, Johnston was able to silence individual cells in order to observe the
effects on synchronization [7]. To replicate these biological experiments, we added a chloride
channel to our Single Slow Channel Model. Similar to other ionic currents, the chloride
current is modeled using a conductance (gCl), externally controlled gating variable (σ(t)),
and a driving force (V − VCl).

ICl = gClσ(t)(V − VCl) where σ(t) =


0, t < 100 sec

1, t > 100 sec

When the chloride channel is opened at t = 100 seconds, denoted using σ(t), the voltage of
the cell decreases. As the calcium channels are voltage dependent, the hyperpolarization of
the cell prevents the larger influx of calcium, leading to the cell being silenced. We used this
channel to silence individual cells, such as hub cells, and study its effect on small worldness
of the entire islet.
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4 Results

4.1 Replicating Previous Results

The Single Slow Channel Model was implemented in MATLAB to simulate the dynamics
of an isolated single cell. To replicate bursting behavior of a cell as observed in Sherman’s
work, the conductance of KATP channels was set to zero and a constant was added to the
differential equation controlling the slow channel gating variable s at t = 40 seconds, which
can be seen in Figure 4.1 [8].

Figure 4.1: Voltage, s, and calcium time courses for isolated beta cells using the Single Slow
Channel Model. At t = 40 sec, a constant R = 0.5 was added to the right-hand side of the
ds
dt

equation.

To understand cell coupling, a two-cell system was simulated. The cells were coupled with
the addition of a single flux term to both cells’ voltage equations. Simulations were replicated
from DeVries’ work, one of which is shown in Figure 4.2 [5].
Initially, the voltage dynamics of the cells differed due to the varied initial conditions. Instan-
taneously, the cells nearly synchronize into an in-phase spiking pattern. At approximately
t = 7, the spiking frequency increases leading to the cells bursting.

4.2 Multi-Cell Cluster Simulations

Using the hexagonal lattice, we simulated a system with 153 coupled cells (n = 4) with ho-
mogeneous parameters. Similar to the two cell coupled system, all cells rapidly established
synchronization and bursted in phase. Since calcium can be measured experimentally, cal-
cium traces were utilized to analyze dynamics. The beta cell lattice was visualized to observe
how a calcium wave propagated through the system. The system is shown in a quiet (Figure
4.3a) and elevated (Figure 4.3b) state. The intensity of the red coloring is proportional to
the calcium concentration in a cell.
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Figure 4.2: Spiking and bursting behavior between two coupled cells

(a) (b)

Figure 4.3: Hexagonal lattice with homogeneous parameters in (a) a quiet state and (b) an
elevated state.

A similar system was simulated using heterogeneous instead of homogeneous parameters.
Due to the differing cell parameters, some of the cells calcium concentrations were elevated
before others as seen in Figure 4.4a. However, within a few seconds all cells reached a high
level of calcium as seen in Figure 4.4b.

(a) (b)

Figure 4.4: Hexagonal lattice with heterogeneous parameters in (a) a quiet state and (b) an
elevated state.
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4.3 Synchronization

The four synchronization indexes were tested using six different coupling strengths with two
tests per strength. The results are shown in Table 4.1.

µ value Test # Pederson Nittala 1 Nittala 2 Previous REU

0.0 1 0.0000 0.1436 0.2013 0.0396
2 0.0000 0.1463 0.2043 0.0281

0.2 1 0.0000 0.2212 0.1881 0.0515
2 0.0000 0.2023 0.1875 0.0593

0.4 1 0.3282 0.8146 0.1631 0.2252
2 0.4396 0.8139 0.1639 0.1421

0.6 1 0.6563 0.8939 0.1726 0.3952
2 0.6656 0.9104 0.1839 0.0156

0.8 1 0.7647 0.9310 0.1922 0.0858
2 0.7090 0.9327 0.2130 0.4966

1.0 1 0.9226 0.9530 0.2140 0.5972
2 0.8731 0.9485 0.2279 0.5610

Table 4.1: Synchronization measurements made for six different coupling strengths using
four different metrics.

The Pedersen index showed the greatest sensitivity for moderate to high coupling strengths.
Nittala 1 showed better sensitivity to the low coupling strengths but saturated quickly after
µ = 0.4. Nittala 2 captured little variation amongst all coupling strengths. The Previous
REU Synchronization Index yielded inconsistent measurements for the two tests at µ = 0.6
and µ = 0.8. The Pedersen index was selected to quantify synchronization for all future
simulations.

Calcium and voltage time courses for three different synchronization values are shown in
Figures 4.5-4.7. The cell bursting activity displayed in the graphs was recorded over a time
span of 500 seconds and the different colors indicate a different cell’s time course. Ten cells
were selected a random from a 323-cell system and the synchronization values were obtained
from the Pedersen index.
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Figure 4.5: Voltage and calcium traces of 323 cells with µ = 0 and synchronization index of
0
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Figure 4.6: Voltage and calcium traces of 323 cells with µ = 0.3 and synchronization index
of 0.3331
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Figure 4.7: Voltage and calcium traces of 323 cells with µ = 0.6 and synchronization index
of 0.8773.

4.4 Small Worldness

Ten simulations were performed at each coupling strength ranging from zero to one. A 1483-
cell system was used and the clustering coefficient and global efficiency were calculated for
each of the ten simulations per coupling strength. The mean values are plotted in Figure 4.8a
and 4.8b, respectively. Also, random networks with equal degree and edge number as the
associated functional network were generated for each simulation and the mean values of the
clustering coefficients and global efficiencies were obtained. The small worldness parameter
was calculated for each coupling strength using the mean clustering coefficient and global
efficiency (Figure 4.8c. In addition, the distribution of functional connections was calculated
and a power law function was fitted to the distribution for each of the ten simulations. The
mean R2 value for the fitted curves are given in Figure 4.8d as a function of small worldness
values.
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(a) (b)

(c) (d)

Figure 4.8: (a) Clustering Coefficient, (b) Global Efficiency, (c) Small Worldness and Cou-
pling, (d) R2 values for a power law function fits 1483 system

Because the number of cell pairs for which the calcium traces were correlated increased with
the coupling strength, both the clustering coefficient and global efficiency increased with
the coupling strength. The rate at which the normalized clustering coefficient (Cavg/Cr))
increased was greater than that of the normalized global efficiency, showing little to no
change from µ = 0 to about µ = 0.3. There was a spike in small worldness between
µ = 0.3 to µ = 0.4, then a rapid decline as the normalized global efficiency exceeded the
normalized clustering coefficient due to the high number of functional connections created for
high coupling strengths. The quality of the power law fit increased with the small worldness,
indicating that the functional connections were distributed more disproportionately for small
world networks.
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4.5 Hub Cell Identification and Silencing

The functional network constructed from a previously simulated 323 cell system with a
coupling strength of 0.6 is shown in Figure 4.9a

(a)

(b)

(c)

Figure 4.9: Hub cell identification in 323 network with µ = 0.6. (a) Functionally cou-
pled small world network, (b) distribution of functional connections, (c) hub cell functional
connections,
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and the distribution of functional connections for this system is given in Figure 4.9b. The
functional network for the cell with the highest number of functional connections as labeled
in Figure 4.9b is shown in Figure 4.9c. Hub cells were loosely defined as the cells with the
highest numbers of functional connections.

4.6 Knockout of Few Hub Cells has Biphasic Effect on Small
Worldness and Decreases Synchrony

Cells with the highest number of functional connections were then silenced and the system
re-simulated. The same procedure was performed on a system with 1483 cells and a coupling
strength of 0.4. The synchronization of the system after the removal hub cells is shown in
Figure 4.10. As more hub cells are killed within the islet, synchronization decreases, which
affects the network’s overall performance.

(a) (b)

(c) (d)

Figure 4.10: (a) Small worldness and (b) synchronization of a 323 cell system (µ = 0.6)
after hub cell silencing, (c) small worldness and (d) synchronization of a 1483 cell system
(µ = 0.4) after hub cell silencing
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5 Conclusions

We have shown that networks consisting of pancreatic beta cells can be constructed with
small world properties through heterogeneous nearest neighbor coupling. We saw that mod-
erate coupling strengths generated networks with the greatest small worldness. Such coupling
strengths allowed for a large number of functional connections to be formed while maintain-
ing a disproportionate distribution of connections as shown in Figure 4.8(d). A power law
connection distribution seems to be necessary to allow a select few cells in the network to
act as hubs which results in high small worldness.

We saw that electrical silencing of these hubs has a destructive effect on synchronization
of the islet but a biphasic effect on small worldness. Small worldness increased significantly
after six hubs were silenced in both the 323 and 1483 cell islets as shown in Figure 4.10. This
is likely due to a more disproportionate distribution of the remaining functional connections.
But as more hubs were silenced, synchronization became too low to allow any one cell to
significantly influence the islet.

In the model, as in the experiment, the β cells are still electrically coupled even under
the application of light and activation of the optogenetically triggered halorhodopsin Cl
channels. Remaining electrically connected means that the optogenetically activated cells
will act as a bit of a current sink. This had the effect of reordering which cells were the
most connected cells in the islet once a more connected cell was optogenetically removed.
However, when we removed subsequent hub cells we referred to the original list of hub cells.
It is likely we if were to remove hub cells after reordering, we would find an even more dra-
matic fall off in synchronization and possibly a more rapid rise and decent in small worldness.

It apears that small worldness likely increases the vulnerability of an islet to damage. In
Figure 4.10, we saw that destruction of only 0.7% of the cells in a 1483 cell islet reduced the
synchronization from about 0.63 to 0.35, and destruction of only 3% of the cells in a 323 cell
islet reduced synchronization from 0.76 to 0.2. It was also observed that for a given coupling
strength, a 1483 cell islet had more small worldness than a 323 cell islet. This implies that
larger islets are more vulnerable than smaller islets due to the greater control that hub cells
have on synchronization in the larger network. Studies have shown that obese individuals
tend to have more cells per islet than healthy individuals. Hence, if beta cell communication
is mediated by a highly small world network in the larger islets of obese individuals, hub
destruction may lead to loss of islet synchronization and the acquisition of diabetes.
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